Forming Nonelectrolytic Coating Before Depositing Predominantly Single Metal Or Alloy Electrolytic Coating Patents (Class 205/183)
  • Patent number: 10208384
    Abstract: Processes for the liberation of oxygen and hydrogen from water are provided allowing for mass scale production using abundant sources of catalyst materials. A metal oxide based anode is formed by the simple oxidation of metal in air by heating the metal for a specified time period. The resultant anode is then contacted with water and subjected to a voltage from an external source or driven by electromagnetic energy to produce oxygen at the surface of the anode by oxidation of water. These processes provide efficient and stable oxygen or hydrogen production.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 19, 2019
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Hongfei Jia, Debasish Banerjee
  • Patent number: 9756736
    Abstract: A process for efficiently producing a wiring board in which an insulating substrate 1 having a through hole 2 is used, which includes forming a seed layer 3 on one surface of the insulating substrate 1, covering the surface of the insulating substrate 1 on which the seed layer 3 is formed with a masking film 4, arranging the insulating substrate 1 and a positive electrode 5 so that the surface of the insulating substrate 1 opposite to the surface of the insulating substrate 1 on which the seed layer 3 of the insulating substrate 1 is formed is faced to the positive electrode 5, carrying out electroplating to form a metal layer 8 in the through hole 2, and then removing the masking film 4.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: September 5, 2017
    Assignee: KIYOKAWA PLATING INDUSTRY CO., LTD
    Inventors: Shojiro Honda, Yosuke Haruki, Hajime Kiyokawa
  • Patent number: 9394509
    Abstract: A cleaning solution composition includes an organic solvent in which a metal fluoride does not dissolve, at least one fluoride compound that generates bifluoride (HF2?), and deionized water, wherein the deionized water may be included in a concentration of 1.5 wt % or lower based on the total weight of the cleaning solution composition.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Won Bae, Yong-Sun Ko, Seok-Hoon Kim, In-Gi Kim, Jung-Min Oh, Kun-Tack Lee, Hyo-San Lee, Ji-Hoon Jeong, Yong-Jhin Cho
  • Patent number: 9091630
    Abstract: A nanosensor and methods to manufacture are disclosed. For example, a detection system for detecting the presence of a target substance can include a nanosensor that includes a sensing layer, and a plurality of sockets embedded within the body of the sensing layer, each socket having a physical profile matching a shape of the target substance such that, when target substances occupy the sockets, at least one measurable physical characteristic of the sensing layer changes.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: July 28, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Rebecca Schwartz, John Arthur Wood
  • Publication number: 20150131251
    Abstract: This process for manufacturing an electrically conductive member for an electronic component comprises the following steps: providing a structure comprising at least one blind hole having a bottom and at least one internal lateral flank connected to said bottom via a base of said lateral flank; forming the member, this forming step comprising a step of growing an electrically conductive material in order to form at least one portion of the member in the blind hole, said growth being faster at the base of the lateral flank of the blind hole than on the rest of said lateral flank, said member when formed comprising a cavity arranged at that end of said member which is located opposite the bottom of the blind hole, said cavity being entirely or partially bordered by a rim.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 14, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Jean Brun, Abdelhak Hassaine, Jean-Marie Quemper, Régis Taillefer
  • Patent number: 8974654
    Abstract: A multilayer ceramic capacitor and method of creating are provided. The capacitor includes a plurality of interior plates having edges that are brought to and exposed upon a first surface and also upon a portion of a second surface of the capacitor at a region where the second surface meets the first surface. An electroplated terminal is directly in contact with and mechanically and electrically connected to an edge of each of the interior plates where each plate's edge is exposed upon the first surface. The terminal wraps over the region of the capacitor from the first surface onto the portion of the second surface and is directly in contact with and mechanically and electrically connected to an edge of each of the interior plates where each plate's edge is exposed upon the second surface. The terminal does not extend to any additional surfaces which meet the first surface.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 10, 2015
    Assignee: Presidio Components, Inc.
    Inventor: Hung Van Trinh
  • Patent number: 8957326
    Abstract: A composite dual blackened copper foil includes a copper foil and two blackened layers. The copper foil has a shiny side and a matte side. The blackened layers are formed on the shiny and matte sides respectively. The blackened layers are formed alloy by electroplating in a plating bath consisting essentially of copper, cobalt, nickel, manganese, magnesium and sodium ions. A rough layer is selectively formed between the blackened layer and the shiny side as well as the matte side. Both side of the copper foil is spotless, powder free, and good in etching quality. The copper foil is effective at blocking electromagnetic wave, near infrared, undesired light and the like. The copper foil exhibits strong light absorption and is applicable to direct gas laser drilling. A method of manufacturing the composite dual blackened copper foil is also provided.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 17, 2015
    Assignee: Nan Ya Plastics Corporation
    Inventors: Ming-Jen Tzou, Kuo-Chao Chen, Pi-Yaun Tsao
  • Publication number: 20150044492
    Abstract: An object of the present invention is to improve the laser drilling performance of a copper clad laminate whose black-oxide treated surface is used as a laser drilled surface. To achieve the object, a copper foil provided with a carrier foil comprising a layer structure of the carrier foil/the releasing layer/the bulk copper layer characterized in that metal element-containing particles are disposed between the releasing layer and the bulk copper layer is employed. If the present copper foil provided with a carrier foil is used, a black-oxide treated layer having a color tone excellent in the laser drilling performance can be formed on the surface of the bulk copper layer in the copper clad laminate manufactured.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Kazuhiro Yoshikawa
  • Publication number: 20150027760
    Abstract: A printed circuit board includes an insulating layer; a metal pad formed on the insulating layer; a surface treatment layer formed on the metal pad; a solder layer formed on the surface treatment layer and the insulating layer; and an intermetallic compound layer formed between the solder layer and the surface treatment layer. Further, a printed circuit board may include an insulating layer; a metal seed layer formed on the insulating layer; a metal pad formed on the metal seed layer; a surface treatment layer formed on the metal pad and the metal seed layer; a solder layer formed on the surface treatment layer of the metal pad and the surface treatment layer of the metal seed layer; and an intermetallic compound layer formed between the solder layer and the surface treatment layer.
    Type: Application
    Filed: November 21, 2013
    Publication date: January 29, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS., LTD.
    Inventors: Seong Min CHO, Jung Youn PANG, Eun Heay LEE, Seung Min KANG
  • Publication number: 20150021069
    Abstract: A method of manufacturing a printed circuit board precursor includes the steps of providing a substrate. Then the surface of the substrate is catalyzed to form a catalytic layer by a catalyst. Subsequently, a conductive layer is formed and attached to the surface of the catalytic layer. Finally, a metal layer is electroplated on the conductive layer. A printed circuit board precursor includes a substrate having a surface. Specifically, the surface is catalytically treated to form a catalytic layer. The precursor also includes a conductive layer which is attached to and covers the catalytic layer and a metal layer which is disposed on the conductive layer.
    Type: Application
    Filed: October 21, 2013
    Publication date: January 22, 2015
    Applicant: ICHIA TECHNOLOGIES,INC.
    Inventors: CHIEN-HWA CHIU, Chih-Min Chao, Peir-Rong Kuo, Chia-Hua Chiang, Chih-Cheng Hsiao, Feng-Ping Kuan, Ying-Wei Lee, Wei-Cheng Lee
  • Publication number: 20150013480
    Abstract: A component comprises a non-metallic core having an outer surface, a first catalyst deposited onto at least a first portion of the outer surface of the non-metallic core, a second catalyst deposited onto at least a second portion of the outer surface of the non-metallic core, an electrical interface, and a metallic coating. The electrical interface is plated onto the first catalyst, and includes a first interface layer electroless plated onto the first catalyst. The metallic coating is plated onto the second catalyst.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Shari L. Bugaj, Wendell V. Twelves, JR., Grant O. Cook, III
  • Publication number: 20140339092
    Abstract: The method relates to a method for producing electrically conductive structures on electrically non-conductive substrates and to a method for the electrochemical deposition of metals on substrates, which is suitable in particular for producing metallic structures and/or electroplated plastics. The invention further relates to products obtainable in this way and to the use thereof.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 20, 2014
    Inventors: Michael Berkei, Tobias Tinthoff
  • Patent number: 8871077
    Abstract: Methods of providing a corrosion-resistant plating on a steel bumper are provided. A galvanized zinc layer is deposited over a steel substrate. A plurality of nickel layers is deposited over the zinc layer. The plurality of zinc layers has at least a first porosity and a second porosity. A chrome layer is applied over the plurality of nickel layers. The porous nickel layer is immediately adjacent the chrome layer such that a stress applied to the chrome layer is distributed over the porous nickel layer. The porous nickel layer delocalizes a stress applied at an impact area to a dispersed area and the dispersed area is larger than the impact area.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: October 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Guangling Song, William A. Schumacher
  • Publication number: 20140308450
    Abstract: A method of metalizing a surface of an insulation substrate includes: applying an ink composition onto the surface to form an ink layer; subjecting the insulation substrate to heat treatment at a temperature of about 500 to 1000 degrees Celsius in a non-reactive atmosphere; plating a metal layer on the ink layer. The ink composition comprises a metal compound and an ink vehicle. The metal compound includes at least one selected from a group consisting of a nano-copper oxide, a nano-cuprous oxide, a compound of formula I, and a compound of formula II, TiO2-? (I), M1M2pOq (II), 0.05??<1.8, where, M1 is at least one element selected from a group consisting of groups 2, 9-12 of the periodic table, M2 is at least one element selected from a group consisting of groups 3-8, 10 and 13 of the periodic table, 0<p?2, and 0<q<4.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventor: Weifeng MIAO
  • Publication number: 20140292180
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes: i) a substrate including a metal tip; ii) carbon nano tubes that are positioned on the metal tip; and iii) a lithium layer that is positioned on the carbon nano tubes.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventor: Intellectual Discovery Co., Ltd.
  • Publication number: 20140255952
    Abstract: The invention relates to carbon nanotube-containing composites as biosensors to detect the presence of target clinical markers, methods of their preparation and uses in the medical field. The invention is particularly suitable for the detection in patient biological specimens of bone markers and tissue markers. The biosensors of the invention include carbon nanotubes deposited on a substrate, gold nanoparticles deposited on the carbon nanotubes and, binder material and biomolecule deposited on the gold-coated carbon nanotubes. The biomolecule is selected to interact with the target clinical markers. The biosensor can be used as an in-situ or an ex-situ device to detect and measure the presence of the target clinical markers.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicant: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: PRASHANT NAGESH KUMTA, MADHUMATI RAMANATHAN, MITALI SHIRISH PATIL
  • Publication number: 20140197157
    Abstract: A method of manufacturing electrodes for a flat heat generator is provided for creating electrodes in an arbitrary shape on an arbitrary site of an arbitrarily shaped flat heat generator, to allow a required portion to generate heat, and to allow a heat source to move. The method includes the steps of forming a negative film for ultraviolet exposure masking from a master which has a set of electrodes for the flat heat generator designed in an arbitrary shape and at an arbitrary site, forming a thin-film member including an uncured portion of epoxy film, by irradiating the thin-film member with ultraviolet rays through masking of the negative film, dissolving the uncured portion of epoxy resin with a developing solution to form the set of electrodes, and depositing a metal on the set of electrodes through an ionization reaction within an electrolytic solution bath to from an electrodes.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 17, 2014
    Applicant: Tem-Tech Lab. Co. Ltd.
    Inventors: Mitsuyoshi AIZAWA, Kisaku NISHIGUCHI
  • Patent number: 8778163
    Abstract: A method for electroplating aluminum metal on a magnesium alloy includes providing an Lewis acidic ionic liquid having dissolved species of an aluminum metal salt; pre-treating a surface of the magnesium alloy including subjecting the surface of the magnesium alloy to a reverse current etching in the ionic liquid; electroplating the aluminum metal on the surface using the ionic liquid as the electrolyte; and subjecting the surface of the magnesium alloy to a post-treatment including neutralization rinsing in a rinsing solvent solution.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Xiaomei Yu, Mark R. Jaworowski, Daniel V. Viens, Joseph J. Sangiovanni
  • Publication number: 20140138253
    Abstract: The invention relates to a composition and a process for the deposition of conductive polymers on dielectric substrates. In particular, the invention relates to a composition for the formation of electrically conductive polymers on the surface of a dielectric substrate, the composition comprising at least one polymerizable monomer which is capable to form a conductive polymer, an emulsifier and an acid, characterized in that the composition comprises at least one metal-ion selected from the group consisting of lithium-ions, sodium-ions, aluminum-ions, beryllium-ions, bismuth-ions, boron-ions, indium-ions and alkyl imidazolium-ions.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 22, 2014
    Applicant: ENTHONE INC.
    Inventor: Christian Rietmann
  • Patent number: 8721864
    Abstract: A metal covered polyimide composite comprising a tie-coat layer and a metal seed layer formed on a surface of a polyimide film by electroless plating or a drying method is provided. A copper layer or a copper alloy layer is formed thereon by electroplating. The copper plated layer or copper alloy plated layer includes three layers to one layer of the copper layer or copper alloy layer. The metal covered polyimide composite effectively prevents peeling in a non-adhesive flexible laminate (especially a two-layer flexible laminate), and more particularly, effectively inhibits peeling from the interface of a copper layer and tin plating. A method of producing the composite and apparatus for producing the composite are also provided.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: May 13, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Michiya Kohiki, Naonori Michishita, Nobuhito Makino
  • Patent number: 8709226
    Abstract: A method comprising: dispersing carbon nanotubes in a solvent; and depositing the carbon nanotubes on a porous, conductive substrate; wherein the porous, conductive substrate is capable of functioning as a filter and a working electrode. The method of claim 1 further comprising: engaging the porous, conductive substrate with deposited carbon nanotubes in an electrochemical cell; and depositing at least one metallic structure on the surface of the carbon nanotubes from an electrolyte solution to form metallized carbon nanotubes. A composite comprising: metallized carbon nanotubes generated by the method of claim 2; wherein the at least one metallic structure comprises a conductive metal atom selected from the group consisting of platinum, gold nickel, copper, iron, chromium, zinc, and combinations thereof; and a matrix material selected from the group consisting of epoxies, thermosets, thermoplastics, elastomers, metals, metal matrix composites, ceramics and combinations thereof.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 29, 2014
    Assignee: Texas Southern University
    Inventors: Xin Wei, Yuanjian Deng, Renard L. Thomas, Bobby Wilson
  • Publication number: 20140113077
    Abstract: A manufacturing method of a composite cloth has steps of: preparing a work-in-process composite cloth, surface treating the work-in-process composite cloth, and coating the work-in-process composite cloth with a non-shielding metallized layer. In the step of preparing a work-in-process composite cloth, a work-in-process composite cloth allowing electromagnetic waves to pass through is prepared. In the step of surface treating the work-in-process composite cloth, a surface of the work-in-process composite cloth is coupling-processed, and then is dried. In the step of coating the work-in-process composite cloth with a non-shielding metallized layer, the surface of the work-in-process composite cloth is coated with a non-shielding metallized layer whose thickness ranges from 10 ? (angstrom) to 100 ? (angstrom). Accordingly, a boring step and a patching step are spared.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Inventor: KAI-HSI TSENG
  • Publication number: 20140102623
    Abstract: Epoxy resin compositions, which comprise (A) en epoxy resin having two or more epoxy groups in a molecule; (B) a phenol type curing agent where an average hydroxyl group content in a molecule (a mean value of (the total number of hydroxyl groups)/(the total number of benzene rings)), P, satisfies the equation 0<P<1; (C) a phenoxy resin; and (D) rubber particles, are suitable for use as an insulating layer of a multi-layered printed board in which, in spite of the fact that the roughness of a roughened surface after a roughening treatment is relatively small, an insulating layer having a good tight adhesion with a conductor layer formed by plating is able to be easily introduced into a multi-layered printed board.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Kenji KAWAI, Shigeo NAKAMURA
  • Publication number: 20140076619
    Abstract: Disclosed herein is a method for removing a seed layer in manufacturing a printed circuit board, the method including: forming a photo resist layer on a printed circuit board having a seed layer formed on a surface thereof; removing the photo resist layer according to a predetermined pattern; forming a plating layer for a circuit on the predetermined pattern from which the photo resist layer is removed; exposing the seed layer by removing the photo resist layer around the plating layer; forming a corrosion layer on surfaces of the seed layer and the plating layer by performing a chemical reaction of the substrate from which the seed layer is exposed in a reactor in which a predetermined gas is filled; and removing the seed layer by irradiating a laser on the corrosion layer to remove the corrosion layer.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Sung Han, Yoon Su Kim, Kyoung Moo Harr, Kyung Seob Oh, Kyung Suk Shim, Du Sung Jung
  • Publication number: 20140048420
    Abstract: A method for fabricating one-dimensional metallic nanostructures comprises steps: sputtering a conductive film on a flexible substrate to form a conductive substrate; placing the conductive substrate in an electrolytic solution, and undertaking electrochemical deposition to form one-dimensional metallic nanostructures corresponding to the conductive film on the conductive substrate. The method fabricates high-surface-area one-dimensional metallic nanostructures on a flexible substrate, exempted from the high price of the photolithographic method, the complicated process of the hard template method, the varied characteristic and non-uniform coating of the seed-mediated growth method.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 20, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yu-Liang CHEN, Nai-Ying CHIEN, Hsin-Tien CHIU, Chi-Young LEE
  • Publication number: 20140027163
    Abstract: Disclosed herein are a printed circuit board and a method for manufacturing the same. The printed circuit board includes: a core reinforcement having stiffness; insulating layers formed on both surfaces of the core reinforcement; a through hole formed by penetrating through the insulating layer and the core reinforcement; and a circuit layer formed on the insulating layer and a plating layer formed in the through hole for implementing inter-layer connection of the circuit layers.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: TAE HONG MIN, SUK HYEON CHO, JONG RIP KIM, JUNG HAN LEE
  • Publication number: 20130333820
    Abstract: A process to form devices may include forming a seed layer on and/or over a substrate, modifying a seed layer selectively, forming an image-wise mold layer on and/or over a substrate and/or electrodepositing a first material on and/or over an exposed conductive area. A process may include selectively applying a temporary patterned passivation layer on a conductive substrate, selectively forming an image-wise mold layer on and/or over a substrate, forming a first material on and/or over at least one of the exposed conductive areas and/or removing a temporary patterned passivation layer. A process may include forming a sacrificial image-wise mold layer on a substrate layer, selectively placing one or more first materials in one or more exposed portions of a substrate layer, forming one or more second materials on and/or over a substrate layer and/or removing a portion of a sacrificial image-wise mold layer.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 19, 2013
    Applicant: NUVOTRONICS, LLC
    Inventor: David Sherrer
  • Publication number: 20130330572
    Abstract: The invention relates to a layered composite material for sliding elements, comprising a base layer, applied to the surface of a sliding element, made of an alloy comprising copper or aluminum and a sliding layer situated over said layer, wherein the sliding layer comprises 90.99.6 wt % of tin or tin alloy having a tin ratio of greater than 60 wt % and 0.2-6 wt % solid lubricant particles having a Mohs hardness of ?3 and a particle size of ?10 ?m. The invention further relates to the production of said layered composite material and to use thereof for sliding bearings.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 12, 2013
    Inventors: Klaus Staschko, Juri Magomajew
  • Publication number: 20130302641
    Abstract: A metal article comprises an alloy substrate having a surface and a non-diffused metal monolayer disposed thereon. The surface has a first surface work function value ?s. The non-diffused monolayer deposited on the surface has a second surface work function value ?s that is less negative than the first surface work function value. A method for depositing the monolayer via underpotential deposition (UPD) is also disclosed.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Weilong Zhang, Xiaomei Yu, Lei Chen, Mark R. Jaworowski, Joseph J. Sangiovanni
  • Patent number: 8568899
    Abstract: Provided is a metal covered polyimide composite comprising a tie-coat layer and a metal seed layer formed on a surface of a polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating, wherein the copper plated layer or copper alloy plated layer comprises three layers to one layer of the copper layer or copper alloy layer, and there is a concentrated portion of impurities at the boundary of the copper layer or copper alloy layer when the copper layer or copper alloy layer is three layers to two layers, and there is no concentrated portion of impurities when the copper layer or copper alloy layer is a single layer. Additionally provided are a method of producing the composite and a method of producing an electronic circuit board.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: October 29, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Michiya Kohiki, Naonori Michishita, Nobuhito Makino
  • Publication number: 20130273388
    Abstract: A heat dissipation substrate including a metal substrate, a metal layer, an insulating material layer and a patterned conductive layer is provided. The metal layer is disposed on the metal substrate and entirely covers the metal substrate. The metal layer has a first metal block and a second metal block surrounding the first metal block. A thickness of the first metal block is greater than a thickness of the second metal block. The insulating material layer is disposed on the second metal block. The patterned conductive layer is disposed on the insulating material layer and on the first metal block.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 17, 2013
    Applicant: SUBTRON TECHNOLOGY CO., LTD.
    Inventor: Shih-Hao Sun
  • Publication number: 20130265674
    Abstract: A gimbal assembly of a single or dual stage actuator is provided with gold at a tongue/dimple interface where a dimple of a supporting loadbeam contacts a tongue on the gimbal assembly. Using gold at the tongue/dimple interface greatly reduces the amount of wear particles formed during assembly and operation of the microactuator. The tongue may include a gold coating on the tongue at the tongue/dimple interface, or the tongue may have a hole etched in a stainless steel layer at the tongue/dimple interface to expose a gold layer disposed below the stainless steel layer. The tongue portion of the tongue/dimple interface may also be formed from a gold-coated copper pad with a polymer coating over the gold.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: NHK SPRING CO., LTD
    Inventor: Edmund B. FANSLAU
  • Publication number: 20130251891
    Abstract: A capacitor with an anode, a dielectric on the anode and a cathode on the dielectric. A blocking layer is on the cathode. A metal filled layer is on said blocking layer and a plated layer is on the metal filled layer.
    Type: Application
    Filed: April 16, 2013
    Publication date: September 26, 2013
    Applicant: Kemet Electronics Corporation
    Inventors: Antony P. Chacko, Randolph S. Hahn
  • Publication number: 20130240366
    Abstract: Improved termination features for multilayer electronic components are disclosed. Monolithic components are provided with plated terminations whereby the need for typical thick-film termination stripes is eliminated or greatly simplified. Such termination technology eliminates many typical termination problems and enables a higher number of terminations with finer pitch, which may be especially beneficial on smaller electronic components. The subject plated terminations are guided and anchored by exposed internal electrode tabs and additional anchor tab portions which may optionally extend to the cover layers of a multilayer component. Such anchor tabs may be positioned internally or externally relative to a chip structure to nucleate additional metallized plating material. External anchor tabs positioned on top and bottom sides of a monolithic structure can facilitate the formation of wrap-around plated terminations.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: AVX CORPORATION
    Inventors: Andrew P. Ritter, Robert Heistand, II, John L. Galvagni, Sriram Dattaguru
  • Publication number: 20130228468
    Abstract: The present invention provides a method for continuously producing flexible copper clad laminates, which comprises a step of performing continuous copper plating after the steps or step of performing continuous ion implantation and/or plasma deposition on the surface of an organic macromolecular polymer film. The bonding force between the copper film and the substrate in a two-layer flexible copper clad laminate produced by the method provided by the present invention is much larger than that in a flexible copper clad laminate produced by a sputtering/plating method and equivalent to that in a flexible copper clad laminate produced by a coating method and a lamination method. Meanwhile the thickness of the copper film can be easily controlled to be less than 18 microns.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 5, 2013
    Applicant: ZHUHAI RICHVIEW ELECTRONICS CO., LTD.
    Inventors: Xinlin Xie, Nianqun Yang
  • Patent number: 8470450
    Abstract: Provided is a method of producing a two-layered copper-clad laminate with improved folding endurance, wherein the two-layered copper-clad laminate retains folding endurance of 150 times or more measured with a folding endurance test based on JIS C6471 by subjecting the laminate in which a copper layer is formed on a polyimide film through sputtering and plate processing to heat treatment at a temperature of 100° C. or more but not exceeding 175° C. Specifically, provided are a method of producing a two-layered copper-clad laminate (two-layered CCL material) in which a copper layer is formed on a polyimide film through sputtering and plate processing, wherein the rupture of the outer lead part of a circuit can be prevented due to the improvement in folding endurance; and a two-layered copper-clad laminate obtained from the foregoing method.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: June 25, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Mikio Hanafusa
  • Publication number: 20130136859
    Abstract: A film forming method performs a film forming process on a target object having on a surface thereof an insulating layer. The film forming method includes a first thin film forming step of forming a first thin film containing a first metal, an oxidation step of forming an oxide film by oxidizing the first thin film, and a second thin film forming step of forming a second thin film containing a second metal on the oxide film.
    Type: Application
    Filed: June 24, 2011
    Publication date: May 30, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kenji Matsumoto, Shigetoshi Hosaka, Hitoshi Itoh
  • Publication number: 20130130055
    Abstract: A coated steel sheet includes a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of a steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. The coated steel sheet has excellent humid resin adhesion and corrosion resistance, in which streaky surface defects do not occur.
    Type: Application
    Filed: March 24, 2011
    Publication date: May 23, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuka Miyamoto, Takeshi Suzuki, Hiroki Iwasa, Norihiko Nakamura, Masao Inose, Hisato Noro, Yoichi Tobiyama
  • Patent number: 8357285
    Abstract: A gold alloy plating solution and plating method thereof that provides a gold plating solution with high deposition selectivity by using a gold plating solution that contains gold cyanide, cobalt ions, hexamethylene tetramine, and specific glossing agents.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 22, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Yutaka Morii, Masanori Orihashi
  • Patent number: 8354014
    Abstract: There are provided technologies for adsorbing a catalyst metal selectively to an anionic group such as a carboxyl group, thereby forming a metal film on a nonconductive resin selectively, including a palladium complex represented by the following formula (I): wherein L represents an alkylene group and R represents an amino group or a guanidyl group, or a structural isomer thereof, a processing solution for electroless plating catalyst application containing the complex as an active component, and a method for forming a metal plated film on a nonconductive resin, containing subjecting a nonconductive resin having a surface anionic group to a catalyst adsorbing treatment using the processing solution and then to a reduction treatment, electroless metal plating, and metal electroplating.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: January 15, 2013
    Assignee: Ebara-Udylite Co., Ltd.
    Inventors: Makoto Kohtoku, Mika Hamada
  • Patent number: 8329315
    Abstract: The present invention relates to an ultra thin copper foil with a very low profile copper foil as a carrier, comprising a carrier foil a release layer and an ultra thin copper foil. The copper foil with the Very Low Profile, smooth on both sides (i.e. VLP copper foil) is used as the carrier foil, the said very low profile copper foil for supporting the ultra thin copper foil can bring advantages of no pinhole, excellent thickness uniformity and low surface roughness. The impact of a release layer on the bond strength between the carrier foil and the ultra thin copper foil is very significant, the release layer is composed of a quaternary metal alloy with peelability.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 11, 2012
    Assignee: Nan Ya Plastics Corporation
    Inventors: Ming Jen Tzou, Ya Mei Lin
  • Publication number: 20120308844
    Abstract: The present invention relates generally to methods for producing a coated jewelry article or a coated component of a jewelry article, comprising a jewelry article or a component of a jewelry article, a first metallic coating, and a second metallic coating.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: FREDERICK GOLDMAN INC.
    Inventor: Andrew Derrig
  • Publication number: 20120301688
    Abstract: Devices are formed that combine low resistance for circuit needs with high flexibility for application needs. Embodiments include forming a low resistance layer on a substrate and forming a high flexibility conductive layer on the low resistance layer, wherein the high flexibility conductive layer provides for continuous conductivity of the low resistance layer. Embodiments include forming a pattern in the low resistance and high flexibility conductive layers simultaneously, or forming a pattern in the low resistance layer prior to forming the high flexibility conductive layer.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Ricardo P. MIKALO, Stephan D. KRONHOLZ, Matthias KESSLER
  • Patent number: 8313633
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device formed by the process steps of: (a) fabricating using photolithography a pair of metallic electrodes separated by a microscale gap onto a first electrical insulation layer formed on a substrate; (b) applying a second electrical insulation layer on most of a top surface of said pairs of electrodes; (c) depositing additional metallic electrode material onto said electrode pairs using electrochemical deposition, thereby decreasing said microgap to a nano sized gap between said electrode pairs; (d) electrochemically polymerizing in said nanogap conductive monomers containing a target analyte, thereby forming a conducting polymer nanojunction in the gap between electrode pairs; and (e) immersing resultant sensor device in a solution which removes away the target analyte, and intermittently applying a voltage to the conducting polymer while it is immersed in said solution, thereby swelling and shrinking the co
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Polestar Technologies, Inc.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Publication number: 20120285835
    Abstract: An adhesion solution containing curable amine compounds and curable epoxy compounds are applied to a dielectric material followed by drying the solution and electrolessly plating a thin metal layer on the dielectric material. The composite is then annealed to cure the amine and epoxy compounds. The adhesion solution contains an excess amount of curable amine to curable epoxy. The adhesion solution and method may be used in the manufacture of printed circuit boards.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventor: Kevin J. CHEETHAM
  • Publication number: 20120234093
    Abstract: This disclosure provides systems, apparatus, and devices and methods of fabrication for electromechanical devices. In one implementation, an apparatus includes a metal proof mass and a piezoelectric component as part of a MEMS device. Such apparatus can be particularly useful for MEMS gyroscope devices. For instance, the metal proof mass, which may have a density several times larger than that of silicon, is capable of reducing the quadrature and bias error in a MEMS gyroscope device, and capable of increasing the sensitivity of the MEMS gyroscope device.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Justin Phelps Black, Srinivasan Kodaganallur Ganapathi, Philip Jason Stephanou, Kurt Edward Petersen, Cenk Acar, Ravindra Vaman Shenoy, Nicholas Ian Buchan
  • Publication number: 20120217165
    Abstract: Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Applicants: Massachusetts Institute of Technology, GMZ Energy, Inc., The Trustees of Boston College
    Inventors: Hsien-Ping Feng, Gang Chen, Yu Bo, Zhifeng Ren, Shuo Chen, Bed Poudel
  • Publication number: 20120196032
    Abstract: A highly reliable electronic device that prevents entry of a plating solution via an external electrode and entry of moisture of external environment inside thereof, and generates no soldering defects or solder popping defects which are caused by precipitation of a glass component on a surface of the external electrode. The electrode structure of the electronic device is formed of Cu-baked electrode layers primarily composed of Cu, Cu plating layers formed on the Cu-baked electrode layers and which are processed by a recrystallization treatment, and upper-side plating layers formed on the Cu plating layers. After the Cu plating layers are formed, a heat treatment is performed at a temperature in the range of a temperature at which the Cu plating layers are recrystallized to a temperature at which glass contained in a conductive paste is not softened, so that the Cu plating layers are recrystallized.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Hiroshi Katsube, Jun Nishikawa
  • Patent number: 8220143
    Abstract: A plastic lead frame with reflection and conduction metal layer includes a base made of a metal catalyst containing or an organic substance containing plastic material, the base further includes a slanted reflection surface formed downwardly on top of the base; an insert slot continuously and staggeringly formed along the circumferential fringe of the base; a molded carrier made of non-metallic catalyst or organic substance containing plastic material accommodated in the insert slot; an interface layer formed on the surface of the base by chemical deposition; an insulation route formed on the surface of the base by ablating part of the interface layer with the laser beam radiation; and a metallic layer formed on the base by electroplating process thereby forming a plastic lead frame of excellent electrical conductivity and high light reflection property.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 17, 2012
    Assignee: Kuang Hong Precision Co., Ltd
    Inventor: Cheng-Feng Chiang
  • Patent number: 8202576
    Abstract: A method of forming a metal film, the method including: (a) forming a primer layer on a substrate by applying a first polymer including a unit having a cyano group in a side chain; (b) forming a polymer layer on the surface of the primer layer by applying a second polymer, the second polymer having a functional group that interacts with an electroless plating catalyst or a precursor thereof and a polymerizable group; (c) applying the electroless plating catalyst or the precursor thereof to the polymer layer; and (d) forming a metal film on the polymer layer by performing electroless plating.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 19, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Masaaki Inoue, Tetsunori Matsumoto