Gas Withdrawal Patents (Class 204/266)
  • Patent number: 9382138
    Abstract: An advanced on-site water sanitization system is taught having integrated chlorine generation and copper/silver ionization in the same unit. The system includes a manifold loop connectable to a water supply line for supplying water to be sanitized from a body of water, and connectable to a water return line for returning sanitized water to the body of water. It also includes a copper/silver ionizer, capable of receiving a flow of water to be sanitized, adding copper and silver ions to the flow of water so as to provide a copper/silver ionized flow of water. A chlorinator is also included, capable of receiving a flow of ionized water, and a flow of chlorine, and allowing the flow of chlorine to mix with the flow of ionized water so as to provide a chlorinated flow of ionized water to the manifold loop to return as sanitized water to the body of water.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: July 5, 2016
    Inventor: Daniel Moroni Tucker
  • Patent number: 9368102
    Abstract: A method and system are provided for text-to-speech synthesis with personalized voice. The method includes receiving an incidental audio input (403) of speech in the form of an audio communication from an input speaker (401) and generating a voice dataset (404) for the input speaker (401). The method includes receiving a text input (411) at the same device as the audio input (403) and synthesizing (312) the text from the text input (411) to synthesized speech including using the voice dataset (404) to personalize the synthesized speech to sound like the input speaker (401). In addition, the method includes analyzing (316) the text for expression and adding the expression (315) to the synthesized speech. The audio communication may be part of a video communication (453) and the audio input (403) may have an associated visual input (455) of an image of the input speaker.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: June 14, 2016
    Assignee: Nuance Communications, Inc.
    Inventors: Itzhack Goldberg, Ron Hoory, Boaz Mizrachi, Zvi Kons
  • Patent number: 9340881
    Abstract: A system for improving efficiency in which water or aqueous solution is broken into its core molecules of hydrogen and oxygen using a 12 volt power source, and of which this gas vapor can improve the efficiency of an engine of a vehicle in a catalytic fashion once combining with a fossil fuel, and includes a reactor housing containing at least one reactor unit having electrodes slotted in an insulated container, a solution supply system that regulates the aqueous solution in the system; and an air handling system that regulates the decomposed hydrogen and oxygen gas in the system. The reactor unit being immersed in an liquid or aqueous solution produces hydrogen and oxygen through electrolysis.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 17, 2016
    Inventor: David Packer
  • Patent number: 9273402
    Abstract: A system for the manufacture, storage and transportation of hydrogen and oxygen gas wherein deep sealed production chambers (10) capable of withstanding high pressures are provided and water is fed by gravity from a water source to the bottom of the deep sealed production chamber (10) thereby producing water(16) in the bottom of the production chamber (10) under substantial pressure. Hydrogen and oxygen gas are produced in the water at the bottom of the production chamber (10) with electrolysis and the produced oxygen is captured in an oxygen escape pipe (18) extending from the bottom of the production chamber (10) to the exterior (19) of the production chamber (10), the oxygen escape pipe (18) containing a positive anode electrode (25) for the electrolysis in the bottom end of the oxygen pipe. The hydrogen gas is collected under pressure at the upper storage area (22) of the production chamber (10).
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 1, 2016
    Inventor: Joseph P. Bower
  • Patent number: 9157155
    Abstract: A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and semiconductor layers (122, 123) disposed on the conductor (121); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with surfaces of the semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). A band edge level ECS of a conduction band, a band edge level EVS of a valence band, and a Fermi level EFS in a surface near-field region of the semiconductor layer, and a band edge level ECJ of a conduction band, a band edge level EVJ of a valence band, and a Fermi level EFJ in a junction plane near-field region of the semiconductor layer with the conductor satisfy, relative to a vacuum level, ECS?EFS>ECJ?EFJ, EFS?EVS<EFJ?EVJ, ECJ>?4.44 eV, and EVS<?5.67 eV.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 13, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Noboru Taniguchi, Kenichi Tokuhiro, Takahiro Suzuki, Tomohiro Kuroha, Takaiki Nomura, Kazuhito Hato, Satoru Tamura
  • Patent number: 9062383
    Abstract: An electrolysis cell provided with a separator, suitable for chlor-alkali electrolysis, has a planar flexible cathode kept in contact with the separator by an elastic conductive element pressed by a current distributor and an anode consisting of a punched sheet or mesh supporting the separator suitable for being individually pre-assembled and used as elementary unit of a modular arrangement to form an electrolyzer whose terminal cells only are connected to the electric power supply; the electrical continuity between adjacent cells being assured by conductive contact strips secured to the external anodic walls of the shells delimiting each cell with the stiffness of the cathode current distributor and of the anodic structure and the elasticity of the conductive element cooperate in maintaining a uniform cathode to separator contact with a homogeneous pressure distribution meanwhile ensuring a suitable mechanical load on the contact strips.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: June 23, 2015
    Assignee: UHDENORA S.P.A.
    Inventors: Angelo Ottaviani, Fulvio Federico, Antonio Pasquinucci, Dario Oldani, Michele Perego
  • Publication number: 20150114843
    Abstract: A method for the photoelectrocatalytic production of hydrogen and oxygen from water, is carried out by: (a) providing a photohydride proton reduction catalyst and a photoanode having water oxidation catalyst operatively associated therewith, both in an aquous electrolyte solution,wherein the photohydride proton reduction catalyst comprises a single-component light absorbing catalytic metal complex of the formula AXB, wherein A is a coordinated aromatic group, X is a metal, and B is a bidentate organic ligand; and (b) illuminating the photoanode and the photohydride proton reduction catalyst with visible light to generate O2 by the action of the water oxidation catalyst and H2 by the action of the photohydride proton reduction catalyst. Constructs and apparatus useful for carrying out the method are also described.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Catherine L. Pitman, Alexander J. Miller
  • Publication number: 20150075977
    Abstract: A hydrogen/oxygen, gas separator and purification method used to retrieve and separate molecules of hydrogen and oxygen from water. A nonconductive device installed within the hydrogen generator: Kasprzak et al. U.S. Pat. No. 8,535,493 entitled “Miami Max Hydro” The Ultimate Hydrogen Cell. Presented here is a separator composed of a nonconductive disc and nonconductive sleeves constructed as one unit allowing charged atoms (ions) to pass through and between electrodes. Sleeves are aligned with multiple anode and cathode generator rods, where-in a micro-channel exists between those two. When energized, the hydrogen and oxygen gas is introduced to the micro-channels located inside the generator. The sleeves are composed of thin film plastic tubes installed around the cathode or anode electrodes causing the hydrogen to separate from the oxygen in a highly efficient manner.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Inventors: Stefan Kasprzak Adam, Rima Kasprzak, Adam Kasprzak Shennan, Jenneka Sophia Kasprzak, Chris Kruszelnicki
  • Patent number: 8974646
    Abstract: Disclosed herein is a portable hydrogen-rich water generator that includes a separable drinking cup, an electrolytic cell which includes an anode, a cathode, a solid polymer electrolyte membrane, etc. and is disposed at the bottom of the drinking cup, a reservoir base on which the drinking cup is mounted and in which an anode reaction of the electrolytic cell is generated, a float valve which allows water to be continuously supplied at a certain water level from a water tank, and a power supply to apply direct current power to the electrolytic cell.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: March 10, 2015
    Inventors: Inchol Park, Ilbong Kim
  • Publication number: 20150041327
    Abstract: Disclosed herein are electroplating systems for electroplating nickel onto a semiconductor substrate having an electroplating cell for holding an electrolyte solution during electroplating which includes a cathode chamber and an anode chamber configured to hold a nickel anode, and having an oxygen removal device arranged to reduce oxygen concentration in the electrolyte solution as it is flowed to the anode chamber during electroplating and during idle times when the system is not electroplating. Also disclosed herein are methods of electroplating nickel onto a substrate in an electroplating cell having anode and cathode chambers, which include reducing the oxygen concentration in an electrolyte solution, flowing the electrolyte solution into the anode chamber and contacting a nickel anode therein, and electroplating nickel from the electrolyte solution onto a substrate in the cathode chamber, wherein the electrolyte solution in the cathode chamber is maintained at a pH of between about 3.5 and 4.5.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Inventors: Bryan L. Buckalew, Thomas A. Ponnuswamy, Ben Foley, Steven T. Mayer
  • Publication number: 20150014153
    Abstract: Apparatus for producing chlorine dioxide comprises an electrolysis cell having an anode and a cathode which receives sodium chlorite solution as an anolyte flow and water as a catholyte flow, a chlorine dioxide gas separator which releases chlorine dioxide gas from the anolyte flow which leaves the cell and a separator which releases hydrogen gas from the catholyte flow which leaves the cell. The anolyte and catholyte flows are recirculated from the separators to the cell.
    Type: Application
    Filed: March 28, 2013
    Publication date: January 15, 2015
    Inventor: Kenneth Roland Varcoe
  • Patent number: 8906218
    Abstract: This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 9, 2014
    Assignee: Solexel, Inc.
    Inventors: Karl-Josef Kramer, Mehrdad M. Moslehi, Subramanian Tamilmani, George Kamian, Jay Ashjaee, Takao Yonehara
  • Publication number: 20140238869
    Abstract: An electrochemical cell for the continuous acidification of alkaline water sources and recovery of carbon dioxide with simultaneous continuous hydrogen gas production having a center compartment, an electrolyte-free anode compartment having a mesh anode in direct contact with an ion permeable membrane, an endblock in direct contact with the anode where the endblock provides a gas escape route behind the anode, an electrolyte-free cathode compartment having a mesh cathode in direct contact with an ion permeable membrane, and an endblock in direct contact with the cathode where the endblock provides a gas escape route behind the cathode. Current applied to the electrochemical cell for generating hydrogen gas also lowers the pH of the alkaline water to produce carbon dioxide with no additional current or power. Also disclosed is the related method for continuously acidifying alkaline water sources and recovering carbon dioxide with continuous hydrogen gas production.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 28, 2014
    Inventors: Felice DiMascio, Heather D. Willauer, Dennis R. Hardy, Frederick Williams, M. Kathleen Lewis
  • Patent number: 8808528
    Abstract: Electrolyte supply tanks and bubbler tanks for oxyhydrogen gas generation systems are provided which eliminate the introduction of electrolyte and water into the induction systems of internal combustion engines. Both types of tanks are equipped with porous polyethylene gas diffusers which break up incoming gas into microscopic bubbles, thereby facilitating the absorption of electrolyte mist and droplets returning to the electrolyte supply tank and minimizing splashing of incoming gas in bubbler tanks. Air diffusers having an average pore diameter of about 70 ?m are installed near the bottom of the electrolyte supply tanks, while air diffusers having an average pore diameter of about 35 ?m are installed near the bottom of the bubbler tanks.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 19, 2014
    Inventor: David Thomas Richardson
  • Patent number: 8808512
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and oxygen gases is disclosed. The apparatus comprises: (i) a first hemi-enclosure; (ii) a second hemi-enclosure; (iii) a diaphragm electrode array positioned between the first hemi-enclosure and the second hemi-enclosure comprising: (a) a diaphragm, that passes ions and impedes the passage of gases, comprising a first side and a second opposed side; (b) a first plurality of electrodes in a first vicinity of the first side of the diaphragm; and (c) a second plurality of electrodes in a second vicinity of the second opposed side of the diaphragm; (iv) a fastener, for leak-tight fastening of the first hemi-enclosure, the diaphragm electrode array, and the second hemi-enclosure, whereby a leak-tight enclosure is formed; (v) contacts, for electrically powering the first and second pluralities of electrodes, and; (vi) pathways, configured to remove hydrogen and oxygen gases from the enclosure.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: August 19, 2014
    Assignee: GTA, Inc.
    Inventor: Elias Greenbaum
  • Publication number: 20140202877
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and oxygen gases is disclosed. The apparatus comprises: (i) a first hemi-enclosure; (ii) a second hemi-enclosure; (iii) a diaphragm electrode array positioned between the first hemi-enclosure and the second hemi-enclosure comprising: (a) a diaphragm, that passes ions and impedes the passage of gases, comprising a first side and a second opposed side; (b) a first plurality of electrodes in a first vicinity of the first side of the diaphragm; and (c) a second plurality of electrodes in a second vicinity of the second opposed side of the diaphragm; (iv) a fastener, for leak-tight fastening of the first hemi-enclosure, the diaphragm electrode array, and the second hemi-enclosure, whereby a leak-tight enclosure is formed; (v) contacts, for electrically powering the first and second pluralities of electrodes, and; (vi) pathways, configured to remove hydrogen and oxygen gases from the enclosure.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: HYDROGEN PRODUCTION ASSOCIATES, INC.
    Inventor: Elias Greenbaum
  • Patent number: 8769972
    Abstract: A refrigeration system defines a closed loop that contains a working fluid, at least part of the working fluid being circulated through the closed loop. The refrigeration system includes a first heat transfer device that transfers heat from the first heat reservoir to the working fluid, a second heat transfer device that transfers heat from the working fluid to the second heat reservoir, and an electrochemical compressor between the first and second heat transfer devices. The electrochemical compressor includes one or more electrochemical cells electrically connected to each other through a power supply, each electrochemical cell including a gas pervious anode, a gas pervious cathode, and an electrolytic membrane disposed between and in intimate electrical contact with the cathode and the anode.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 8, 2014
    Assignee: Xergy Inc
    Inventor: Bamdad Bahar
  • Publication number: 20140183054
    Abstract: An efficient method and system for the electrochemical treatment of waste water comprising organic and/or inorganic pollutants is disclosed. The system comprises an electrolytic cell comprising a solid polymer, proton exchange membrane electrolyte operating without catholyte or other supporting electrolyte. The cell design and operating conditions chosen provide for significantly greater operating efficiency.
    Type: Application
    Filed: May 29, 2012
    Publication date: July 3, 2014
    Applicant: AXINE WATER TECHNOLOGIES, INC.
    Inventor: Colleen Legzdins
  • Patent number: 8764953
    Abstract: The present invention relates to a system comprising a heat source to provide heat at the desired temperature and energy field (e.g. a solar concentrator); an electron source configured and operable to emit electrons; an electric field generator generating an electric field adapted to supply energy sufficient to dissociate gas molecules; and a reaction gas chamber configured and operable to cause interaction between the electrons with the molecules, such that the electrons dissociate the molecules to product compound and ions via dissociative electrons attachment (DEA) within the chamber.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 1, 2014
    Assignee: Yeda Research and Development Company Ltd.
    Inventors: Jacob Karni, Gidon Ferdiman, Yury Alioshin
  • Patent number: 8747647
    Abstract: In a process for chlorine-alkali electrolysis, use is made of an oxygen depletion cathode. The process is run with a high excess of oxygen. The oxygen needed for this is provided for a device of the gas separation, for example a VPSA plant or an air fractionation plant. The large quantities of oxygen produced lead to considerable costs of the process. According to the invention, the oxygen-rich atmosphere remaining after passing through the process is fed back into the device for gas separation as input gas. The device the gas separation is therefore operated with an oxygen-rich input gas and therefore produces a larger quantity of oxygen-rich gas, which in turn is fed to the oxygen depletion cathode. As a result of the circulation of the gas, the economy of the overall process is increased considerably.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 10, 2014
    Assignees: Messer Group GmbH, Bayer Material Science AG
    Inventors: Walter Bachleitner, Christoph Erdmann, Joachim Rohovec, Andreas Bulan, Mathias Weis
  • Publication number: 20140151217
    Abstract: A high-pressure water electrolysis apparatus includes a solid polymer electrolyte membrane, an anode side separator, a cathode side separator, an anode side element member, a cathode side element member, a high-pressure hydrogen communication hole, a first seal member, and a second seal member. The first seal member is provided between the solid polymer electrolyte membrane and an outer circumference edge portion of the anode side separator. The second seal member has a thickness same as a thickness of the anode side element member at a time of operation of the high-pressure water electrolysis apparatus. The second seal member is disposed in an anode chamber to shield between the anode chamber and the high-pressure hydrogen communication hole.
    Type: Application
    Filed: November 13, 2013
    Publication date: June 5, 2014
    Applicant: Hond Motor Co., Ltd.
    Inventor: Koji NAKAZAWA
  • Patent number: 8734632
    Abstract: Apparatus and operating methods are provided for controlled atmosphere furnace systems. In one possible embodiment, hydrogen is injected from a hydrogen source to an enclosure. The hydrogen is circulated within the enclosure from a gas inlet to a gas outlet. A temperature is raised within the enclosure to a predetermined threshold. Hydrogen is pumped from the gas outlet to the gas inlet with an electrochemical hydrogen pump. The electrochemical hydrogen pump has a first electrode in fluid communication with the gas outlet, and a second electrode in fluid communication with the gas inlet. An electrical potential is provided between the first and second electrodes, wherein the first electrode has a higher electrical potential with respect to zero than the second electrode. Various methods, features and system configurations are discussed.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 27, 2014
    Assignee: H2 Pump, LLC
    Inventor: Glenn A. Eisman
  • Patent number: 8702915
    Abstract: Small, autonomous, low cost electrochemical gas generators containing an electrochemical cell assembly, a commercially available battery and a current controlling mechanism. Current control, which defines the gas generation rate, is achieved either electronically by means of a resistor or through mass transfer control by means of a gas permeable film of known permeability. In either case, the gas generation rates are generally from 0.1 to 10 cc/day. The gas source must contain an electrochemically active gas such as oxygen or hydrogen. Air is the preferred source for oxygen. These miniature gas generators, generally are less than 1.5 cm in diameter and length, require novel, compact, electrochemical cell assemblies. Various cell assemblies, generally 1 cm in diameter and less than 0.5 mm thick, are described. These miniature gas generators are used for the controlled release of fluids such as pheromones, fragrances, insect repellents, and the like.
    Type: Grant
    Filed: March 28, 2009
    Date of Patent: April 22, 2014
    Assignee: M & R Consulting Services, Inc.
    Inventor: Henri Maget
  • Patent number: 8679305
    Abstract: A high-pressure hydrogen producing apparatus includes a cell device and a piston member. The piston member is to apply a pressing force to the cell device from an end of the piston member in a stacking direction in which unit cells are stacked. The piston member is provided with a first hydrogen passage, at least one second hydrogen passage, and a hydrogen lead-out passage. The first hydrogen passage and the second hydrogen passage are spaced at substantially equal angular intervals on a virtual circle centered on a center of an end face of the piston member.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: March 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koji Nakazawa, Hiroyuki Ishikawa, Yuji Yamakawa
  • Publication number: 20140069808
    Abstract: A structural plate with external reinforcing means is provided for an electrolyser module. The structural plate defines at least one degassing chamber and a half cell chamber opening. The external reinforcing means contact the structural plate for mitigating outward displacement of the structural plate in response to fluid pressure within the structural plate. The structural plate and the external reinforcing means define interlocking features for achieving contact and corresponding mechanical reinforcement.
    Type: Application
    Filed: February 1, 2013
    Publication date: March 13, 2014
    Applicant: NEXT HYDROGEN CORPORATION
    Inventors: Chris WILSON, Michael STEMP, James HINATSU
  • Publication number: 20140069807
    Abstract: A structural plate is provided for an electrolyser module. The structural plate defines at least one degassing chamber and a half cell chamber opening. The structural plate is reinforced with at least one internal reinforcing means mounted to the structural plate for mitigating outward displacement of the structural plate in response to fluid pressure within the structural plate. The structural plate defines holding features for locating and holding the internal reinforcing means.
    Type: Application
    Filed: February 1, 2013
    Publication date: March 13, 2014
    Applicant: NEXT HYDROGEN CORPORATION
    Inventors: Chris WILSON, Michael STEMP, James HINATSU
  • Patent number: 8663448
    Abstract: Apparatus and operating methods are provided for controlled atmosphere furnace systems. In one possible embodiment, hydrogen is injected from a hydrogen source to an enclosure. The hydrogen is circulated within the enclosure from a gas inlet to a gas outlet. A temperature is raised within the enclosure to a predetermined threshold. Hydrogen is pumped from the gas outlet to the gas inlet with an electrochemical hydrogen pump. The electrochemical hydrogen pump has a first electrode in fluid communication with the gas outlet, and a second electrode in fluid communication with the gas inlet. An electrical potential is provided between the first and second electrodes, wherein the first electrode has a higher electrical potential with respect to zero than the second electrode. Various methods, features and system configurations are discussed.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: March 4, 2014
    Assignee: H2 Pump, LLC
    Inventor: Glenn A Eisman
  • Patent number: 8658007
    Abstract: An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: February 25, 2014
    Assignee: The Trustees of Boston University
    Inventor: Uday B. Pal
  • Patent number: 8658008
    Abstract: A high-pressure hydrogen producing apparatus includes a first cell device and a second cell device. The first cell device includes an electrolyte membrane, an anode electrode catalyst layer and an anode current collector provided on a first surface of the electrolyte membrane, and a cathode electrode catalyst layer and a cathode current collector provided on a second surface of the electrolyte membrane. The second cell device includes an electrolyte membrane, an anode current collector provided on a first surface of the electrolyte membrane of the second cell device, and a cathode current collector provided on a second surface of the electrolyte membrane of the second cell device.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Jun Takeuchi, Kenji Taruya
  • Publication number: 20140048067
    Abstract: The present disclosure relates to an electrolysis apparatus that includes an anode electrically connectable to a direct current electrical source. The apparatus also includes a cathode comprising a proximal segment and a distal segment. The proximal segment is electrically connectable to the direct current electrical source. Further, the apparatus includes a hydrogen collector receptacle that limits generation and collection of hydrogen at the cathode to a specified amount. The hydrogen collector receptacle encompasses a portion of the cathode. Also, the apparatus includes a delivery device that receives hydrogen from and is connected to the hydrogen collector receptacle. According to one embodiment, the hydrogen gas generated in the electrolysis apparatus and collected in the collector receptacle is less than about 4.5% of a user's breath.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 20, 2014
    Applicant: Hydro Healer, LLC.
    Inventors: Bruce J McGill, Stephen Doughty, Tim Nieman
  • Patent number: 8640492
    Abstract: A heat transfer system defines a closed loop that contains a working fluid that is circulated through the closed loop. The heat transfer system includes an electrochemical compressor including one or more electrochemical cells electrically connected to each other through a power supply. Each electrochemical cell includes a gas pervious anode, a gas pervious cathode, and an electrolytic membrane disposed between and in intimate electrical contact with the cathode and the anode. The heat transfer system also includes a tubular system that receives at least one electrochemically-active component of the working fluid from an output of the electrochemical compressor and, if present, other components of the working fluid that bypass the electrochemical compressor. The tubular system has a geometry that enables at least a portion of the received working fluid to be imparted with a gain in kinetic energy as it moves through the tubular system.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 4, 2014
    Assignee: Xergy Inc
    Inventor: Bamdad Bahar
  • Publication number: 20140008240
    Abstract: This invention is an apparatus and a method for continuously generating a hydride gas of M1 which is substantially free of oxygen in a divided electrochemical cell. An impermeable partition or a combination of an impermeable partition and a porous diaphragm can be used to divide the electrochemical cell. The divided electrochemical cell has an anode chamber and a cathode chamber, wherein the cathode chamber has a cathode comprising M1, the anode chamber has an anode comprising M2 and is capable of generating oxygen, an aqueous electrolyte solution comprising a hydroxide M3OH partially filling the divided electrochemical cell. Hydride gas generated in the cathode chamber and oxygen generated in the anode chamber are removed through independent outlets. M1 can be selenium, phosphorous, silicon, metal or metal alloy, M2 is metal or metal alloy suitable for anonic oxygen generation, and M3 is NH4 or an alkali or alkaline earth metal.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 9, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Air Products and Chemicals, Inc.
  • Patent number: 8613848
    Abstract: A device for the concurrent oxygen generation and control of carbon dioxide for life support system involves two stages, where a first stage removes CO2 from an exhalent side of a ventilation loop and a second stage employs Ceramic Oxygen Generators (COGs) to convert CO2 into carbon and O2. The first stage includes a plurality of chambers and means to switch the ventilation loop through at least one of the chambers, where CO2 removal is carried out before discharge of the CO2 depleted gas to an inhalant side of the ventilation loop, and to exclude the ventilation loop from the remaining chambers of the first stage, where these chambers are placed in communication with the second stage. The second stage has two portions separated by the COGs such that CO2 and the formed carbon remain on an intake portion from the O2 rich atmosphere on the exhaust side, which is plumbed via a metering valve to introduce the O2 rich atmosphere to the inhalant side of the ventilation loop.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 24, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Eric D. Wachsman, Keith L. Duncan, Helena Hagelin-Weaver
  • Patent number: 8608915
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 17, 2013
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20130264218
    Abstract: An oxygen concentrator is for generating a flow of oxygen by electrolysis of atmospheric humidity. It comprises a cathode (24) and an anode (26) contacting opposite sides of a proton-conducting membrane (12). A catalytic apparatus (14) comprises a diffusion layer (28) which spaces a catalyst (30) from the cathode. The cathode and the catalytic apparatus are contained within a cathode chamber which comprises a ventilation means (44) for allowing a controlled flow of air to the catalyst. In operation water is electrolysed at the anode and hydrogen generated at the cathode flows through the diffusion layer to the catalyst, where it reacts with atmospheric oxygen to form water which flows back to the proton-conducting membrane for further electrolysis.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 10, 2013
    Applicant: Inotec AMD Limited
    Inventors: Melvin Frederick Vinton, Derek John Fray
  • Publication number: 20130256152
    Abstract: An electrolytic cell comprising an anode in an anode region and a cathode in a cathode region, the anode region and the cathode regions separated by an ion selective polymer electrolyte membrane; an anolyte in flowing fluid communication with the anode, the anolyte comprising water and a redox mediator couple which is at least partially oxidised at the anode in operation of the cell and at least partially reduced by reaction with water after such oxidation at the anode.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 3, 2013
    Applicant: ACAL ENERGY LTD
    Inventor: Andrew Martin Creeth
  • Patent number: 8540856
    Abstract: An apparatus and method for generating hydrogen. The hydrogen generator of the present invention includes a closed body having a sidewall and two end plates defining a cavity therein. A plurality of electrodes and a plurality of proton exchange membranes are disposed within the cavity. Each proton exchange membrane is sandwiched between two electrodes thereby creating a plurality of hydrogen generating cells disposed along the inner wall of the sidewall. An inflated bladder insures intimate contact between the electrodes and proton exchange membranes. The hydrogen generating cells are operated in series by applying a DC voltage of opposite polarity to electrodes at opposing ends of the cells. Applying the voltage and admitting water into the generator enables hydrogen generation at 12 volts or higher while limiting the potential on each proton exchange membrane to 2 volts thereby protecting the proton exchange membranes from damage or failure by voltage overload.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 24, 2013
    Inventors: Fred T. Mayers, Sr., Edward N. Miller, Fred T. Mayers, Jr.
  • Patent number: 8518224
    Abstract: The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow field within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles, coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 27, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Yue Ma, Xi Wang, Yunwen Huang, Zhenxu Pang, Voha Nuch, David Wang
  • Publication number: 20130180847
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: September 24, 2011
    Publication date: July 18, 2013
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Patent number: 8470143
    Abstract: A chlorine-generating apparatus is herein disclosed which uses softened household water and salt. The apparatus includes a freestanding brine tank to hold salt and softened household water. The brine tank includes a submerged chlorine-generating cell, an improved chlorine-generating cell container, and a cell-cleaning reservoir. The brine tank also includes a precipitation tank to help remove minerals from the incoming household water. The chlorine-generating apparatus generates sodium hypochlorite, sodium hydroxide, as well as other sanitizing chemicals. The chlorine-generating apparatus also incorporates an improved method for controlling pH. A water-cooled power supply independently delivers power to the chlorine-generating cell.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: June 25, 2013
    Inventor: Daniel Moroni Tucker
  • Patent number: 8465630
    Abstract: An electrically driven oxygen separation assembly and method for applying an electrical potential in which the assembly has one or more tubular membrane elements. The potential is applied at two central spaced locations of a tubular membrane element and at least at opposite end locations thereof. As a result the electric current flow through the tubular membrane element is divided into two parts flowing between the two central spaced locations and the opposite end locations. Additionally, the present invention also provides an end seal to be used in connection with tubular membrane elements.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 18, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: David M. Reed, David Frisbee Suggs, Michael J. Collins, Richard Martin Kelly, Gervase Maxwell Christie
  • Patent number: 8465631
    Abstract: A device for the purification of a polluted gas, for example an exhaust gas from a diesel or gasoline engine, comprising, in combination: A honeycomb structure, comprising at least one porous electron-conductive material forming the walls (1) of said structure and an electrochemical system for treating said gas, comprising a layer (7) of an ionically conductive and electronically insulating material D, a reduction catalyst A (9) for reducing the polluting species of the NOx type and an oxidation catalyst B (4) for oxidizing the polluting species of the soot, hydrocarbon HC, CO or H2 type, said electrochemical system being configured in the form of an electrode W and a counterelectrode CE; and means for applying a voltage or a current between said electrode W and said counterelectrode CE.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 18, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Ahmed Marouf
  • Patent number: 8465629
    Abstract: A membrane for use with an electrochemical apparatus is provided. The electrochemical apparatus may include a fuel cell or electrolyzer, for example, an electrolyzer adapted to produce hydrogen. The membrane comprises a fabric made from a synthetic fiber such as nylon where the nylon, in an exemplary embodiment, is woven into ripstop nylon fabric. The electrochemical apparatus is constructed with frames comprising high-density polyethylene (HDPE) which provide support and structure to the membranes as well as to internal electrodes. A method of making an electrochemical apparatus, such as an electrolyzer, containing a membrane comprising ripstop nylon is also disclosed, as is a method for producing hydrogen gas with an electrolyzer containing a membrane comprising ripstop nylon.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 18, 2013
    Inventors: Christopher M. McWhinney, David C. Erbaugh
  • Patent number: 8454807
    Abstract: A photoelectrochemical cell (1) is a photoelectrochemical cell for decomposing water by irradiation with light so as to produce hydrogen.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 4, 2013
    Assignee: Panasonic Corporation
    Inventors: Takaiki Nomura, Takahiro Suzuki, Kenichi Tokuhiro, Tomohiro Kuroha, Noboru Taniguchi, Kazuhito Hatoh, Shuzo Tokumitsu
  • Publication number: 20130118913
    Abstract: Both the reaction of hydride-forming compositions with hydrogen to form hydrides, and the decomposition of such hydrides to release hydrogen may be promoted electrochemically. These reactions may be conducted reversibly, and if performed in a suitable cell, the cell will serve as a hydrogen storage and release device.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John J. Vajo, Wen Li, Ping Liu, Frederick E. Pinkerton
  • Publication number: 20130112550
    Abstract: Among other things, a device for use in electrolyzing water is described. The device comprises an electrolysis unit that includes a chamber, an ion exchange structure in the chamber, a cathode, an anode, a high pressure chamber, and a reservoir. The chamber is separated by the ion exchange structure into a first compartment and a second compartment. The cathode is in the first compartment and the anode in the second compartment. The reservoir is disposed in the high pressure chamber for storing water to be supplied to the chamber of the electrolysis unit. In some implementations, the ion exchange structure is a proton exchange membrane.
    Type: Application
    Filed: September 20, 2012
    Publication date: May 9, 2013
    Applicant: ENCITE LLC
    Inventors: Stephen Alan Marsh, Donald Merrill Parker
  • Patent number: 8419910
    Abstract: Some embodiments of the present invention provide a balance-of-plant system and apparatus suited for regulating the operation of an electrolyzer cell stack. Specifically, in some embodiments, a balance-of-plant system and apparatus is operable to regulate the respective pressures of at least two reaction products relative to one another. Various examples are provided to demonstrate how the respective pressures of two reaction products can be regulated in relation to one another in a pressure following configuration, thereby regulating the pressure differential across an electrolyte layer according to aspects of different embodiments of the invention. Some of the examples provided also include design simplifications and alternatives that may reduce production costs of electrochemical cells configured according to aspects of different embodiments of the invention.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 16, 2013
    Assignee: Hydrogenics Corporation
    Inventors: Ali Rusta-Sallehy, Michael Vale, David Frank, Nathaniel Ian Joos
  • Patent number: 8388818
    Abstract: Lightweight photoelectrochemical system for real-time hydrogen production from water and sunlight, using lightweight multi-junction photo electrodes made from the highly reliable and efficient copper indium selenide thin films, preferably made by low-cost electrodeposition on flexible foil.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: March 5, 2013
    Inventor: Shalini Menezes
  • Patent number: 8366887
    Abstract: A hydrogen generating system is equipped with a water electrolysis unit for producing hydrogen by performing electrolysis on pure water supplied from a pure water supply apparatus, with a back-pressure valve mechanism disposed in a hydrogen outlet port of the water electrolysis unit. The back-pressure valve mechanism is equipped with a first back-pressure valve, which sets a first back pressure, for discharging hydrogen to the outside of a hydrogen supply passage, and a second back-pressure valve, which sets a second back pressure at a higher pressure than the first back pressure, for extracting high-pressure hydrogen into the hydrogen supply passage.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: February 5, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masanori Okabe, Koji Nakazawa, Kenji Taruya
  • Patent number: 8361304
    Abstract: A water electrolysis system includes a water electrolysis apparatus for producing high-pressure hydrogen by electrolyzing pure water and a casing. The casing defines therein an accommodating chamber accommodating the water electrolysis apparatus etc. therein, first electric component compartments separate from the accommodating chamber and housing a controller and an electrolysis power supply therein, the first electric component compartments having first fans for introducing external air, and a second electric component compartment separate from the accommodating chamber and housing a relay, the second electric component compartment being connected to the first electric component compartments by a pipe.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 29, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nobuyoshi Yoshida, Koji Nakazawa, Masanori Okabe, Jun Takeuchi