Rotational Movement Patents (Class 204/298.28)
  • Publication number: 20020162737
    Abstract: A device and method has a magnetron sputter source with a multipart target (3, 4) and movable magnet system (5). By variation of the power delivery of the power supply (6), specific areas of the multipart target (3, 4) can be preferably affected, which permits setting the stoichiometry of the sputtered-off target materials on the substrate (15) to be covered and positively affecting the homogeneity of the layer structure.
    Type: Application
    Filed: April 29, 2002
    Publication date: November 7, 2002
    Inventor: Martin Durs
  • Publication number: 20020139666
    Abstract: A vacuum chamber deposits thin films on a substrate by sputtering a target. The beam of atoms or ions from the target is partially blocked by a shadow or adjustable uniformity mask, reducing the deposition rate onto the substrate. The adjustable uniformity mask has several adjustable fingers. The fingers extend or retract to enlarge or reduce the size of the mask. Each finger covers a different annular region or radius of the substrate. The deposition rate at different substrate radii is thus adjustable by the fingers. Several optical beams monitor the film transmittance at different substrate radii. A transmittance profile is continually generated during deposition. As deposition proceeds, radii with a thicker film have their fingers extended to reduce their deposition rate, producing a more uniform film thickness across all radii. Motors extend or retract the individual fingers.
    Type: Application
    Filed: March 29, 2001
    Publication date: October 3, 2002
    Inventors: Paul Hsueh, Shyang Chang, Hans Schiesser, Michael Ma, Jack Hsu, Abraham C. Ma
  • Publication number: 20020134668
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Application
    Filed: February 9, 2001
    Publication date: September 26, 2002
    Applicant: Advanced Optics Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Patent number: 6454908
    Abstract: A vacuum treatment system has a vacuum chamber in which there is at least one part which is driven in rotation and is connected by a gear train which comprises at least two rotating transmission bodies with a motor drive unit. The rotating transmission bodies produce a relative motion in a rolling manner. For this purpose, the bodies have axes of rotation that are not aligned. The rotating transmission bodies are magnetically drive-coupled to each other, and at least one of them is located in the vacuum chamber.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: September 24, 2002
    Assignee: Unaxis Trading AG
    Inventors: Roman Schertler, Martin Dubs
  • Patent number: 6440280
    Abstract: A method and apparatus for vacuum coating plural articles employs a drum work holder configuration and a sputter source with a plurality of individually controlled anodes for effectively providing uniform coatings on articles disposed at different locations on the drum work holder. A small number of measured process parameters are used to control a small number of process variable to improve coating uniformity from batch to batch.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: August 27, 2002
    Assignee: Sola International, Inc.
    Inventors: Clive H. Burton, Rodney Pratt, Frank Samson
  • Patent number: 6435130
    Abstract: A plasma CVD apparatus comprising a substantially enclosed reaction chamber containing substrate holding means and a cathode electrode arranged therein, wherein a high frequency power from a high frequency power source is supplied to said cathode electrode to generate plasma between said substrate holding means having a subtrate positioned thereon and said cathode electrode whereby plasma-processing said substrate, characterized in that said cathode electrode comprises a plurality of conductor members situated on substantially the same axis which are capacitively coupled by a dielectric member. A plasma-processing method using said cathode electrode.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 20, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Takaki, Yoshio Segi, Atsushi Yamagami, Hiroyuki Katagiri, Hitoshi Murayama, Yasuyoshi Takai
  • Patent number: 6425988
    Abstract: A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 30, 2002
    Inventors: Claude Montcalm, James Allen Folta, Swie-In Tan, Ira Reiss
  • Patent number: 6419802
    Abstract: A system and method for controlling a circumferential deposition thickness distribution on a substrate includes a motor that rotates the substrate and a position sensor that senses a position of the substrate. At least one deposition thickness sensor senses the deposition thickness of the substrate at multiple positions on a circumference of a circle centered about an axis of rotation of the substrate. At least one controller drives a vapor source used to emit material for a deposition on a substrate. The at least one controller is coupled to the position sensor and the deposition thickness sensor. The controller synchronously varies an emission rate of material from the vapor source with respect to the position of the substrate to control the circumferential deposition thickness distribution.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 16, 2002
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6419800
    Abstract: There may be used a film-forming apparatus having a substrate 4 that is rotatable around the center of one rotating axis 10 in the vertical direction situated in an inner cylinder 12, and a plurality (four in FIG. 2) of target units each comprising the pair of targets 2A, 2B (2B is under 2A serially arranged in the vertical direction inside an outer cylinder 13 opposite the surface 4a of the substrate 4, which are arranged in parallel in the circumferential direction of the inner wall of the outer cylinder 13. By employing a method whereby voltage is applied while alternatively reversing the polarity to each of the targets 2A, 2B, it is possible to form a coating on the surface of a substrate by glow discharge sputtering, to accomplish destaticizing while the sputtering can be carried out using a small in-line or bell jar apparatus with small space.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 16, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Toshiaki Anzaki, Kenji Mori
  • Patent number: 6416640
    Abstract: A sputtering station for a disk-shaped workpiece includes one loadlock chamber, one sputtering source with a sputtering surface, a transport chamber with two workpiece handling openings, one communicating with the loadlock chamber and the other with the sputtering source. A transport device in the transport chamber has two workpiece carrier arms extending radially with respect to a rotation axis of the device. Each arm can extend and retract radially and carries a workpiece holder. The two openings of the transport chamber are radially opposite each other with respect to the axis of rotation so that the workpiece holders of the two arms may be swung toward each of the openings and about an arc of 180°.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: July 9, 2002
    Assignee: Unakis Balzers Aktiengesellschaft
    Inventor: Roman Schertler
  • Patent number: 6413381
    Abstract: A plasma sputtering system that may be used to deposit a film on a substrate such as an optical disk is disclosed. In one embodiment, the sputtering system includes a main vacuum chamber. A plurality of sputtering chambers and a load lock chamber are connected to the main vacuum chamber. An assembly of a horizontal unprocessed substrate, an inner mask, and an outer mask are pressed onto a substrate transport tray that is positioned in the load lock. The tray supports the substrate and the masks throughout the processing of the substrate. A vertical lift lowers the tray from the load lock onto a carousel. The carousel transports the tray, substrate and masks to the sputtering chambers and then back to the load lock for unloading. Other lifts raise the tray, processed substrate, and masks from the carousel to the sputtering chambers. The tray is selectively pressed against the lower access aperture of the load lock and sputtering chambers so as to isolated them from the main chamber.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: July 2, 2002
    Assignee: Steag HamaTech AG
    Inventors: Ken Lee, Ke Ling Lee, Mingwei Jiang, Robert M. Martinson
  • Patent number: 6409897
    Abstract: A rotatable sputter target for use in a sputtering system having a sleeve of sputtering material attached to a structural support tube such that an annular space is formed between the inside surface of the sleeve and the outside surface of the support tube. The annular space is at least partly filled with a thermally and electrically conductive material which flows at ambient temperature. The annular space is sealed at either end so that the material cannot escape the annular space.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: June 25, 2002
    Assignee: Poco Graphite, Inc.
    Inventor: Larry S. Wingo
  • Patent number: 6406601
    Abstract: Disclosed is a method and an apparatus for coating electromagnetic wave shielding films, by which adhesive forces between coating objects and the electromagnetic wave shielding films are strengthened, and the films can be uniformly coated on the coating objects. In the method, surfaces of coating objects are etched, and then electromagnetic wave shielding films are coated on the surfaces of the coating objects. In the apparatus, a cylindrical rotating jig is disposed in a chamber and contains a plurality of coating objects loaded therein. The rotating jig is rotated at a predetermined speed. The rotating jig is put into and drawn out of the chamber. Targets functioning as cathodes are disposed inside and outside of the rotating jig. A controller controls operation of the apparatus.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: June 18, 2002
    Assignee: Sunic System, Ltd.
    Inventors: Do-Gon Kim, Eung-Jik Lee, Dong-Won Kim, Won-Jong Lee, Youn-Seoung Lee
  • Patent number: 6395093
    Abstract: An independent, self contained apparatus for operation within a vacuum chamber. A sealed enclosure is located in the chamber. The enclosure contains its own atmosphere independent of the vacuum in the chamber. A motor, power unit, and controls are located entirely within the enclosure. They do not have a direct structural connection outside of the enclosure in any way that would effect the atmosphere within the enclosure. The motor, power unit, and controls drive a spinner plate located outside the enclosure but within the vacuum chamber.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: May 28, 2002
    Assignee: The Regents of the University of California
    Inventor: Marion J. Ayers
  • Patent number: 6395156
    Abstract: A sputtering chamber has a target that moves with an orbital motion relative to an ion beam. An X-Y assembly allows for target movement in both the horizontal and vertical directions. The X-Y assembly has a base plate, an intermediate plate, and a target mounting plate that attaches to the target. The plates are connected together by bearing blocks that slide along rails in the X and Y directions. A rotating shaft has gears that rotate a center shaft through the base and intermediate plates. The rotating center shaft has an arm on its end that attaches to the target mounting plate. The arm produces an orbital movement of the target. Rather than simply rotating the target around the center shaft, the center of the target orbits around the center of the center shaft. Ion-beam wear is spread across the target surface, extending target life and improving deposition uniformity.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: May 28, 2002
    Assignee: Super Light Wave Corp.
    Inventors: Paul Hsueh, Abraham C. Ma
  • Patent number: 6365010
    Abstract: A sputtering apparatus and method for high rate deposition of electrically insulating and semiconducting coatings with substantially uniform stoichiometry. Vertically mounted, dual rotatable cylindrical magnetrons with associated vacuum pumps form semi-isolated sputtering modules, which can be independently controlled for the sequential deposition of layers of similar or different materials. Constant voltage operation of AC power with an optional reactive gas flow feedback loop maintains constant coating stoichiometry during small changes in pumping speed caused by substrate motion. The coating method is extremely stable over long periods (days) of operation, with the film stoichiometry being selectable by the voltage control point. The apparatus may take the form of a circular arrangement of modules for batch coating of wafer-like substrates, or the modules may be arranged linearly for the coating of large planar substrates.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: April 2, 2002
    Assignee: Scivac
    Inventor: Dennis R. Hollars
  • Publication number: 20020029959
    Abstract: A sputtering device is provided in which at least one target is sputtered by sputtering discharge to produce a film of target material on at least the first surface of a substrate. The sputtering device has a principal rotating mechanism that rotates the at least one target about an axis of revolution coaxial with the central axis of the substrate. The target is positioned offset from and circumferential to the central axis of the substrate coaxial with the axis of revolution. A magnet mechanism for magnetron discharge of the sputtering discharge forms a magnetic field asymmetrical to a central axis of the target and is rotated by an auxiliary rotating mechanism. The principal rotating mechanism integrates rotation of the targets with the magnet mechanism.
    Type: Application
    Filed: August 20, 2001
    Publication date: March 14, 2002
    Inventors: Kamikura Yo, Naoki Yamada, Terushige Takeyama, Shuji Kumagai
  • Publication number: 20020023831
    Abstract: In a thin-film formation process and system, a target and a substrate are placed in a sputtering space and a film-forming space, respectively, the pressure in the film-forming space is maintained at a pressure lower than the pressure in the sputtering space and a pressure sufficient for sputtered particles to move in the film-forming space with their mean free path which is longer than the distance between the grid plate and the substrate, and the target is sputtered to form a thin film on the substrate.
    Type: Application
    Filed: August 22, 2001
    Publication date: February 28, 2002
    Inventors: Hideo Iwase, Makoto Kameyama, Koji Kitani, Yoichi Hoshi
  • Publication number: 20020008022
    Abstract: A cross flow system for metalizing compact discs, capable of being interposed in-line in the production of the compact discs after premastering, mastering, electro-forming, and molding includes a vacuum chamber having diametrically opposed vacuum locks and multiple metalization sources in the form of magnetrons, with a preferred cross flow including the introduction of a disc to be metalized through one lock and the exit of the metalized disc through the diametrically opposite lock. The double vacuum lock diametrically opposed cross flow system eliminates the problems of throughput limitations, high rate deposition, substrate pitting, and software complexity due to indexing which makes prior systems both costly and inefficient. The system also permits processing of more than one substrate or compact disc title such that multiple titled compact discs can be processed simultaneously.
    Type: Application
    Filed: January 21, 2000
    Publication date: January 24, 2002
    Inventors: Vladimir Schwartz, Klaus Bierwagen
  • Patent number: 6338775
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface facing the thin-film particle source. The method further includes a step of providing a rotational means for rotating the substrate holder to rotate each of the substrates exposed to the thin-film particles for depositing a thin film thereon. And, the method further includes a step of providing a lateral moving means for laterally moving and controlling a duration of exposure time across a radial direction for each of the substrates for controlling thickness uniformity of the thin-film deposited on each of the substrates.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: January 15, 2002
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventor: Jiong Chen
  • Patent number: 6328858
    Abstract: A multi-layer sputter deposition chamber or cluster tool module is described. The sputter deposition chamber includes a plurality of magnetrons mounted on a rotatable member that defines an aperture. A predetermined one of the plurality of magnetrons is positionable proximate to a substrate in the sputter deposition chamber. A transport mechanism transports the substrate in a path of the sputtered ions in a first and a second direction that is substantially opposite to the first direction.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: December 11, 2001
    Assignee: NEXX Systems Packaging, LLC
    Inventors: David Felsenthal, Chunghsin Lee, Piero Sferlazzo
  • Patent number: 6328856
    Abstract: An apparatus for forming a multilayer film on a substrate surface comprises a multi-target sputtering source having a planar end face adapted for rotation about a central axis and including at least a pair of independently operable planar magnetron cathodes having sputtering targets composed of different materials, and a substrate mounting means for providing a stationary substrate in spaced-apart, facing relation to the sputtering source. According to the inventive method, the multi-target source is rotated about its central axis while the substrate is maintained stationary, thereby depositing a multi-layer film stack on the substrate. The invention finds particular utility in the formation of superlattice structures usable as recording medium layers in the fabrication of magnetic and magneto-optical (MO) data/information storage and retrieval media.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: December 11, 2001
    Assignee: Seagate Technology LLC
    Inventor: Charles Frederick Brucker
  • Patent number: 6325856
    Abstract: A vacuum treatment system has an outer housing which defines a substantially cylindrical inner wall around an axis. At least two openings are provided for treating or conveying-through a respective workpiece arranged along at least one great circle of the cylindrical inner wall. One treatment, conveying or lock chamber respectively, is connected with the at least two openings. An inner housing defines a cylindrical outer wall and, together with the substantially cylindrical inner wall, forms a substantially cylindrical ring gap. A workpiece carrier carousel is rotationally drivable about the axis in the ring gap. A feed device comprising driving devices is movable in a radially driven manner on the inner housing and is aligned with the at least two openings. The driving devices act into the ring gap, and each of the driving devices has a separate drive.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: December 4, 2001
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventor: Roman Schertler
  • Patent number: 6323134
    Abstract: To move an article in and out of plasma during plasma processing, the article is rotated by a first drive around a first axis, and the first drive is itself rotated by a second drive. As a result, the article enters the plasma at different angles for different positions of the first axis. The plasma cross-section at the level at which the plasma contacts the article is asymmetric so that those points on the article that move at a greater linear velocity (due to being farther from the first axis) move longer distances through the plasma. As a result, the plasma processing time becomes more uniform for different points on the article surface. In some embodiments, two shuttles are provided for loading and unloading the plasma processing system. One of the shuttles stands empty waiting to unload the processed articles from the system, while the other shuttle holds unprocessed articles waiting to load them into the system.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: November 27, 2001
    Assignee: Tru-Si Technologies, Inc.
    Inventor: Oleg Siniaguine
  • Patent number: 6315877
    Abstract: A device for the sputter application of hard material coatings, including an exhaustible vacuum chamber, at least one sputtering source for depositing a coating material, a plurality of fixtures for supporting a plurality parts to be coated, the fixtures being mounted on planet gears which are movable via a planetary drive, a centrally disposed heating device, a reactive gas inlet, and a plurality of movable screens for covering the at least one sputtering source, the screens being arranged to surround the fixtures, wherein the heating device, the screens, and the planetary drive comprise an assembly which is removable from the vacuum chamber.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: November 13, 2001
    Assignee: Fraunhofer-Gesellschaft zur Foerdering der Angewandten Forschung e.V.
    Inventors: Klaus Goedicke, Fred Fietzke
  • Patent number: 6303008
    Abstract: A method and system for producing thin film alloy by a sputtering deposition process comprising using a circle-shaped aperture interposed between the target and substrate of a sputtering deposition system and establishing a rotating/oscillating relationship between the substrate and the aperture.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: October 16, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: Robert O. Pichulo, Gregory Keller Rasmussen, Mark Ray McClanahan
  • Publication number: 20010027020
    Abstract: A method of fabricating a semiconductor device comprises the steps of: (a) forming a mask layer over an upper surface of a semiconductor substrate such that the mask layer has an aperture penetrating the mask layer and having an inclined lateral wall so as to make the aperture inverted taper shaped; (b) forming a first dielectric layer at a first area over the upper surface of the semiconductor substrate within the aperture by sputtering at a first sputtering incidence direction; and (c) forming a first electrode layer at a second area over the upper surface of the semiconductor substrate within the aperture by sputtering at a second sputtering incidence direction which is different from the first sputtering incidence direction.
    Type: Application
    Filed: January 23, 2001
    Publication date: October 4, 2001
    Applicant: Oki Electric Industry Co., Ltd.
    Inventor: Shinichi Hoshi
  • Patent number: 6290826
    Abstract: A sputtering apparatus includes a vacuum housing, a substrate holder disposed in the vacuum housing for holding a substrate thereon, and a composite sputtering cathode assembly disposed in the vacuum housing. The composite sputtering cathode assembly has a plurality of targets and a plurality of shields each disposed between adjacent ones of the targets. The targets are disposed in confronting relation to the substrate held on the substrate holder. Those sputtering particles expelled from the targets which are directed obliquely to the substrate hit the shields and do not reach the substrate. Only those sputtering particles which are directed substantially perpendicularly to the substrate are applied to the substrate. The distribution of film thicknesses on the substrate is made uniform when the substrate and the targets rotate relatively to each other.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: September 18, 2001
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventors: Hisaharu Obinata, Morohisa Tamura, Yasushi Higuchi, Takashi Komatsu
  • Patent number: 6287430
    Abstract: The present invention is drawn to an apparatus for forming a thin film. The apparatus includes a vacuum chamber; a vacuum apparatus connected to the vacuum chamber; a holder placed in the vacuum chamber, which holder holds a substrate and is rotated by means of a rotating mechanism; a plasma CVD apparatus; and a sputtering apparatus, wherein the plasma CVD apparatus and the sputtering apparatus are placed in a single vacuum chamber and a thin film having an medium refractive index is formed on the substrate held by the holder, by means of the plasma CVD apparatus and the sputtering apparatus. The method making use of such an apparatus is also disclosed.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 11, 2001
    Assignee: Shincron Co., Ltd.
    Inventors: Shigeharu Matsumoto, Kazuo Kikuchi, Yizhou Song, Takeshi Sakurai, Shinichiro Saisho
  • Publication number: 20010011634
    Abstract: This invention provides a process for coating super fine ion particles of multiple elements on the surface of a micro router substrate, characteristics of which is that the coating step is operated under low temperatures and vacuums. First, raw micro routers are cleaned by electron beams under atmospheric pressures and room temperatures, then the raw micro routers are transferred into a vacuum environment, and increase the temperature of the environment. Next, the surface of the micro router is cleaned by ions, then proceed with the coating process. An arc source is used to bombard cations from a target, while a filtration net is used to get filtrate of small cation particles. Then, an ion assistant device is operated to further fine the filtrated particles, therefore only super fine ion particles are coated on the surface of the micro router substrates.
    Type: Application
    Filed: December 28, 2000
    Publication date: August 9, 2001
    Inventors: Chung-Lin Chou, Chen-Chun Hsu
  • Patent number: 6270633
    Abstract: The present invention relates to an artificial latticed multi-layer film deposition apparatus for depositing on a substrate a gigantic magneto-resistive effect film (GMR film) having an artificial lattice structure formed of magnetic metal films and non-magnetic metal films alternately laminated one over the other and its object is to provide the artificial latticed multi-layer film deposition apparatus to enable easy and secure deposition of an artificial latticed multi-layer film having GMR characteristics.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: August 7, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhiro Onaka, Sumio Maekawa, Shigeru Yamamoto, Masafumi Okamoto
  • Publication number: 20010009221
    Abstract: There may be used a film-forming apparatus having a substrate 4 that is rotatable around the center of one rotating axis 10 in the vertical direction situated in an inner cylinder 12, and a plurality (four in FIG. 2) of target units each comprising the pair of targets 2A, 2B (2B is under 2A serially arranged in the vertical direction inside an outer cylinder 13 opposite the surface 4a of the substrate 4, which are arranged in parallel in the circumferential direction of the inner wall of the outer cylinder 13. By employing a method whereby voltage is applied while alternately reversing the polarity to each of the targets 2A, 2B, it is possible to form a coating on the surface of a substrate by glow discharge sputtering, to accomplish destaticizing while the sputtering can be carried out using a small in-line or bell jar apparatus with small space.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 26, 2001
    Inventors: Toshiaki Anzaki, Kenji Mori
  • Patent number: 6258218
    Abstract: A method and apparatus for vacuum coating plastic lens elements employs Meissner traps and a drum work holder configuration for effectively condensing water vapor in the system.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: July 10, 2001
    Assignee: Sola International Holdings, Ltd.
    Inventor: Clive H. Burton
  • Patent number: 6241857
    Abstract: A substrate is placed in a sputtering apparatus chamber with a surface oriented substantially perpendicularly to a direction along which most particles are released from a target by sputtering. A line perpendicular to the substrate passing through the center of the substrate passes through the center of the target. Pressure in the chamber is adjusted such that the distance between the centers of the substrate and target is shorter than the mean free path of a molecule of the sputtering gas, and the distance between the center of the substrate and target is longer than a diameter of the substrate. The substrate is rotated around an axis perpendicular to the surface of the substrate.
    Type: Grant
    Filed: November 18, 1997
    Date of Patent: June 5, 2001
    Assignee: NEC Corporation
    Inventor: Yoshiaki Yamada
  • Patent number: 6241824
    Abstract: In an apparatus for the coating of substrates in a vacuum with rotatable substrate carriers (15,16,20) and with a loading and an unloading station (8 or 9), two vacuum chambers (3,4) are provided with several coating stations (6,7 or 10 to 14), directly next to one another, wherein a rotatable transport arm (15 or 16) is accommodated in each of the two chambers (3, 4), and the transport planes of the two transport arms (15,16) are aligned with one another. In the separation area of the two chambers (3,4), an air lock is provided with a corresponding transfer apparatus (5) with two transport arms (15,16), whose rotary plate (20) is provided with substrate storage unit (21,22) and projects about halfway into one chamber (3) and halfway into the other chamber (4), wherein one chamber (3) has both the loading as well as the unloading station (8 or 9).
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: June 5, 2001
    Assignee: Leybold Systems GmbH
    Inventors: Günter Bräuer, Hermann Kloberdanz, Hans-Georg Lotz, Jochen Schneider, Alfons Zöller, Harro Hagedorn, Michael König, Jürgen Meinel, Götz Teschner
  • Publication number: 20010002002
    Abstract: Deposition apparatus incorporating either a single or multiple filtered cathodic arc (FCA) source for depositing coatings such as tetrahedral amorphous carbon (TAC); metal oxides; compounds and alloys of such materials onto various types of substrates, such as metals semiconductors, plastics ceramics and glasses. Substrates are moved through the plasma beam(s) of the FCA source(s) and beam scanning increases deposition area. Macroparticles are filtered by a double bend filter duct.
    Type: Application
    Filed: November 21, 1997
    Publication date: May 31, 2001
    Applicant: FILPLAS VACUUM TECHNOLOGY PTE, LTD.
    Inventors: DAVID IAN FLYNN, MICHAEL FULTON, XU SHI, HONG SIANG TAN, BENG KANG TAY
  • Patent number: 6238531
    Abstract: An ion beam sputtering system having a chamber, an ion beam source, multiple targets, a shutter, and a substrate stage for securely holding a wafer substrate during the ion beam sputtered deposition process in the chamber. The substrate stage is made to tilt about its vertical axis such that the flux from the targets hit the wafer substrate at a non-normal angle resulting in improved physical, electrical and magnetic properties as well as the thickness uniformity of the thin films deposited on the substrate in the ion beam sputtering system.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: May 29, 2001
    Assignee: International Business Machines Corporation
    Inventor: Mustafa Pinarbasi
  • Patent number: 6238527
    Abstract: A film forming apparatus for forming a minute thin film at a high depositing rate, which comprises a substrate holding means for holding a substrate, a target holding means for holding a target, a gas supply means for supplying a sputtering gas for sputtering the target into a reaction chamber, and an electric power supply means for supplying an electric power for causing an electric discharge between the target and the substrate, wherein a partition member having a plurality of openings provided between the target and the substrate, and wherein means for supplying a reaction gas and a microwave are provided in a space between the partition member and the substrate.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: May 29, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuho Sone, Nobumasa Suzuki
  • Patent number: 6235172
    Abstract: A robotic arm assembly in a transport module is expansible to have an effector at its end receive a substrate in a cassette module and is then contracted and rotated with the effector to have the effector face a process module. Planets on a turntable in the process module are rotatable on first parallel axes. The turntable is rotatable on a second axis parallel to the first axes to move successive planets to a position facing the effector. At this position, an alignment assembly is aligned with, but axially displaced from, one of the planets. This assembly is moved axially into coupled relationship with such planet and then rotated to a position aligning the substrate on the effector axially with such planet when the arm assembly is expanded. A lifter assembly aligned with, and initially displaced from, such planet is moved axially to lift the substrate from the effector. The arm assembly is then contracted, rotated with the effector and expanded to receive the next cassette module substrate.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: May 22, 2001
    Assignee: Applied Science & Technology
    Inventors: Robert George Begin, Peter J. Clarke
  • Patent number: 6235171
    Abstract: Disclosed is a vacuum film forming/processing apparatus and method which is hardly influenced by dusts and contamination on a substrate and moreover has a reduced exhaust volume. A substrate chamber for housing and holding a substrate and target chambers for housing and holding a target and an etching chamber are moved relatively. Any one of the target chambers, etching chamber and the substrate chamber are selectively coupled and communicated with each other, thereby creating a film forming chamber. In the film forming chamber, a film forming process to the substrate is performed and a multilayered film is formed. A conveying chamber which is conventionally provided is consequently made unnecessary. A problem of dusts and contamination occurring when the substrate passes through the conveying chamber is eliminated, so that the film quality and its stability are improved.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 22, 2001
    Assignee: TDK Corporation
    Inventor: Takahiro Yamamoto
  • Patent number: 6231732
    Abstract: A cylindrical carriage sputtering system for disk, wafer, and flat panel substrates (20) comprising a cylindrical shaped vacuum sealed passageway formed by two concentric inner (11) and outer hollow cylinders (12), along with a top and a bottom sealing flange (13, 14). A central hollow cylinder (15), disposed between the inner (11) and outer cylinder (12), includes substrate-carrying openings and serves as a cylindrical carriage which substantially fills the sealed passageway and is rotatable in predetermined steps. Novel substrate processing devices (16) for deposition, heating, and cooling are attached around the circumference of the inner and outer cylindrical walls. Vacuum pumps are located between substrate processing devices (16). The openings in the cylindrical carriage are each fitted with thermally isolated substrate holders (19) for supporting a multiplicity of substrates (20).
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: May 15, 2001
    Assignee: SciVac
    Inventors: Dennis R. Hollars, Robert B. Zubeck
  • Patent number: 6231726
    Abstract: The plasma processing apparatus includes a substrate table 10 that extends from a wall of the vacuum chamber 1 toward the inside of the vacuum chamber 1. A rotary holder 8, to which the substrate 5 is mounted, is arranged in a concave portion 10a that is provided in the substrate table 10. The rotary holder 8 is rotatably supported with its periphery being sealed with a sealing member 10b. Blades 9 are provided inside the rotary holder 8. A supply port 11 and a drainage port 12, for supplying and draining a fluid such that a rotation force is exerted on the blades 9, are formed in the substrate table 10. Supplying a fluid through the supply port 11 cools the substrate 5 while causing it to rotate.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: May 15, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshiyuki Suemitsu, Nobuyuki Mori, Masahide Yokoyama, Masahiro Yamamoto
  • Patent number: 6228236
    Abstract: A magnetron for use in a DC magnetron sputtering reactor that can rotate at a smaller diameter during a deposition phase and at a larger diameter during a cleaning phase, whereby sputter material redeposited outside of the deposition sputtering track is removed during the cleaning phase. An embodiment for a two-diameter magnetron includes a swing arm fixed on one end to the magnetron rotation motor shaft and on the other end to a pivot shaft, pivotably coupled to the magnetron. When the magnetron is rotated in different directions, hydrodynamic forces between the magnetron and the chilling water bath cause magnetron to pivot about the pivot shaft. Two mechanical detents fix the limits of the pivoting and hence establish the two diameters of rotation.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: May 8, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rosenstein, Jianming Fu, Leif Eric Delaurentis, James van Gogh, Alan Liu
  • Patent number: 6224718
    Abstract: An ion beam sputtering target assembly has six sputter targets arranged in pairs on three paddles and disposed upon the circumference of a circular holder. The circular holder can be rotated about its axis in such a way as to bring any one of the target pairs to be exposed to the sputtering ion beam to deposit a film on substrate. The paddle is rotated to bring a desired target in the pair into position for sputtering. An alternative embodiment is provided with an enlarged region which allows one of the target paddles to be rotated about its axis while that target paddle is in an inactive, non-sputtering rotary position.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: May 1, 2001
    Assignee: Veeco Instruments, Inc.
    Inventor: William A. Meyer
  • Patent number: 6220203
    Abstract: A device for vacuum coating bulk material includes a rotating holder for accommodating the bulk material, a plasma coating source arranged within the rotating holder, as well as a device, arranged within the rotating holder, for cleaning the bulk material using plasma. During the coating process, the rotational speed of the rotating holder is less than the speed necessary for producing a centrifugal force for fixing the bulk material against the inner wall of the rotating holder. The plasma coating source and the plasma cleaning device are arranged in such a way that their spheres of action overlap.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: April 24, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Kurt Burger, Johannes Voigt, Wolfgang Reuter
  • Patent number: 6217730
    Abstract: A sputtering device enabling a small incident angle. A plurality of shield plates provided with holes at the same positions as targets are arranged in a vacuum chamber. Sputtering particles ejected diagonally from the targets 51-59 become attached to the shield plates 21-23 and only particles ejected vertically reach the surface of a substrate 12. As a result, it is possible to uniformly form a thin film inside microscopic holes of high aspect ratio. If sputtering gas is introduced close to the targets 51-59, reactant gas is introduced close to the substrate 12 and evacuation carried out close to the substrate 12, reactant gas does not reach the targets 51-59 side. Consequently, it is possible to prevent deterioration of the surfaces of the targets 51-59.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: April 17, 2001
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventors: Kuniaki Nakajima, Tomoyasu Kondo, Tsuyoshi Sahoda, Yasushi Higuchi, Takashi Komatsu
  • Patent number: 6203677
    Abstract: A device for coating a disk-like substrate (3,3′, . . . ) with the aid of cathodic sputtering, having an essentially cylindrical transport chamber (7) and with a vacuum pump (8) connected to the transport chamber (7) and with an opening (9) that can be closed off by a plate (16) for inserting and removing the substrates (3,3′. . .
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: March 20, 2001
    Assignee: Leybold Systems GmbH
    Inventor: Michael König
  • Patent number: 6193853
    Abstract: An elongate emitter is used as a cathode to coat material onto a cylindrical workpiece by magnetron sputterinig. Where the inside surface of the workpiece is coated, the workpiece itself is used as the vacuum sputtering chamber. The overlap between the plasma field and the magnetic field creates a coating zone which is moved along the length of the workpiece to evenly coat the workpicce.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: February 27, 2001
    Assignee: Cametoid Limited
    Inventors: Gennady Yumshtyk, Michael Ioumchtyk
  • Patent number: 6187159
    Abstract: Antireflection films are coated on the both sides of an optical lens by sputtering in a sputtering system. In a vacuum processing chamber (22) for performing the sputtering, a plurality of optical lens base materials are placed transversely on a substrate holder (26). The holder (26) is set rotatably in a vacuum atmosphere. The optical lens base materials are embedded to holes (26a) formed in the holder (26), facing their concave surface up, by using ring-shaped holding tools (52, 152). The height of the ring-shaped holding tool (52) is larger than the height of the edge of the optical lens base material (11) within the limits of 2 mm when the thickness of the lens edge of the optical lens base material is large. Part of the ring-shaped holding tool (152) which is put together with the upper surface of the optical lens base material (111) is tapered when the thickness of the lens edge of the optical lens base material is small.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: February 13, 2001
    Assignee: Hoya Corporation
    Inventors: Hitoshi Kamura, Masaaki Yoshihara, Hajime Kamiya
  • Patent number: 6176987
    Abstract: A robotic arm assembly in a transport module is expansible to have an effector at its end receive a substrate in a cassette module and is then contracted and rotated with the effector to have the effector face a process module. Planets on a turntable in the process module are rotatable on first parallel axes. The turntable is rotatable on a second axis parallel to the first axes to move successive planets to a position facing the effector. At this position, an alignment assembly is aligned with, but axially displaced from, one of the planets. This assembly is moved axially into coupled relationship with such planet and then rotated to a position aligning the substrate on the effector axially with such planet when the arm assembly is expanded. A lifter assembly aligned with, and initially displaced from, such planet is moved axially to lift the substrate from the effector. The arm assembly is then contracted, rotated with the effector and expanded to receive the next cassette module substrate.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: January 23, 2001
    Assignee: Shamrock Technology Corp.
    Inventors: Robert George Begin, Peter J. Clarke