And Organic Sulfur Compound-containing Patents (Class 205/298)
  • Patent number: 10982343
    Abstract: The present invention relates to a plating composition for electrolytic copper deposition, comprising copper ions, halide ions and at least one acid, at least one benzothiazole compound, at least one phenazine dye and at least one ethanediamine derivative. The present invention further concerns the use of above plating composition and a method for electrolytically depositing a copper or copper alloy layer onto at least one surface of a substrate.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 20, 2021
    Assignee: Atotech Deutschland GmbH
    Inventors: Philipp Wachter, Christina Pfirrmann, Stefan Kretschmer
  • Patent number: 10665865
    Abstract: The present disclosure provides an electrodeposited copper foil having a puncture strength value and a tear strength value. A ratio of the puncture strength value to the tear strength value is from 14 to 64. The present disclosure also provides a lithium-ion secondary battery. The lithium-ion secondary battery is manufactured by using the electrodeposited copper foil and has excellent charge-discharge cycle life.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 26, 2020
    Assignee: Chang Chun Petrochemical Co., Ltd.
    Inventors: Huei-Fang Huang, Kuei-Sen Cheng, Jui-Chang Chou, Yao-Sheng Lai
  • Patent number: 9869029
    Abstract: According to the present invention a composition is provided comprising at least one source of metal ions and at least one additive obtainable by reacting a) a polyhydric alcohol condensate compound derived from at least one polyalcohol of formula (I) X(OH)n??(I) by condensation with b) at least one alkylene oxide to form a polyhydric alcohol condensate comprising polyoxyalkylene side chains, wherein n is an integer from 3 to 6 and X is an n-valent linear or branched aliphatic or cycloaliphatic radical having from 2 to 10 carbon atoms, which may be substituted or unsubstituted.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: January 16, 2018
    Assignee: BASF SE
    Inventors: Cornelia Roeger-Goepfert, Roman Benedikt Raether, Alexandra Haag, Dieter Mayer, Charlotte Emnet
  • Patent number: 9493886
    Abstract: Copper electroplating methods provide low internal stress copper deposits. Concentrations of accelerators in the copper electroplating bath vary as a function of the plating current density and the low internal stress copper deposit is observed as a matt copper deposit.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: November 15, 2016
    Inventors: George R. Allardyce, Gary Hamm, Narsmoul Karaya
  • Patent number: 9365943
    Abstract: Electroplating methods provide substantially uniform deposits of copper on the edges and walls of through-holes of printed circuit boards. The electroplating methods provide copper deposits which have high throwing power.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: June 14, 2016
    Inventors: Elie H. Najjar, Mark Lefebvre, Leon R. Barstad, Michael P. Toben
  • Patent number: 9222188
    Abstract: A method for electroplating a copper deposit onto a semiconductor integrated circuit device substrate having submicron-sized features, and a concentrate for forming a corresponding electroplating bath. A substrate is immersed into an electroplating bath formed from the concentrate including ionic copper and an effective amount of a defect reducing agent, and electroplating the copper deposit from the bath onto the substrate to fill the submicron-sized reliefs. The occurrence of protrusion defects from superfilling, surface roughness, and voiding due to uneven growth are reduced, and macro-scale planarity across the wafer is improved.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: December 29, 2015
    Assignee: Enthone Inc.
    Inventors: John Commander, Richard Hurtubise, Vincent Paneccasio, Xuan Lin, Kshama Jirage
  • Patent number: 9133560
    Abstract: The object of the present invention is an electroplating composition intended in particular for coating a copper-diffusion barrier layer with a seed layer, This composition comprises a source of copper ions, in a concentration of between 0.4 and 40mM; at least one copper complexing agent chosen from the group of primary aliphatic amines, secondary aliphatic amines, tertiary aliphatic amines, aromatic amines, nitrogen heterocycles and oximes; the copper/complexing agent(s) molar ratio being between 0.1 and 2.5, preferably between 0.3 and 1.3; and the pH of the composition being less than 7, preferably between 3.5 and 6.5.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: September 15, 2015
    Assignee: ALCHIMER
    Inventors: Jérôme Daviot, José Gonzalez
  • Patent number: 8808525
    Abstract: A cyanide-free electrolyte composition for the galvanic deposition of a copper layer on substrate surfaces and a method for the deposition of such layers. The electrolyte composition comprises at least copper(II) ions, a hydantoin and/or hydantoin derivative, a di- and/or tricarboxylic acid or salts thereof, and a metalate of an element of the group consisting of molybdenum, tungsten and vanadium and/or a cerium compound.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 19, 2014
    Assignee: Enthone Inc.
    Inventor: Stefan Schäfer
  • Publication number: 20140197038
    Abstract: An electroplating solution includes an aqueous electrolyte solution including water soluble copper salts, sulfide ions and chloride ions, an accelerator including an organic material having sulfur (S), the accelerator accelerating copper (Cu) reduction, a suppressor including a polyether compound, the suppressor selectively suppressing the copper reduction, and a leveler including a water soluble polymer having nitrogen that is dissolved into positive ions in the aqueous electrolyte solution.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myung-Beom PARK, Yun-Deok KANG, Ki-Hyeon KIM, Youn-Joung CHO, Jung-Sik CHOI
  • Publication number: 20140199588
    Abstract: The present invention provides an electrodeposited copper foil having a tensile strength of at least 300 MPa and elongation rate of at least 3.0% after heat treatment at 350° C. for 1 hour and provides a copper foil which prevents the breakage of a current collector (copper foil) while maintaining adhesiveness between the current collector (copper foil) and the active material in response to substantial expansion and contraction of a Si or Sn alloy-based active material. The foil is an electrodeposited copper foil having a roughened surface, the tensile strength of the copper foil being at least 300 MPa after heating at 350° C. for 1 hour, the elongation rate being at least 3.0% after heating at 350° C. for 1 hour, and respective surface area ratios (actual surface area/geometric surface area) of both sides of the copper foil (the side that is roughened and the side that is not roughened) being from 1.6 to 2.2.
    Type: Application
    Filed: June 27, 2012
    Publication date: July 17, 2014
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kensaku Shinozaki, Akitoshi Suzuki
  • Patent number: 8771495
    Abstract: A method and composition for metallizing a via feature in a semiconductor integrated circuit device substrate, using a leveler compound which is a dipyridyl compound.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: July 8, 2014
    Assignee: Enthone Inc.
    Inventors: Vincent Paneccasio, Jr., Xuan Lin, Richard Hurtubise, Qingyun Chen
  • Publication number: 20140183052
    Abstract: A copper electroplating solution which contains compounds with the structure —X—S—Y— wherein X and Y are, independently atoms selected from a group consisting of hydrogen, carbon, sulfur, nitrogen, and oxygen, and X and Y can be the same only if they are carbon atoms and ninhydrin. By using this copper electroplating solution, it is possible to form good filled vias without worsening the appearance of the plating.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Mutsuko SAITO, Makoto SAKAI, Toshiyuki MORINAGA, Shinjiro HAYASHI
  • Patent number: 8747643
    Abstract: Copper plating baths containing a leveling agent that is a reaction product of one or more of certain cyclodiaza-compounds with one or more epoxide-containing compounds that deposit copper on the surface of a conductive layer are provided. Such plating baths deposit a copper layer that is substantially planar on a substrate surface across a range of electrolyte concentrations. Methods of depositing copper layers using such copper plating baths are also disclosed.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 10, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Zukhra I. Niazimbetova, Maria Anna Rzeznik
  • Patent number: 8608933
    Abstract: A method and composition for electroplating Cu onto a substrate in the manufacture of a microelectronic device. The plating composition comprises an electrolytic solution containing a source of Cu ions and a substituted pyridyl polymer compound for leveling.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Enthone Inc.
    Inventors: Vincent Paneccasio, Jr., Richard Hurtubise, Xuan Lin, Paul Figura
  • Publication number: 20130319867
    Abstract: An electrolytic copper plating solution is provided which has an excellent via filling ability without using formaldehyde, which is harmful to the environment. An electrolytic copper plating solution which contains compounds which have an —X—S—Y— structure wherein X and Y are individually atoms selected from a group comprising hydrogen, carbon, sulfur, nitrogen, and oxygen atoms and X and Y can be the same only when they are carbon atoms and specific nitrogen-containing compounds. Good filled vias can be made without causing a worsening of the exterior appearance of the plating by using this electrolytic copper plating solution.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Mutsuko SAITO, Makoto SAKAI, Yoko MIZUNO, Toshiyuki MORINAGA, Shinjiro HAYASHI
  • Patent number: 8419920
    Abstract: An object of the present invention is to provide a method for preparing a sulfuric acid base copper electrolytic solution used for formation of an electro-deposited copper film comprising a surface excellent in smoothness and gloss when formed by using the solution just after preparation and is prepared by using mono-sulfides. To achieve the object, a sulfuric acid base copper electrolytic solution is made to contain a sulfonated active sulfur compound, the bis(3-sulfopropyl)disulfide which is recommended for formation of a glossy electro-deposited copper film. And the bis(3-sulfopropyl)disulfide contained is obtained by converting a 3-mercapto-1-propanesulfonic acid into the bis(3-sulfopropyl)disulfide in an aqueous solution of the 3-mercapto-1-propanesulfonic acid by an oxidation reaction. In the oxidation reaction, an air bubbling method is preferably used to prevent oxidative decomposition of the 3-mercapto-1-propanesulfonic acid.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: April 16, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Sakiko Tomonaga, Makoto Dobashi, Junshi Yoshioka, Ayumu Tateoka, Mitsuyoshi Matsuda, Hisao Sakai
  • Patent number: 8388824
    Abstract: A method for metallizing a via feature in a semiconductor integrated circuit device substrate, wherein the semiconductor integrated circuit device substrate comprises a front surface, a back surface, and the via feature and wherein the via feature comprises an opening in the front surface of the substrate, a sidewall extending from the front surface of the substrate inward, and a bottom. The method comprises contacting the semiconductor integrated circuit device substrate with an electrolytic copper deposition chemistry comprising (a) a source of copper ions and (b) a leveler compound, wherein the leveler compound is a reaction product of a dipyridyl compound and an alkylating agent; and supplying electrical current to the electrolytic deposition chemistry to deposit copper metal onto the bottom and sidewall of the via feature, thereby yielding a copper filled via feature.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: March 5, 2013
    Assignee: Enthone Inc.
    Inventors: Vincent Paneccasio, Jr., Xuan Lin, Richard Hurtubise, Qingyun Chen
  • Publication number: 20130043137
    Abstract: Provided is a copper plating technique that enables the filling of high aspect-ratio via-holes and through-holes in semiconductor substrates such as silicon substrates, organic material substrates or ceramic substrates. The disclosed technique involves a tertiary amine compound, which is obtained by reacting a heterocyclic compound with the epoxy group of a glycidyl ether group of a compound that has three or more glycidyl ether groups, and a quaternary amine compound thereof, as well as a copper plating additive, a copper plating bath, and a copper plating method employing the compounds.
    Type: Application
    Filed: April 30, 2010
    Publication date: February 21, 2013
    Applicant: JCU CORPORATION
    Inventors: Hiroki Yasuda, Ryoichi Kimizuka, Tatsuji Takasu, Takuro Sato, Hiroshi Ishizuka, Yasuhiro Ogo, Yuto Oyama, Yu Tonooka, Mikiko Kosaka, Aya Shimomura, Yumiko Shimizu
  • Patent number: 8163155
    Abstract: A coating layer prepared from an aqueous electrodeposition coating composition comprising an electrodepositable binder, the binder comprising a sulfo or sulfamyl group-containing resin, provides corrosion protection to a metallic substrate.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: April 24, 2012
    Assignee: BASF Coatings GmbH
    Inventors: Abdellatif Chouai, Timothy S December
  • Publication number: 20120073981
    Abstract: A process of making a polymeric phenazonium compound having the general formula: wherein R1, R2, R4, R5, R6, R8 and R9 are the same or different, and represent hydrogen, a low alkyl or a substituted aryl, R3 starts as NH2 and is diazotized followed by polymerization, R5 and R8 may alternatively represent monomeric or polymeric phenazonium radicals, R7 is a carbon in the aromatic ring, and wherein RX—N—RY represents a substituted amine, and RX and RY represent any combination of CH3, C2H5, and hydrogen, except that RX and RY cannot both be hydrogen, A is an acid radical, and n is an integer from 2 to 100. The polymeric phenazonium compound is usable in as an additive in a metal plating bath.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 29, 2012
    Inventors: Andrew M. Krol, Ernest Long, Lev Taytsas
  • Publication number: 20120043218
    Abstract: A method and composition for electroplating Cu onto a substrate in the manufacture of a microelectronic device involving and electrolytic solution containing a source of Cu ions and a substituted pyridyl polymer compound for leveling.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 23, 2012
    Applicant: ENTHONE INC.
    Inventors: Vincent Paneccasio, JR., Richard Hurtubise, Xuan Lin, Paul Figura
  • Patent number: 8002962
    Abstract: A method and composition for electroplating Cu onto a substrate in the manufacture of a microelectronic device involving and electrolytic solution containing a source of Cu ions and a substituted pyridyl polymer compound for leveling.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 23, 2011
    Assignee: Enthone Inc.
    Inventors: Vincent Paneccasio, Xuan Lin, Paul Figura, Richard Hurtubise
  • Publication number: 20110089044
    Abstract: Disclosed herein is a copper electrolytic plating bath including copper sulfate used in an amount of 50 to 250 g/liter calculated as copper sulfate pentahydrate, 20 to 200 g/liter of sulfuric acid, and 20 to 150 mg/liter of a chloride ion, and a sulfur atom-containing organic compound and a nitrogen atom-containing organic compound serving as organic additives. The nitrogen atom-containing organic compound includes a nitrogen atom-containing polymer compound obtained by a two-stage reaction including reacting one mole of morpholine with two moles of epichlorohydrin in an acidic aqueous solution to obtain a reaction product and further reacting one to two moles, relative to one mole of the morpholine, of imidazole with the reaction product.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 21, 2011
    Applicant: C. UYEMURA & CO., LTD.
    Inventors: Toshihisa Isono, Shinji Tachibana, Naoyuki Omura, Shunsaku Hoshi
  • Patent number: 7887693
    Abstract: An aqueous acidic copper electroplating composition containing an improved additive system for use at elevated temperatures. The improved additive system comprises (a) a suppressor comprising at least one high molecular weight polymer; (b) a brightener comprising at least one divalent sulfur compound; and (c) a leveler comprising a heterocyclic nitrogen compound. The improved electroplating composition is usable for plating through holes in printed circuit boards.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: February 15, 2011
    Inventors: Maria Nikolova, Gary B. Larson
  • Patent number: 7824534
    Abstract: The object of the present invention is to obtain a low profile electrolytic copper foil with a low surface roughness at the rough surface side (opposite side from the glossy side) in the electrolytic copper foil manufacture using a cathode drum and, particularly, to obtain an electrolytic copper foil with excellent elongation and tensile strength that permits fine patterning. Another object is to obtain a copper electrolytic solution that allows uniform copper plating without pinholes on a 2-layer flexible substrate. This copper electrolytic solution contains, as an additive, a compound having the specific skeleton represented by General Formula (1) below which is obtained by an addition reaction in which water is added to a compound having in a molecule one or more epoxy groups: wherein A is an epoxy compound residue and n is an integer of 1 or more.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 2, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Katsuyuki Tsuchida, Hironori Kobayashi, Masashi Kumagai
  • Patent number: 7678257
    Abstract: There is obtained a low-profile electrolytic copper foil with a small surface roughness on the side of the rough surface (the opposite side from the lustrous surface) in the manufacture of an electrolytic copper foil using a cathode drum, and more particularly an electrolytic copper foil which allows fine patterning, and is superior in terms of elongation and tensile strength at ordinary temperatures and high temperatures. The present invention provides a copper electrolytic solution, containing as additives an organo-sulfur compound and a quaternary amine compound polymer obtained by homopolymerizing a compound in which the nitrogen of an acrylic type compound having a dialkylamino group is quaternized, or copolymerizing the compound with another compound having an unsaturated bond, and an electrolytic copper foil manufactured using this electrolytic solution.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: March 16, 2010
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Masashi Kumagai, Mikio Hanafusa
  • Patent number: 7560016
    Abstract: To make a metal feature, a non-plateable layer is applied to a workpiece surface and then patterned to form a first plating region and a first non-plating region. Then, metal is deposited on the workpiece to form a raised field region in said first plating region and a recessed region in said first non-plating region. Then, an accelerator film is applied globally on the workpiece. A portion of the accelerator film is selectively removed from the field region, and another portion of the accelerator film remains in the recessed acceleration region. Then, metal is deposited onto the workpiece, and the metal deposits at an accelerated rate in the acceleration region, resulting in a greater thickness of metal in the acceleration region compared to metal in the non-activated field region. Then, metal is completely removed from the field region, thereby forming the metal feature.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 14, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery
  • Publication number: 20090139873
    Abstract: Plating baths containing a mixture of leveling agents, where the mixture includes a first level agent having a first diffusion coefficient and a second leveling agent having a second diffusion coefficient, are provided. Such plating baths deposit a metal layer, particularly a copper layer, that is substantially planar across a range of electrolyte concentrations. Methods of depositing metal layers using such plating baths are also disclosed. These baths and methods are useful for providing a planar layer of copper on a substrate having small apertures, such as an electronic device.
    Type: Application
    Filed: January 29, 2009
    Publication date: June 4, 2009
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Robert D. Mikkola, Chunyi Wu, George G. Barclay
  • Publication number: 20080314757
    Abstract: An aqueous acidic copper electroplating composition containing an improved additive system for use at elevated temperatures. The improved additive system comprises (a) a suppressor comprising at least one high molecular weight polymer; (b) a brightener comprising at least one divalent sulfur compound; and (c) a leveler comprising a heterocyclic nitrogen compound. The improved electroplating composition is usable for plating through holes in printed circuit boards.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Inventors: Maria Nikolova, Gary B. Larson
  • Patent number: 7449099
    Abstract: To make a metal feature, a non-plateable layer is applied to a workpiece surface and then patterned to form a first plating region and a first non-plating region. Then, metal is deposited on the workpiece to form a raised field region in said first plating region and a recessed region in said first non-plating region. Then, an accelerator film is applied globally on the workpiece. A portion of the accelerator film is selectively removed from the field region, and another portion of the accelerator film remains in the recessed acceleration region. Then, metal is deposited onto the workpiece, and the metal deposits at an accelerated rate in the acceleration region, resulting in a greater thickness of metal in the acceleration region compared to metal in the non-activated field region. Then, metal is completely removed from the field region, thereby forming the metal feature.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery
  • Publication number: 20080264798
    Abstract: An acid copper plating solution and plating method are disclosed. The acid copper plating solution comprises copper ions, an organic acid or an inorganic acid, chloride ions, high molecular weight surfactant which controls the electrodeposition reaction, and a sulfur-containing saturated organic compound which promotes the electrocoating rate, wherein the high molecular weight surfactant comprises two or more types with different hydrophobicities. The plating method is a method for forming a plating film on a conductor layer, which is formed on at least a part of a structural object having a concave-convex pattern on a semiconductor substrate, and comprises providing a cathode potential to the conductor layer and supplying a plating solution which electrically connects an anode with the conductor layer, wherein the plating solution contains 25-75 g/l of copper ion and 0.4 mol/l of an organic acid or inorganic acid and an electric resistor is installed between the conductor layer and the anode.
    Type: Application
    Filed: June 13, 2008
    Publication date: October 30, 2008
    Applicants: EBARA CORPORATION, EBARA-UDYLITE CO., LTD.
    Inventors: Tsutomu NAKADA, Tsuyoshi Sahoda, Koji Mishima, Ryoichi Kimizuka, Takeshi Kobayashi
  • Publication number: 20080142370
    Abstract: The aqueous acidic solution for electrolytically depositing high polish, decorative bright, smooth and level copper coatings on large area metal or plastic parts contains a) at least one oxygen-containing, high molecular additive and b) at least one water soluble sulfur compound, wherein the solution additionally contains c) at least one aromatic halogen derivative having the general formula (I), wherein R1, R2, R3, R4, R5 and R6 are each independently radicals selected from the group comprising hydrogen, aldehyde, acetyl, hydroxyls, hydroxyalkyl having 1-4 carbon atoms, alkyl having 1-4 carbon atoms and halogen, with the proviso that the number of residues R1, R2, R3, R4, R5 and R6 which are halogen ranges from 1 to 5.
    Type: Application
    Filed: July 28, 2004
    Publication date: June 19, 2008
    Inventors: Wolfgang Dahms, Carl Christian Fels, Gunther Bauer
  • Patent number: 7374652
    Abstract: Copper plating baths containing a leveling agent that is a reaction product of a compound including a heteroatom chosen from nitrogen, sulfur and a mixture of nitrogen and sulfur, with a polyepoxide compound containing an ether linkage that deposit copper on the surface of an electronic device and in apertures on such substrate are provided. Such plating baths deposit a copper layer on the substrate surface that is substantially planar across a range of electrolyte concentrations. Methods of depositing copper layers using such copper plating baths are also disclosed.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: May 20, 2008
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Shinjiro Hayashi, Hideki Tsuchida, Masaru Kusaka, Koichi Yomogida
  • Patent number: 7232513
    Abstract: An electroplating solution contains a wetting agent in addition to a suppressor and an accelerator. In some embodiments, the solution has a cloud point temperature greater than 35° C. to avoid precipitation of wetting agent or other solute out of the plating solution. In some embodiments, the wetting agent decreases the air-liquid surface tension of the electroplating solution to 60 dyne/cm2 or less to increase the wetting ability of the solution with a substrate surface. In some embodiments of a method for plating metal onto substrate surface, the electroplating solution has a measured contact angle with the substrate surface less than 60 degrees.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 19, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Yuichi Takada
  • Patent number: 7220347
    Abstract: An electrolytic copper plating bath used for via-filling plating of blind via-holes formed on a substrate, containing a water-soluble copper salt, sulfuric acid, chloride ions, and a leveler as an additive, wherein the leveler is either one or both of a quaternary polyvinylimidazolium compound represented by the following formula (1) and a copolymer, represented by the following formula (2), of vinylpyrrolidone and a quaternary vinylimidazolium compound: where R1 and R2 are each an alkyl group, m is an integer of not less than 2, and p and q are each an integer of not less than 1, and a copper electroplating method for via-filling plating of blind via-holes formed on a substrate by use of the electrolytic copper plating bath.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 22, 2007
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Toshihisa Isono, Shinji Tachibana, Tomohiro Kawase, Naoyuki Omura
  • Patent number: 7128822
    Abstract: Compounds that function to provide level or uniform metal deposits are provided. These compounds are particularly useful in providing level copper deposits. Copper plating baths and methods of copper plating using these compounds are also provided. These baths and methods are useful for providing a planarized layer of copper on a substrate having small apertures. The compositions and methods provide complete fill of small apertures with reduced void formation.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: October 31, 2006
    Assignee: Shipley Company, L.L.C.
    Inventors: Deyan Wang, Chunyi Wu, Robert D. Mikkola
  • Patent number: 6776893
    Abstract: A copper electroplating bath and a method to plate substrates with the bath are provided. The bath and method are particularly effective to plate electronic components such as semiconductive wafer VLSI and ULSI interconnects with void-free fill copper plating for circuitry forming vias and trenches and other small features less than 0.2 microns with high aspect ratios. The copper bath contains a bath soluble organic divalent sulfur compound, and a bath soluble polyether compound such as a block copolymer of polyoxyethylene and polyoxypropylene, a polyoxyethylene or polyoxypropylene derivative of a polyhydric alcohol and a mixed polyoxyethylene and polyoxypropylene derivative of a polyhydric alcohol. A preferred polyether compound is a mixed polyoxyethylene and polyoxypropylene derivative of glycerine. A preferred copper bath also contains a pyridine compound derivative.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: August 17, 2004
    Assignee: Enthone Inc.
    Inventors: Elena H. Too, Paul R. Gerst, Vincent Paneccasio, Jr., Richard W. Hurtubise
  • Publication number: 20040149583
    Abstract: The invention has an object to obtain a low-profile electrolytic copper foil made by electrolytic copper foil manufacturing using a cathode drum such that the surface roughness on the rough surface side (the opposite side to the lustrous surface) is low. And in particular, the invention has an object to obtain an electrolytic copper foil that can be finely patterned and has excellent elongation and tensile strength at normal and high temperatures. This object is attained by using a copper electrolytic solution containing, as additives, an organosulfur compound, and an amine compound having a specific skeleton represented by undermentioned general formula (1) obtained by additively reacting an amine compound and a compound having one or more epoxy groups in a molecule thereof to an addition reaction.
    Type: Application
    Filed: December 3, 2003
    Publication date: August 5, 2004
    Inventors: Masashi Kumagai, Mikio Hanafusa
  • Publication number: 20040112753
    Abstract: The present invention provides methods of polishing and/or cleaning copper interconnects using bis(perfluoroalkanesulfonyl) imide acids or copper tris(perfluoroalkanesulfonyl) methide acids compositions.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Susrut Kesari, William M. Lamanna, Michael J. Parent, Lawrence A. Zazzera
  • Patent number: 6709564
    Abstract: The acid copper sulfate solutions used for electroplating copper circuitry in trenches and vias in IC dielectric material in the Damascene process are replaced with a type of plating system based on the use of highly complexing anions (e.g., pyrophosphate, cyanide, sulfamate, etc.) to provide an inherently high overvoltage that effectively suppresses runaway copper deposition. Such systems, requiring only one easily-controlled organic additive species to provide outstanding leveling, are more efficacous for bottom-up filling of Damascene trenches and vias than acid copper sulfate baths, which require a minimum of two organic additive species. The highly complexed baths produce fine-grained copper deposits that are typically much harder than large-grained acid sulfate copper deposits, and which exhibit stable mechanical properties that do not change with time, thereby minimizing “dishing” and giving more consistent CMP results.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 23, 2004
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: D. Morgan Tench, John T. White, Dieter Dornisch, Maureen Brongo
  • Patent number: 6709562
    Abstract: A process is described for the fabrication of submicron interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of Cu electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, Hariklia Deligianni, John Owen Dukovic, Daniel Charles Edelstein, Wilma Jean Horkans, Chao-Kun Hu, Jeffrey Louis Hurd, Kenneth Parker Rodbell, Cyprian Emeka Uzoh, Kwong-Hon Wong
  • Publication number: 20030221969
    Abstract: A copper sulfate plating bath is used which contains
    Type: Application
    Filed: May 16, 2003
    Publication date: December 4, 2003
    Inventors: Manabu Tomisaka, Eiichi Ando, Kiyoshi Shimada, Hirotaka Nobata, Tetsuji Oishi, Yusuke Abe, Haruki Sonoda, Yoshihito Tatehaba, Yasuo Ohta, Kazuyuki Suda
  • Patent number: 6610192
    Abstract: Disclosed are compositions and methods for providing a planarized metal layer on a substrate having small apertures. The compositions and methods of the present invention provide complete fill of small apertures with reduced void formation.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: August 26, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Eugene N. Step, Robert A. Binstead, Denis Morrissey
  • Patent number: 6607654
    Abstract: A copper-plating electrolyte includes an aqueous copper salt solution, a water-soluble &bgr;-naphtholethoxylate compound having the formula wherein n is an integer from 10 to 24, one selected from the group consisting of a disulfide having the formula XO3S(CH2)3SS(CH2)3SOX3 and a water-soluble mercaptopropanesulfonic acid or salt thereof having the formula HS(CH2)3SO3X, where X is sodium, potassium, or hydrogen, a water-soluble polyethylene glycol having a molecular weight ranging from about 4,600 to about 10,000, and a water-soluble polyvinylpyrrolidone having a molecular weight ranging from about 10,000 to about 1,300,000.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: August 19, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-jung Lee, Kyu-hwan Chang, Hyeon-deok Lee
  • Patent number: 6605204
    Abstract: Disclosed is an improved electrolyte formulation for the electrodeposition of copper onto electronic devices substrates and a process using the formulation. The formulation is a solution which contains copper alkanesulfonate salts and free alkanesulfonic acids and which is intended for the metallization of micron or sub-micron dimensioned trenches or vias.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Atofina Chemicals, Inc.
    Inventors: Nicholas M. Martyak, Michael D. Gernon, Patrick Janney
  • Patent number: 6596151
    Abstract: The present invention provides plating solutions, particularly copper plating solutions, designed to provide uniform coatings on substrates and to provide substantially defect free filling of small features formed on substrates with none or low supporting electrolyte, i.e., which include no acid, low acid, no base, or no conducting salts, and/or high metal ion, e.g., copper, concentration. Defect free filling of features is enhanced by a plating solution containing blends of polyethers (“carrier”) and organic divalent sulfur compounds (“accelerator”), wherein the concentration of the carrier ranges from about 0.1 ppm to about 2500 ppm of the plating solution, and the concentration of the accelerator ranges from about 0.05 ppm to about 1000 ppm of the plating solution. The plating solution is further improved by adding an organic nitrogen compound at a concentration from about 0.01 ppm to about 1000 ppm to improve the filling of vias on a resistive substrate.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: July 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Uziel Landau, John J. D'Urso
  • Publication number: 20030094376
    Abstract: Disclosed are an electrolytic copper plating solution containing a specific sulfur-containing compound and a thiol-reactive compound, and an electrolytic copper plating process using such an electrolytic copper plating solution. The present invention can prevent the copper layer on the resulting composite material from forming aggregation and, when the plating is intended to fill vias, make it possible to achieve the via-filling without voids. The present invention also relates to a method for controlling the electrolytic copper plating solution by using an amount of a specific decomposition product of the sulfur-containing compound as an index.
    Type: Application
    Filed: December 20, 2001
    Publication date: May 22, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Masaru Seita, Hideki Tsuchida, Shinjiro Hayashi
  • Patent number: 6544399
    Abstract: The present invention provides plating solutions, particularly copper plating solutions, designed to provide uniform coatings on substrates and to provide substantially defect free filling of small features formed on substrates with none or low supporting electrolyte, i.e., which include no acid, low acid, no base, or no conducting salts, and/or high metal ion, e.g., copper, concentration. Defect free filling of features is enhanced by a plating solution containing blends of polyethers (“carrier”) and organic divalent sulfur compounds (“accelerator”), wherein the concentration of the carrier ranges from about 0.1 ppm to about 2500 ppm of the plating solution, and the concentration of the accelerator ranges from about 0.05 ppm to about 1000 ppm of the plating solution. The plating solution is further improved by adding an organic nitrogen compound at a concentration from about 0.01 ppm to about 1000 ppm to improve the filling of vias on a resistive substrate.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: April 8, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Uziel Landau, John J. D'Urso
  • Patent number: 6511588
    Abstract: A plating method comprising using a plating solution containing an additive satisfying the following conditions: 0.005×h2/w<D/&kgr;<0.5×h2/w, and 0.01≦&THgr;≦0.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kinya Kobayashi, Akihiro Sano, Takeyuki Itabashi, Toshio Haba, Haruo Akahoshi, Shinichi Fukada
  • Publication number: 20030015433
    Abstract: Electrolytic copper plating methods are provided, wherein copper is electrolytically deposited on a substrate, and the electrolytic copper plating solution supplied to said electrolytic copper plating is subjected to dummy electrolysis using an insoluble anode. The method described above can maintain and restore the electrolytic copper plating solution so as to maintain satisfactory appearance of plated copper, fineness of deposited copper film, and via-filling.
    Type: Application
    Filed: June 7, 2002
    Publication date: January 23, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Hideki Tsuchida, Masaru Kusaka, Shinjiro Hayashi