Nonelectrolytic Coating Or Coatings All Contain Single Metal Or Alloy Patents (Class 205/184)
  • Patent number: 5810991
    Abstract: A method for producing a zinc-electroplated steel sheet comprising the steps of: pickling a steel sheet with a pickling solution so as to deposit a tin of an amount of 0.5 mg/m.sup.2 to less than 10 mg/m.sup.2 on the steel sheet; and zinc-electroplating the pickled steel sheet.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: September 22, 1998
    Assignee: NKK Corporation
    Inventors: Takayuki Urakawa, Hideharu Koga, Toru Imokawa, Toyofumi Watanabe
  • Patent number: 5779873
    Abstract: This invention is predicated on the discovery by the present applicants that boric acid in conventional nickel plating baths is responsible for excessive lateral growth in the electroplating of nickel on nickel ferrite substrates. While nickel baths without boric acid do not yield acceptable electrodeposits, the boric acid interacts with the ferrite substrate to cause excessive lateral growth. Applicants further discovered that by eliminating the boric acid and adding another acidic plating buffer such as citric acid, one can obtain isotropic nickel plating and produce a wire-bondable surface.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: July 14, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Henry Hon Law, Lynn Frances Schneemeyer, Te-Sung Wu
  • Patent number: 5706999
    Abstract: A composite material of silicon carbide particles in an aluminum matrix is base coated with a layer of a nickel-boron alloy by an electroless process. The base-coated composite material is heat treated at a temperature of about 450.degree. C. to interdiffuse the base coating with the composite material. A nickel or gold top layer is electrolytically deposited over the base coat on the heat-treated composite material.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: January 13, 1998
    Assignee: Hughes Electronics
    Inventors: John K. Lim, Joseph S. Russo
  • Patent number: 5685968
    Abstract: In a ceramic substrate with a thin-film capacitor, having a ceramic substrate a lower electrode layer formed on the ceramic substrate, a dielectric layer formed on the lower electrode layer and made of an oxide of a material constituting the lower electrode layer, and an upper electrode layer formed on the dielectric layer, a plating layer is provided between the ceramic base and the lower electrode layer to serve as a basis for the lower electrode layer.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: November 11, 1997
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Toshitaka Hayakawa, Shinobu Yoshida, Toshikatsu Takada
  • Patent number: 5609746
    Abstract: In the manufacture of a printed circuit board a sacrificial tin-lead layer is deposited on the surface of the board by electroplating. Holes are then formed in the board by UV laser ablation. Debris from the ablation process is adsorbed on the sacrificial layer. The sacrificial layer is then removed by means of a chemical stripping process, along with the debris.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: March 11, 1997
    Assignee: International Computers Limited
    Inventors: Simon Farrar, Neil Taylor
  • Patent number: 5512162
    Abstract: The invention is a method for making a metal containing article, comprising the steps of: providing a layer of a porous ground in a selected area; exposing selected regions of the layer of porous ground to light, thereby metallizing the selected regions; repeating the foregoing steps a selected number of times to produce a selected number of layers; and selectively modifying the metallized regions of the layers. The initial metallization can be by electroless or semiconductor photo deposition plating. The subsequent modification of the metallized regions can be by electroless plating, electroplating or sintering. It is also possible, in some instances, to forego the second phase modification, the initial phase having provided the desired parameters. In a third preferred embodiment, the invention is a method using an initial metallization phase effected by exposure of a metal salt, such as a metal halide, to light, thereby inducing activation of the halide.
    Type: Grant
    Filed: August 13, 1992
    Date of Patent: April 30, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: Emanuel Sachs, Che-Chih Tsao
  • Patent number: 5484518
    Abstract: A process for electroplating a substrate by coating the substrate with a liquid dispersion of conductive particles selected from the group of metals, metal oxides and metal sulfides, drying the substrate and electroplating over said dried coating. The process is especially useful for the fabrication of printed circuit boards.
    Type: Grant
    Filed: March 4, 1994
    Date of Patent: January 16, 1996
    Assignee: Shipley Company Inc.
    Inventor: Robert L. Goldberg
  • Patent number: 5419829
    Abstract: A method for electroplating a nonconducting surface using a metal oxide colloid. The process comprises contacting the surface of the nonconductor to be plated with a preformed colloid of a metal oxide to adsorb the colloid onto the surface of the nonconductor and then electroplating metal over the surface having the adsorbed metal oxide colloid. The process may include a step of reducing the metal oxide to a lower valent state prior to the step of metal plating.
    Type: Grant
    Filed: May 17, 1994
    Date of Patent: May 30, 1995
    Assignee: Rohm and Haas Company
    Inventors: Gordon Fisher, John J. Bladon, Wade Sonnenberg, Robert L. Goldberg
  • Patent number: 5415762
    Abstract: A process for electroplating a nonconducting substrate comprising formation of a film of a conductive polymer on the surface of a nonconducting substrate and electrolytic deposition of metal thereover. The conductive film is formed by deposition of the conductive polymer onto said surface from an aqueous suspension of said polymer.
    Type: Grant
    Filed: August 18, 1993
    Date of Patent: May 16, 1995
    Assignee: Shipley Company Inc.
    Inventors: George R. Allardyce, Kevin Bass, John E. Graves, James G. Shelnut
  • Patent number: 5374491
    Abstract: There is now provided an improved manufacturing method for increasing the active material filling density in a small DTR reticulated nickel sheet. The nickel sheet has desirable physical properties such as resistance to breakage and crushing, in repeated bending. This resistance can be for both the surface area and the central area, in the thickness direction of the sheet. Such small DTR sheet has not previously been preferred as a battery electrode material because of a smaller filling density using conventional methods. There is now provided a battery electrode having high filling density of active material, high utilization rate of the impregnated active material and high capacity density with long life. Furthermore, a method of producing such small DTR of reticulated nickel sheet in a continuous and economical manner is disclosed.
    Type: Grant
    Filed: August 6, 1993
    Date of Patent: December 20, 1994
    Assignee: Eltech Systems Corporation
    Inventors: James R. Brannan, Anthony J. Vaccaro, John P. Healy
  • Patent number: 5372698
    Abstract: A thin film magnetic read/write head has a copper iron boron core. Cobalt, iron and boron are included in the electroplating bath used to form the pole pieces of the thin film magnetic head. Following exposure to a rotating magnetic field, the pole pieces have high saturation magnetization, low coercivity, low anisotropy and large permeability.
    Type: Grant
    Filed: September 14, 1992
    Date of Patent: December 13, 1994
    Assignee: Seagate Technology, Inc.
    Inventor: Simon H. Liao
  • Patent number: 5336391
    Abstract: An improved circuit board material having a support layer, an electrical resistance layer and a conductive layer. The circuit board material has a resistance of at least about 500 ohms/square. The circuit board material is formed by electro-plating the electrical resistance layer on the conductive layer. The conductive layer is desirably activated prior to electro-deposition of the electrical resistance layer thereon. The conductive layer is activated by contacting with an activating agent such as benzotriazole electrolytic chromate and the like. A preferred electro-plating bath for electro-deposition of the electrical resistance layer comprises about 0.5 mole per liters nickel hypophosphite. The disclosed electro-plating bath functions at ambient temperatures and is effectively temperature independent. Circuit boards can be formed from the circuit board material through a process involving only two etching steps.
    Type: Grant
    Filed: September 21, 1992
    Date of Patent: August 9, 1994
    Assignee: Ohmega Electronics, Inc.
    Inventor: James M. Rice
  • Patent number: 5318688
    Abstract: Gases such as hydrogen/hydrocarbon may be separated by a separating membrane of a Group VIII noble metal on a deposit of non-noble Group VIII metal which is supported on a porous silver or a porous carbon body.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: June 7, 1994
    Assignee: Texaco Inc.
    Inventors: Mitri S. Najjar, Carl A. Hultman
  • Patent number: 5316652
    Abstract: A method for manufacturing an iron-zinc alloy plated steel sheet having two plating layers and excellent in electropaintability and press-formability, which comprises the steps of: applying an alloying treatment under a temperature of from 420.degree. to 520.degree. C. to a zinc dip-plated steel sheet to form on the surface of the steel sheet an alloying-treated iron-zinc alloy dip-plating layer having on the surface thereof fine irregularities comprising numerous fine concavities and numerous fine convexities; then applying a temper rolling treatment at a reduction rate of from 0.3 to 1.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: May 31, 1994
    Assignee: NKK Corporation
    Inventors: Masaru Sagiyama, Masaki Abe, Akira Hiraya, Junichi Inagaki, Masaya Morita
  • Patent number: 5281326
    Abstract: A method for coating a dielectric ceramic piece by a layer of electrical conductivity whereby the method consists of coating the ceramic piece with an electrically conductive paste and of growing a metal layer of good electrical conductivity upon this layer.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: January 25, 1994
    Assignee: LK-Products OY
    Inventor: Elli K. Galla
  • Patent number: 5252360
    Abstract: A process for the production of engraved rolls and plates for printing operations wherein there are applied to a base member of metal, after it has been engraved, at least two layers of a metal and, respectively, a metal compound for increasing the hardness and the corrosion protection in order to achieve surface hardness values of at least 2000 HV.
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: October 12, 1993
    Inventors: Wolfgang Huttl, Alois Vester
  • Patent number: 5234715
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable conductive first metal coating thereon, and a second (promoter) metal which is galvanically effective to promote the corrosion of the first metal, discontinuously coated on the first metal coating. Optionally, the second metal-doped, first metal-coated substrate may be further coated with a salt, to accelerate the galvanic corrosion reaction by which the conductive first metal coating is oxidized. Also disclosed is a related method of forming such articles, comprising chemical vapor depositing the first metal on the substrate and chemical vapor depositing the second metal on the applied first metal coating, and of optionally applying a salt by salt solution contacting of the second metal-doped, first metal-coated substrate. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an evanescent chaff.
    Type: Grant
    Filed: August 7, 1991
    Date of Patent: August 10, 1993
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Delwyn F. Cummings
  • Patent number: 5183553
    Abstract: The method of forming a high temperature resistant copper coating on a ceramic and/or enamel substrate, includes the steps of chemically depositing a copper layer having a thickness of at least 3 .mu.m on the substrate, heating the copper layer formed thereon at a temperature of from 200.degree. to 450.degree. C., mechanically treating the copper layer with brush and polishing means to consolidate an upper surface thereof and galvanically depositing an additional copper layer having a thickness of 3 .mu.m on the upper surface. The high temperature resistant copper coating for the ceramic or enamel substrate can stand a higher thermal load for a longer time than similar conventional coatings and can act to rapidly dissipate heat generated by electronic components.
    Type: Grant
    Filed: July 13, 1989
    Date of Patent: February 2, 1993
    Assignee: Schering Aktiengesellschaft
    Inventors: Detlef Tenbrink, Martin Bock, Kurt Heymann, Martin Rimkus
  • Patent number: 5145572
    Abstract: The process for manufacturing through-hole contacting plated printed circuit boards by direct metal electrodeposition on catalytically activated surfaces of the substrate material is improved by pre-treatment prior to electrodepositing the metal, preferably with a solution containing one or more nitrogen-containing organic compounds.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: September 8, 1992
    Assignee: Blasberg Oberflachentechnik GmbH
    Inventors: Jurgen Hupe, Herbert Iwan
  • Patent number: 5116430
    Abstract: A titanium-containing metallic material having a high heat-resistant and abrasion resistant surface is produced by (A) cleaning a titanium-containing metallic material, (B) first plating the cleaned surface of the metallic material with Cu or Ni by a strike or flash plating method, (C) second plating the first plated surface of the Ti-containing material with Ni, Ni-P alloy or a composite material comprising a Ni-P alloy matrix and fine ceramic particles dispersed in the matrix by an electroplating method, (D) non-oxidatively heat treating the second plated Ti-containing material at 450.degree. C.
    Type: Grant
    Filed: February 8, 1991
    Date of Patent: May 26, 1992
    Assignee: Nihon Parkerizing Co., Ltd.
    Inventors: Eiji Hirai, Kazuyoshi Kurosawa, Yoshio Matsumura
  • Patent number: 5108555
    Abstract: Disclosed is an electrode for electrical discharge used for diesinking, comprising an electrode member produced by subjecting a base and binder of gypsum hemihydrate powder and a filler of conductive metal powder to modeling and/or molding and setting into a desired form of electrode, and followed by plating the electrode member with a conductive metal; and a process for manufacturing the same, wherein a gypsum hemihydrate powder, a gypsum dihydrate powder in an amount of 1% by weight of the gypsum hemihydrate powder and a conductive metal powder are kneaded in vacuo, and water is added thereto to continue further kneading in vacuo, followed by casting into a mold having a predetermined shape transferred thereon to carry out hydration, molding and setting to provide an electrode member; after the electrode member is dried, it is plated with a conductive metal to enhance mutual continuity in the conductivity of the former conductive metal powder and also to form a thin metal layer on the surface of the electro
    Type: Grant
    Filed: February 1, 1991
    Date of Patent: April 28, 1992
    Assignees: Cusp Dental Supply Co., Ltd., Hakuji Noguchi, Takeo Hori, Japan Nus Co., Ltd.
    Inventors: Satoshi Nishimuro, Takeo Hori, Kiyoko Ban
  • Patent number: 5106462
    Abstract: Process for producing a copper plated resin article by forming a uniform copper coating having excellent adhesive strength on a fiber-reinforced or unreinforced thermoplastic or thermosetting resin article having a heat deformation temperature higher than 165.degree. C. The resin article is heated along with a source of copper formate under a reduced pressure or in a non-oxidative atmosphere to a temperature in the range above 165.degree. C. but lower than the heat deformation temperature of the resin article. The process makes it possible to produce a resin article having formed thereon a copper layer having an excellent adhesive strength by a very simple manner, and the resin article thus obtained can be used in various industrial fields.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: April 21, 1992
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Takamasa Kawakami, Rieko Nakano, Kazuhiro Ando, Ryuji Fujiura
  • Patent number: 5084144
    Abstract: Gas-diffusion electrodes (GDE's) suitable for use with a solid polymer electrolyte (s.p.e.), particularly in s.p.e. fuel cells, which GDE's provide unusually highly efficient use of noble or precious electrocatalytic metals, are obtained by starting with a GDE which is essentially fully fabricated except for electrocatalytic metal treatment and s.p.e. treatment, e.g. a carbon GDE having a gas-permeable hydrophobic face and a particulate carbon-containing catalytic face. This untreated GDE is treated bya. impregnating an s.p.e. solutuion into the catalytic face until the solution penetrates part way into the cross-section of the GDE, especially into the carbon particulate or other support material, but not as far as the hydrophobic, gas permeable face,b. inserting the thus-treated GDE and a counterelectrode into a plating bath containing, for example, M.sup.+, M.sup.++, and/or M.sup.+++ ions, where M is a metal of Group VIII or I-B of the Periodic Table, andc.
    Type: Grant
    Filed: July 31, 1990
    Date of Patent: January 28, 1992
    Assignee: Physical Sciences Inc.
    Inventors: N. R. K. Vilambi Reddy, Everett B. Anderson, Earl J. Taylor
  • Patent number: 5071518
    Abstract: A method of making an electrical multilayer interconnect in which the electrical lines can be protected by an overcoat. The method includes depositing an electrically conductive layer on a substrate, forming a base plating mask on the electrically conductive layer, plating a copper base into an opening in the base plating mask onto the electrically conductive layer, stripping the base plating mask, forming a pillar plating mask on top of the copper base, plating an electrically conductive metal pillar into an opening in the pillar plating mask onto the top of the copper base, stripping the plating mask, and stripping the electrically conductive layer below the stripped base plating mask. Additionally, a protective overcoat layer can be deposited on the exposed copper surfaces.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: December 10, 1991
    Assignee: Microelectronics and Computer Technology Corporation
    Inventor: Ju-Don T. Pan