Rotational Movement Patents (Class 204/298.28)
  • Patent number: 6858118
    Abstract: An apparatus for masked ion-beam lithography comprises a mask maintenance module for prolongation of the lifetime of the stencil mask. The module comprises a deposition means for depositing material to the side of the mask irradiated by the lithography beam, with at least one deposition source being positioned in front of the mask, and further comprises a sputter means in which at least one sputter source, positioned in front of the mask holder means and outside the path of the lithography beam, produces a sputter ion beam directed to the mask in order to sputter off material from said mask in a scanning procedure and compensate for inhomogeneity of deposition.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: February 22, 2005
    Assignee: IMS-Ionen Mikrofabrikations Systeme GmbH
    Inventors: Elmar Platzgummer, Hans Löschner, Gerhard Stengl
  • Patent number: 6841048
    Abstract: Coating apparatus for disk-shaped workpieces has a transport chamber with a workpiece transport configuration having two linearly driven transport rams connected to a rotational axis. The rams are within shell lines of a rotation body about the axis and are extended/retracted in the same direction as the axis. A workpiece receiver is at the ends of each ram and two operating openings communicate the transport chamber with stations of the apparatus including a coating station. Surface normals of the openings are in the direction of shell lines. A pump with pump opening communicates with the transport chamber and coating station. At least one of the rams has a closure for closing the pump opening and forming a seal therefor.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: January 11, 2005
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Thomas Matt
  • Patent number: 6837974
    Abstract: A replacement chamber shield is provided for a wafer processing machine that replaces many prior art shield components with a single piece shield. The shield is particularly suitable for use in a processing chamber of a vacuum processing machine of a type for processing a wafer in a vertically-oriented split-plenum, such as machines of the type described in U.S. Pat. Nos. 4,909,695 and 4,915,564 and the machine marketed under the trademark ECLIPSE MARK II by Tokyo Electron Limited. The shield is formed of sheet material formed into an axially-extending cylindrical sidewall that turns radially inwardly into an annular shoulder that oppositely turns into an at least partially axially-extending section that further turns oppositely back radially inwardly into an annular disc having a central circular opening that is larger in diameter than the given wafer diameter. Advantageous dimensions and geometric relationships to components of the machine are described and claimed.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: January 4, 2005
    Assignee: Tokyo Electron Limited
    Inventors: John Lawson, Dale Irwin, Steve Chervenak
  • Patent number: 6827789
    Abstract: An apparatus for the treatment of semiconductor wafers, comprising a supportive frame and a process table arranged on the supportive frame. The process table comprises a stationary upper platen and a stationary lower plate. An intermediate indexing plate is rotatively arranged between the upper platen and the lower plate. At least one wafer support pin is attached to the indexing plate for the support of a wafer by the indexing plate. An upper housing is arranged on the upper platen and an outer lower housing is arranged on the lower plate. A displacable lower isolation chamber is disposed within the outer lower housing, being displacable against the indexing plate to define a treatment module between the upper housing and the lower isolation chamber in which the wafer is treated. A wafer supporting treatment plate is arranged within the lower isolation chamber, for controlled rapid treatment of a wafer within the treatment module.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: December 7, 2004
    Assignee: Semigear, Inc.
    Inventors: Chunghsin Lee, Jian Zhang, Darren M Simonelli, Keith D. Mullius, David A. Wassen
  • Publication number: 20040231980
    Abstract: An object of the invention is to provide a sputtering device which can be increased distribution of film formation and coverage distribution better than prior sputtering devices. Thus, this invention is that, in the sputtering device constituted of at least a substrate, a substrate holder for holding the substrate, at least one target for forming a thin film on the substrate, at least one sputtering cathodes each of which has the target and magnets arranged behind the substrate, an axis of the target is inclined to an axis of the sputtering cathode, and the sputtering cathode is rotated in its axis to make the target swing to the substrate.
    Type: Application
    Filed: August 27, 2003
    Publication date: November 25, 2004
    Inventor: Nobuyuki Takahashi
  • Patent number: 6818068
    Abstract: Aconveyer for treating hollow bodies, comprising several identical treatment stations (12, 13) that process at least one hollow body, whereby the respective treatment station for a given treatment stage communicates with a pressure source via distribution means that include a tight revolving extention. The invention is characterized in that the machine includes at least two independent and equivalent pressure sources (A1, A2) for the given treatment stage. The invention is also characterized in that it is divided up into the same number of treatment stations (12, 13) as the number of pressure sources existing for the machine and in that the distribution device (18) are such that each pressure source (A1, A2) is associated with a specific group.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: November 16, 2004
    Assignee: Sidel
    Inventors: Alain Guiffant, Jean-Michel Rius
  • Patent number: 6818108
    Abstract: A vacuum chamber for transporting at least one workpiece has two or more openings defining respective opening areas for treating or handling the at least one workpiece. A transport device is arranged relative to the openings and includes a drive shaft rotatable around a drive shaft rotational axis. Two or more conveyors transport at least one workpiece. A linear driver is operationally independent to linearly move respective ones of the two or more conveyors relative to the drive shaft, with a drive component in a radial direction relative to the axis. An obstructing member is provided for closing the openings when one of the conveyors is positioned adjacent to the openings by rotating the transport device and is moved by the linear drive towards the opening.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: November 16, 2004
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Roman Schertler
  • Publication number: 20040216992
    Abstract: A sputtering apparatus for forming a film by a physical gas-phase growth on a substrate having a irregular or flat shape is provided including three or more axes for independently varying a relative positional relationship between a substrate and a cathode in the course of film formation.
    Type: Application
    Filed: March 9, 2004
    Publication date: November 4, 2004
    Inventors: Kenji Ando, Hidehiro Kanazawa
  • Patent number: 6802949
    Abstract: Disclosed are a method for manufacturing a half-metallic magnetic oxide and a plasma sputtering apparatus used in the method. A conductor provided with at least one hole is disposed between a metal target and a substrate holder in the plasma sputtering apparatus, thereby improving the bonding of metal ions discharged from the metal target to oxygen ions, and a magnetic field with a coercive force larger than that of a thin film to be formed on the substrate, thereby obtaining a magnetic oxide film with excellent properties. In a preferred embodiment of the present invention, a conductor-side power supply unit is connected to the conductor, thereby additionally supplying power to the conductor and generating second plasma. The plasma sputtering apparatus supplies high power so as to decompose oxygen, and discharges metal ions with different electrovalences at a precise ratio by the additional power supply, thereby being effectively used in manufacturing a half-metallic oxide at low temperatures.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 12, 2004
    Assignee: Hanyang Hak Won Co., Ltd.
    Inventors: Jin Pyo Hong, Chang Hyo Lee, Chae Ok Kim, Kap Soo Yoon, Sung Bok Lee
  • Patent number: 6800183
    Abstract: The invention is intended to provide a sputtering device in which a single sputtering chamber is equipped with a plurality of supports and a target-positioning mechanism for rotating the supports to position the targets into film-forming position. Each support is provided with targets that are different from each other. The same types of targets are mounted in the same order on each support. The supports are rotated to select the same types of targets needed to form a film and to position the targets relative to the substrate. A plurality of the same type of targets are used simultaneously to form a film. The supports are then rotated to select the next targets, and the next film is built up on the previous film. As the film is formed, targets that are not used in the film-forming process can be cleaned with a cleaning device.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: October 5, 2004
    Assignee: Anelva Corporation
    Inventor: Nobuyuki Takahashi
  • Publication number: 20040182701
    Abstract: A sputtering apparatus for producing a mixed film having a stoichiometrically complete composition and a refractive index corresponding to a designed value without reducing the film deposition rate, a mixed film produced by such sputtering apparatus and a multilayer film including the mixed film are provided.
    Type: Application
    Filed: January 28, 2004
    Publication date: September 23, 2004
    Applicant: Aashi Glass Company, Limited
    Inventor: Masao Miyamura
  • Patent number: 6780290
    Abstract: The prevent invention improves the film thickness distribution in the direction of revolution of substrates by a simple manner in a method for forming coating films, wherein a evaporating source 3 is disposed at a predetermined distance from substrates 2, and when a coating film material is applied from the evaporating source 3 onto the substrate surfaces while revolving the substrates 2, coating films are formed on the substrate surfaces in a condition where the radius of curvature of the substrates 2 obtained by bending the substrates 2 within the elasticity range is made equal to the radius of revolution of the substrates 2.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: August 24, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Masahiro Ikadai, Etsuo Ogino
  • Patent number: 6761772
    Abstract: In order to ensure uniform coating of workpieces, workpiece holders carrying said workpieces are rotatably mounted at the edge of a turntable, a plurality of which are fastened in succession at adjustable distances to a drivable shaft. In order to trigger intermittent rotations of the workpiece holders, a driver finger of a driving device engages in each case a drive wheel thereof on each revolution of the turntable, so that the workpiece holders are rotated relative to the turntable through a specific angle in a direction opposite to the direction of rotation of said turntable. In order that no readjustment of the driver finger is required, for example in the case of a change of distances between the turntables, said driver finger is fastened to an extension of a rotating ring, which is mounted on the turntable itself so as to be non-displaceable in the direction of the shaft but rotatable about said shaft.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: July 13, 2004
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Laurent Giacri, Anton Kunz
  • Patent number: 6755945
    Abstract: An iPVD apparatus (20) is programmed to deposit material (10) into high aspect ratio submicron features (11) on semiconductor substrates (21) by cycling between deposition and etch modes within a vacuum chamber (30). The modes operate at different power and pressure parameters. Pressure of more than 50 mTorr, for example, is used for sputtering material from a target while pressure of less than a few mTorr, for example, is used to etch. Bias power on the substrate is an order of magnitude higher for etching, producing several hundred volt bias for etching, but only a few tens of volts for deposition. The alternating etching modes remove deposited material that overhangs edges of features on the substrate, removes some of the deposited material from the bottoms (15) of the features, and resputters the removed deposited material onto sidewalls (16) of the features. The substrate (21) is cooled during deposition and etching, and particularly during etching to substantially below 0° C.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: June 29, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Tugrul Yasar, Glyn Reynolds, Frank Cerio, Bruce Gittleman, Michael Grapperhaus, Rodney Robison
  • Patent number: 6740209
    Abstract: This application discloses a multi-layer film deposition apparatus comprising; plural cathodes comprising targets respectively, a main rotation mechanism for rotating each cathode together, and a substrate holder to hold a substrate onto which a multi-layer film is deposited by sputtering. The targets are arranged at positions where their center axes are on a circumference. The main rotation mechanism rotates the cathodes around the axis in common to the circumference. The substrate is located at a position within an area in view to the direction of the axis. The area is formed of two loci of points on the rotated targets. One of the locus is drawn by the point nearest to the axis, and the other locus is drawn by the point furthest from the axis.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 25, 2004
    Assignee: Anelva Corporation
    Inventors: Masahiro Shibamoto, Shinji Furukawa, Tetsuya Endoh, Miho Sakai, Naoki Watanabe
  • Patent number: 6736943
    Abstract: Vacuum coating deposition apparatus and methods employ a vacuum chamber with a superstructure to which deposition components in the vacuum chamber are mounted, such as a sputter target, substrate, etc. to provide a fixed relative position between them substantially unaffected by environmental and operating vibrations and flexure of the chamber wall. The superstructure is structurally independent of the deposition chamber wall and may be housed within the chamber or externally, extending from an external position to or through the wall of the deposition chamber. A meter of sensor, e.g., an optical monitor for measuring film thickness during deposition, continually monitors at least one parameter of the coating deposition and generates a corresponding control signal. A controller responsive to the control signal continually controls at least one process variable of the coating deposition in response to the control signal.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 18, 2004
    Assignee: Cierra Photonics, Inc.
    Inventors: Michael A. Scobey, David L. Soberanis, Daniel V. Whitlock, Thomas L. Greenberg, Elizabeth M. Wescott, William P. Kastanis
  • Patent number: 6736948
    Abstract: An AC/DC cylindrical magnetron with a drive system that absorbs large variations in the rotation of the target tube, an efficient high capacity electrical transfer system, and improved electrical isolation.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: May 18, 2004
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventor: Richard L. Barrett
  • Publication number: 20040089534
    Abstract: An object of the invention is to provide a method for sputtering and a device for sputtering which can make distribution of film's thickness and coverage distribution improve, in the device for sputtering constituted of at least a substrate, a substrate holder which holds the substrate, a target for forming a thin film on the substrate, a sputtering cathode in which the target is installed, a means for sputtering which makes materials of the target sputter to the substrate, which are such that sputtering is carried out by making the substrate holder rotate and making a sputter cathode unit comprising at least one sputtering cathode moves along an arc over the rotating substrate held on the substrate holder.
    Type: Application
    Filed: December 31, 2002
    Publication date: May 13, 2004
    Inventor: Nobuyuki Takahashi
  • Publication number: 20040089537
    Abstract: A method and apparatus for producing an optically effective system of layers on a substrate, such as a lens for use in an optical device. A plasma supported sputter deposition process is employed which, for the purpose of reducing damage to the rear side (1b) first applies a protective layer (2) to the rear side and then applies a system of layers (3) on the front side (1a) of the substrate (1). The apparatus includes an evacuable sputter chamber and a substrate holder (5) with receiving elements (6) for the substrates, and the receiving elements are mounted to permit rotation about two mutually perpendicular axes.
    Type: Application
    Filed: November 4, 2003
    Publication date: May 13, 2004
    Applicant: Satis Vacuum Industries Vertriebs AG
    Inventor: Frank Breme
  • Patent number: 6733640
    Abstract: A shutter assembly for use in a thin-film processing system to control exposure of a substrate to a process energy source includes a shield member having a shutter opening. The shutter opening is defined by sides which are oriented along radial lines of a central axis to promote uniform exposure of the substrate to the process energy source.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: May 11, 2004
    Assignee: Seagate Technology LLC
    Inventors: Peter R. Krauss, Shaun E. McKinlay
  • Patent number: 6726816
    Abstract: The present invention provides a method for forming thin films, wherein thin films with a uniform thickness can be formed on substrates as objects such as spheroids, even when the films are formed by conventional film-formation methods using an incident particle beam coming from a specific direction (e.g., evaporation and sputtering). In the method, thin films are formed on substrates such as spheroids with an incident particle beam coming from a particle source located in a specific direction by performing a spin motion together with a swing motion. The spin motion is a rotation of the substrate at a constant angular velocity about the spheroidal axis. The swing motion is a rotational oscillation of the same substrate for rotationally oscillating the axis at a constant cycle in one surface, where the center of the rotational oscillation is in the vicinity of the midpoint between two focal points on the axis of the spheroid.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 27, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuuji Omata, Naotaka Hashimoto, Masahide Yokoyama, Toshiyuki Suemitsu, Takahiro Kitai
  • Patent number: 6723209
    Abstract: A system and method for forming a chemically reacted layer proximate an exposed surface of a substrate is disclosed. A gas supply provides a chemically reactive molecular gas to an ion source that generates a divergent ion current directed at a target. The ion current contains at least one species of chemically reactive molecular ion, and the target is disposed in a chamber having a partial vacuum. A voltage source applies a bias to the target such that chemically reactive molecular ions from the ion source are accelerated toward the target with sufficient kinetic energy to dissociate at least some of the chemically reactive molecular ions by collision with the surface of the target.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: April 20, 2004
    Assignee: 4-Wave, Inc.
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6692618
    Abstract: A device and method has a magnetron sputter source with a multipart target (3, 4) and movable magnet system (5). By variation of the power delivery of the power supply (6), specific areas of the multipart target (3, 4) can be preferably affected, which permits setting the stoichiometry of the sputtered-off target materials on the substrate (15) to be covered and positively affecting the homogeneity of the layer structure.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: February 17, 2004
    Assignee: Unaxis Balzers Limited
    Inventor: Martin Dubs
  • Patent number: 6689255
    Abstract: A system and method for manufacturing thin-film structures disposed on a substrate. The thin-film structures have different respective thicknesses that vary along a radius of the substrate. A substrate rotates about an axis of rotation and a source of deposited material is directed at the rotating substrate. A mask having a stepped profile is positioned between the rotating substrate and the source. The stepped mask selectively blocks material emanating from the source from reaching the substrate. Each step of the profile of the mask corresponds to one of the respective thicknesses of the thin-film structures. The radius along which the different respective thicknesses of the film-thin structures vary is measured from the axis of rotation of the rotating substrate, and the substrate includes at least one wafer having a center that is either coincident or offset from the axis of rotation.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: February 10, 2004
    Assignee: 4 Wave, Inc.
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6676989
    Abstract: Numerous studies suggest that the current popular designs of coronary stents are functionally equivalent and suffer a 16 to 22 percent rate of restenosis. Although the use of coronary stents is growing, the benefits of their use remain controversial in certain clinical situations or indications due to their potential complications. The application of gas cluster ion beam (GCIB) surface modification such as smoothing or cleaning appears to reduce these complications and lead to genuine cost savings and an improvement in patient quality of life. The present invention is directed to the use of GCIB surface modification to overcome prior problems of thrombosis and restenosis. The atomic level surface smoothing of stents utilizing GCIB substantially reduces undesirable surface micro-roughness in medical coronary stents.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: January 13, 2004
    Assignee: Epion Corporation
    Inventors: Allen R. Kirkpatrick, Robert K. Becker, Avrum Freytsis
  • Patent number: 6669824
    Abstract: A deposition system is described. The deposition system includes a deposition source that generates deposition flux comprising neutral atoms and molecules. A shield defining an aperture is positioned in the path of the deposition flux. The shield passes the deposition flux through the aperture and substantially blocks the deposition flux from propagating past the shield everywhere else. A substrate support is positioned adjacent to the shield. A dual-scanning system scans the substrate support relative to the aperture with a first and a second motion.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: December 30, 2003
    Assignee: Unaxis USA, Inc.
    Inventors: Piero Sferlazzo, Chunghsin Lee
  • Patent number: 6656330
    Abstract: A method for manufacturing a coated substrate disk, comprises linearly bringing the substrate on a mounting, into an evacuated transport chamber and rotating the mounting in the chamber. The mounting is then extended into a coating position and coating of the substrate takes place. The mounting is then linearly retracted into the chamber again and rotated into a position for guiding the substrate out of the chamber. These steps are repeated for several substrates and then a pump opening into the chamber is closed by means of the mounting or the substrate. The chamber is then flooded and vacuum-tightly closed and the pump opening is released. The chamber is evacuated and the substrate moving and coating steps are repeated for more substrates.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: December 2, 2003
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Thomas Matt
  • Patent number: 6641703
    Abstract: A magnetic multi-layer film manufacturing apparatus has a transferring chamber, a plurality of film-depositing chambers, and a robotic transferring device. Each film-depositing chamber has a rotatable substrate holder, a plurality of targets positioned at an incline on an opposing interior surface from the substrate holder, and a double layer rotating shutter mechanism and is controllable to deposit at least one layer of a magnetic multi-layer film structure. Magnetic multi-layer film structures are formed by depositing a plurality of magnetic films divided into a plurality of groups, each one of the plurality of groups deposited in an associated one of the plurality of film-depositing chambers continuously in a laminated state. A first division between successive groups of magnetic films is between a metal oxide film and a magnetic layer continuous therewith and a second division is between an antiferromagnetic layer and a magnetic layer continuous therewith.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: November 4, 2003
    Assignee: Anelva Corporation
    Inventors: Shuji Nomura, Ayumu Miyoshi, Koji Tsunekawa
  • Patent number: 6641702
    Abstract: The present invention is directed to a sputtering device for depositing multi-layer films on a substrate, the sputtering device comprising at least one planar-magnetron-sputtering-cathode and at least one facing-targets-sputtering-cathode housed in a single vacuum chamber, and adapted such that each planar-magnetron-sputtering-cathode and facing-targets-sputtering-cathode can be selectively positioned for sputtering deposition onto a substrate.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: November 4, 2003
    Assignee: Data Storage Institute
    Inventors: Jian Zhong Shi, Jian Ping Wang
  • Patent number: 6616816
    Abstract: A substrate processing device in which a film is formed on a substrate while a magnetic field, by a magnet arranged in the periphery of a substrate holder, is imparted on to the surface of a substrate mounted on the substrate holder while the substrate holder is rotated, wherein a rotation mechanism for the magnet and a rotation mechanism for the substrate holder are independently provided and controlled and, furthermore, in that it is provided with a device for detection of the magnetic field orientation, a device for detection of the prescribed orientation of the substrate, and a mechanism which, using the output of said two detection devices, affords rotation in which the prescribed direction of the substrate and the direction of the magnetic field are aligned within a prescribed angle.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: September 9, 2003
    Assignee: Anelva Corporation
    Inventor: Junro Sakai
  • Patent number: 6616818
    Abstract: Apparatus (10) for treating a substrate, comprising: a vacuum chamber (12); a substrate carrier (14) adapted to carry a substrate (16) to be treated; a source material holder (22) for holding a source material (34) with which the substrate (16) is to be treated; and vaporising or sputtering means (20) for vaporising/sputtering the source material (34); wherein the source material holder (22) includes a positioning means (24) for relatively moving the source material (34) towards the substrate carrier (14).
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: September 9, 2003
    Assignee: RTC Systems Ltd.
    Inventor: Desmond Gibson
  • Patent number: 6605195
    Abstract: A sputtering apparatus for depositing layers of material onto a substrate includes a vacuum chamber, a first target and a second target positioned within the vacuum chamber. A source of power is placed in electrical communication with the first target and the second target. A switch alternately connects the source of power between the first target and the second target. The first target and the second target are different materials. The switch connects power to the first target when the transport mechanism positions the substrate near the first target and the switch connects power to the second target when the transport mechanism positions the substrate closer to the second target.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: August 12, 2003
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Publication number: 20030141184
    Abstract: A vacuum treatment system has a vacuum treatment chamber, with a sensor arrangement to detect the treatment atmosphere momentarily existing in the treatment area. An ACTUAL value sensor of the sensor arrangement for one or more of the elements to establish a treatment atmosphere is a regulating element of a control circuit for the treatment atmosphere in the treatment area. A workpiece carrier is drivably movable in the chamber through the treatment area having the treatment atmosphere. At least one of the elements modulates the treatment atmosphere in the treatment area according to a defined profile as a function of the workpiece carrier position. A process is disclosed for manufacturing workpieces, in which the workpieces are guided to a vacuum treatment area guided by a control. The treatment atmosphere is modulated in the treatment area as a function of workpiece position with the defined profile.
    Type: Application
    Filed: March 7, 2003
    Publication date: July 31, 2003
    Applicant: Balzars Aktiengesellschaft
    Inventor: Othmar Zueger
  • Publication number: 20030136670
    Abstract: An exemplary method for using a mobile plating system is provided that includes locating the mobile plating system at a desired location for plating, positioning an external vacuum pump from an interior position of a mobile storage volume of the mobile plasma plating system to an exterior position, and coupling the external vacuum pump to a vacuum chamber within the mobile storage volume of the mobile plasma plating system using a flexible piping segment, rigid coupling with a dampening effect, or other arrangement operable to reduce and/or eliminate the mechanical vibrations within the vacuum chamber due to the operation of the external vacuum pump.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 24, 2003
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Publication number: 20030132101
    Abstract: The prevent invention improves the film thickness distribution in the direction of revolution of substrates by a simple manner in a method for forming coating films, wherein a evaporating source 3 is disposed at a predetermined distance from substrates 2, and when a coating film material is applied from the evaporating source 3 onto the substrate surfaces while revolving the substrates 2, coating films are formed on the substrate surfaces in a condition where the radius of curvature of the substrates 2 obtained by bending the substrates 2 within the elasticity range is made equal to the radius of revolution of the substrates 2.
    Type: Application
    Filed: February 3, 2003
    Publication date: July 17, 2003
    Applicant: NIPPON SHEET GLASS CO., LTD.
    Inventors: Masahiro Ikadai, Etsuo Ogino
  • Publication number: 20030127322
    Abstract: In a sputtering apparatus having a magnetron unit, the erosion surface of a target is partitioned into a circular inner region concentric with a wafer W supported by a pedestal, and an annular outer region which is adjacent the inner region on the outside thereof and surrounds the inner region; whereas the magnetron unit is constituted by a first subunit for generating a magnetic field for controlling plasma near the inner region, and a second subunit for generating a magnetic field for controlling plasma near the outer region. Since the atoms sputtered from the inner region have a directivity, a high bottom coverage ratio is obtained. Also, an in-surface uniformity is obtained by the atoms sputtered from the outer region even when the target and wafer are disposed closer to each other.
    Type: Application
    Filed: January 5, 2001
    Publication date: July 10, 2003
    Inventors: Mayumi Shimakawa, Masatoshi Tsuneoka, Takeshi Jinbo
  • Publication number: 20030121776
    Abstract: An exemplary mobile plating system is provided for performing a plating process using virtually any known or available deposition technology for coating or plating as substrate. The mobile plating system may include a vacuum chamber positioned in a mobile storage volume, an external vacuum pump, and a control circuitry to control the operation of some or all of the operations of the external vacuum pump. The external vacuum pump is positioned in the mobile storage volume when the mobile plating system is in transit, and is positioned external to the mobile storage volume when the mobile plating system is stationary and in operation. The external vacuum pump may be mounted on a skid, and, in operation, the external vacuum pump couples with the vacuum chamber to assist with producing a desired pressure in the vacuum chamber.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 3, 2003
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 6582572
    Abstract: A method for fabricating cylindrical sputter targets for rotary cylindrical cathodes used in depositing a dielectric layer of desired alloy on non-planar substrates during sputtering is disclosed. The method includes forming a cooling tube having a passage within to receive a cooling medium, then fabricating multiple annular rings including each of the basic metal constituents of the desired alloy and attaching the annular rings to the cooling tube such that the exposed outer portions of the annular rings provide a homogeneous layer of the desired alloy on the non-planar substrates during sputtering.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: June 24, 2003
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Patent number: 6579420
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 17, 2003
    Assignee: Advanced Optical Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Patent number: 6572738
    Abstract: A vacuum treatment system has a vacuum treatment chamber, with a sensor arrangement to detect the treatment atmosphere momentarily existing in the treatment area. An ACTUAL value sensor of the sensor arrangement for one or more of the elements to establish a treatment atmosphere is a regulating element of a control circuit for the treatment atmosphere in the treatment area. A workpiece carrier is drivably movable in the chamber through the treatment area having the treatment atmosphere. At least one of the elements modulates the treatment atmosphere in the treatment area according to a defined profile as a function of the workpiece carrier position. A process is disclosed for manufacturing workpieces, in which the workpieces are guided to a vacuum treatment area guided by a control. The treatment atmosphere is modulated in the treatment area as a function of workpiece position with the defined profile.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: June 3, 2003
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Othmar Zueger
  • Publication number: 20030085122
    Abstract: The invention is intended to provide a sputtering device in which a single sputtering chamber is equipped with a plurality of supports and a target-positioning mechanism for rotating the supports to position the targets into film-forming position. Each support is provided with targets that are different from each other. The same types of targets are mounted in the same order on each support. The supports are rotated to select the same types of targets needed to form a film and to position the targets relative to the substrate. A plurality of the same type of targets are used simultaneously to form a film. The supports are then rotated to select the next targets, and the next film is built up on the previous film. As the film is formed, targets that are not used in the film-forming process can be cleaned with a cleaning device.
    Type: Application
    Filed: October 25, 2002
    Publication date: May 8, 2003
    Inventor: Nobuyuki Takahashi
  • Patent number: 6554980
    Abstract: In a vacuum treatment apparatus for deposition of thin layers on shell-shaped substrates (2, 2′, . . .
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: April 29, 2003
    Assignee: Leybold Optics GmbH
    Inventors: Ulrich Patz, Gerd Ickes
  • Publication number: 20030062260
    Abstract: This application discloses a system for depositing a magnetic film for a magnetic recording layer or depositing an underlying film prior to depositing a magnetic film as a recording layer. The system comprises; a chamber in which the film is deposited onto a substrate by sputtering, a target that is provided in the chamber and made of material of the film to be deposited, a sputter power source for applying voltage to the target for the sputtering, and a direction control member for controlling sputter-particles released from the target during the sputtering. The direction control member is provided between the substrate and the target. The direction control member provides a passage for the sputter-particles. The direction control member lets the sputter-particles selectively pass through, thereby allowing magnetic anisotropy to the magnetic film. The passage is not close but open in its cross section.
    Type: Application
    Filed: August 30, 2002
    Publication date: April 3, 2003
    Applicant: ANELVA Corporation
    Inventors: Shinji Furukawa, Miho Sakai
  • Patent number: 6521104
    Abstract: An exemplary configurable vacuum system and method are provided for use in coating or plating that provides the capability to handle substrates of significantly different shapes and sizes. The configurable vacuum system includes a vacuum table assembly and a vacuum chamber. The vacuum table assembly may include a support frame, an insulated surface, a mechanical drive mounted to the support frame, an electrical feed through mounted to the support frame, a filament positioned above the insulated surface between a first filament conductor and a second filament conductor, a filament power connector electrically coupled to the first filament conductor through a first filament power contact pad of the filament power connector and to the second filament conductor through a second filament power contact pad of the filament power connector, and a platform operable to support the substrate.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 18, 2003
    Assignee: Basic Resources, Inc.
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 6503379
    Abstract: An exemplary mobile plating system and method are provided for performing a plating process using virtually any known or available deposition technology for coating or plating. The mobile plating system may include a vacuum chamber positioned in a mobile storage volume, an external vacuum pump, and a control module to control the operation of some or all of the operations of the external vacuum pump. The external vacuum pump is positioned in the mobile storage volume when the mobile plating system is in transit, and is positioned external to the mobile storage volume when the mobile plating system is stationary and in operation. The external vacuum pump may be mounted on a skid, and, in operation, the external vacuum pump couples with the vacuum chamber to assist with producing a desired pressure in the vacuum chamber.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: January 7, 2003
    Assignee: Basic Research, Inc.
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 6497799
    Abstract: Apparatus for forming a multilayer film on at least one surface of a substrate comprises a vacuum chamber including: (a) a pair of parallel top and bottom walls connected by a side wall; (b) at least one entry/exit means in the side wall for insertion and withdrawal of a substrate from the chamber; (c) a plurality of spaced-apart, radially extending, linearly elongated sputtering sources arranged in a co-planar array adjacent one of the top or bottom walls of the chamber, each of the linearly elongated sputtering sources having a length and a width; and (d) a gripper/transporter for gripping and moving a substrate in a generally circular, planar path past each of the plurality of radially extending sputtering sources, such that the at least one deposition surface of the substrate faces each of the sputtering sources during movement along the circular path, for deposition of the multilayer film thereon.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: December 24, 2002
    Assignee: Seagate Technology LLC
    Inventor: Paul S. McLeod
  • Patent number: 6494997
    Abstract: A magnetron sputtering device and method for applying an interference layer to a substrate includes a magnetron sputtering chamber (A) which houses a substrate carrying assembly (B). The substrate carrying assembly comprises a primary rotation table (10), rotating about its central vertical axis (12) and at least one secondary table (36) mounted to an upper surface (14) of the primary rotation table. Substrates (42) are either horizontally or vertically loaded on to the secondary table. The substrates rotate about their symmetrical axis. First and second targets (50a, 50b) are housed by the chamber and are disposed on opposite sides of the chamber. The primary rotation table rotates the substrates between a position adjacent a first target where a layer having a low refractive index is applied to the substrates and a position adjacent a second target where a layer having a high refractive index is applied to the substrates.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: December 17, 2002
    Assignee: General Electric Company
    Inventors: Rajasingh Israel, Tianji Zhao, Rolf Sverre Bergman, Kenneth Marsik
  • Patent number: 6491800
    Abstract: The application of gas cluster ion beam (GCIB) technology in order to modify the surface of a surgical implant such as the components of an artificial hip joint, thereby substantially reducing wear debris and osteolysis complications is disclosed. The approach of the surface modification comprises an atomic level surface smoothing utilizing GCIB to super smooth the femoral heads and/or the surfaces of the acetabular cups to reduce frictional wear at the interface of the bearing surfaces. A reduction in polyethylene debris and metal debris by GCIB smoothing on one or both bearing surfaces of a surgical implant reduces osteolysis, results in a substantial cost savings to the healthcare system, and reduces patient pain and suffering.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: December 10, 2002
    Assignee: Epion Corporation
    Inventors: Allen R. Kirkpatrick, Vincent DiFilippo
  • Patent number: 6488824
    Abstract: A sputtering apparatus and method for high rate deposition of electrically insulating and semiconducting coatings with substantially uniform stoichiometry. At least one set of vertically mounted, dual and triple rotatable cylindrical (or planar) magnetrons with associated vacuum pumps, form semi-isolated sputtering modules. The sputtering modules can be independently controlled for the sequential deposition of layers of similar or different materials. Constant voltage operation of AC power with an optional reactive gas flow feedback loop maintains constant coating stoichiometry during small changes in pumping speed caused by substrate motion. The coating method is extremely stable over long periods (days) of operation, with the film stoichiometry being selectable by the voltage control point.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: December 3, 2002
    Assignee: Raycom Technologies, Inc.
    Inventors: Dennis R. Hollars, Martin P. Rosenblum, Carl T. Petersen
  • Patent number: 6485616
    Abstract: A system and method for coating substrates. The coating process includes an improved capacity and uniformity through the addition of a second motion component in which the substrates move in a closed path. A major portion of the path is linear and the configuration of the coating machine is such that all substrates follow the same trajectory with respect to the machine during the coating process, resulting in a coating which is substantially the same for all substrates.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: November 26, 2002
    Assignee: Deposition Sciences, Inc.
    Inventors: Bill Howard, Robert Gray