Phosphorus, Boron Or Nitrogen Containing Catalyst Patents (Class 208/114)
  • Patent number: 4880520
    Abstract: Crystalline molecular sieves having three-dimensional microporous framework structures of TiO.sub.2, AlO.sub.2, SiO.sub.2 and PO.sub.2 tetrahedral units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Ti.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Ti.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2 ; and "w", "x", "y" and "z" represent the mole fractions of titanium, aluminum, phosphorus and silicon, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: November 14, 1989
    Assignee: UOP
    Inventors: Brent M. T. Lok, Bonita K. Marcus, Edith M. Flanigen
  • Patent number: 4861457
    Abstract: A novel family of crystalline, microporous gallophosphate compositions is synthesized by hydrothermal crystallization at elevated temperatures from gallophosphate gels containing a molecular structure-forming template. The family comprises distinct species, each with a unique crystal structure. Calcination removed volatile extraneous matter from the intracrystalline void space and yields microporous crystalline adsorbents with pores, the dimensions of which vary, among the individual species, from about 3A to 10A in diameter. The compositions represent a new class of adsorbents of the molecular sieve type, and also exhibit properties somewhat analogous to zeolitic molecular sieves which render them useful as catalysts or catalyst based in chemical reactions such as hydrocarbon conversion.
    Type: Grant
    Filed: October 12, 1988
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: Stephen T. Wilson, Naomi A. Woodard, Edith M. Flanigen
  • Patent number: 4859311
    Abstract: An improved process for catalytically dewaxing a hydrocarbon oil feedstock by contact of the feedstock with a catalyst is disclosed where the catalyst comprises an intermediate pore size silicoaluminophosphate molecular sieve and at least one Group VIII metal.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: August 22, 1989
    Assignee: Chevron Research Company
    Inventor: Stephen J. Miller
  • Patent number: 4859312
    Abstract: Using a catalyst comprising a silicoaluminophosphate molecular sieve such as SAPO-11 and SAPO-41, and platinum or palladium, a hydrogenation component, heavy oils are simultaneously subjected to hydrocracking and isomerization reactions. The process selectively produces middle distillates in high yields having good low temperature fluid characteristics, especially reduced pour point and viscosity.
    Type: Grant
    Filed: January 12, 1987
    Date of Patent: August 22, 1989
    Assignee: Chevron Research Company
    Inventor: Stephen J. Miller
  • Patent number: 4859314
    Abstract: Catalytic cracking catalysts and their use in catalytic cracking processes are disclosed. The instant catalytic cracking catalysts are useful for cracking a hydrocarbon feedstock to produce lower boiling hydrocarbons. The catalysts comprise an effective amount of at least one non-zeolitic molecular sieve characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. The non-zeolitic molecular sieve is characterized as containing framework tetrahedral components of aluminum and phosphorus and at least one additional framework tetrahedral component, e.g., the non-zeolitic molecular sieve may be a silicoaluminophosphate as described in U.S. Pat. No. 4,440,871.
    Type: Grant
    Filed: June 2, 1987
    Date of Patent: August 22, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4851106
    Abstract: Molecular sieve compositions having three-dimensional microporous framework structures of CrO.sub.2, AlO.sub.2 and PO.sub.2 tetrahedral oxide units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Cr.sub.x Al.sub.Y P.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Cr.sub.x Al.sub.y P.sub.z)O.sub.2 ; and "x", "y" and "z" represents the mole fractions of chromium, aluminum and phosphorus, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: July 25, 1989
    Assignee: UOP
    Inventors: Edith M. Flanigen, Brent M. T. Lok, Robert L. Patton, Stephen T. Wilson
  • Patent number: 4846956
    Abstract: Crystalline molecular sieves having three-dimensional microporous framework structures of MnO.sub.2, AlO.sub.2, SiO.sub.2 and PO.sub.2 tetrahedral oxide units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Mn.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Mn.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2 ; and "w", "x", "y" and "z" represent the mole fractions of manganese, aluminum, phosphorus and silicon, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: September 28, 1988
    Date of Patent: July 11, 1989
    Assignee: UOP
    Inventors: Brent M. Lok, Bonita K. Marcus, Edith M. Flanigen
  • Patent number: 4842714
    Abstract: Catalytic cracking processes utilizing selected specific silicoaluminophosphate molecular sieves of U.S. Pat. No. 4,440,871. Processes using such catalysts provide product mixtures different from those obtained by use of catalysts based on zeolitic aluminosilicates. In preferred embodiments, SAPO-37 is utilized.
    Type: Grant
    Filed: July 23, 1987
    Date of Patent: June 27, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4824554
    Abstract: Crystalline molecular sieves having three-dimensional microporous framework structures of CoO.sub.2, AlO.sub.2, SiO.sub.2, PO.sub.2 and tetrahedral units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Co.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Co.sub.w Al.sub.x P.sub.y Si.sub.z)O.sub.2 ; and "w", "x", "y" and "z" represent the mole fractions of cobalt, aluminum, phosphorus and silicon, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: January 28, 1988
    Date of Patent: April 25, 1989
    Assignee: UOP
    Inventors: Brent M. Lok, Bonita K. Marcus, Edith M. Flanigen
  • Patent number: 4822478
    Abstract: An novel class of iron-aluminum-phosphorus-silicon-oxide molecular sieves is disclosed which contain as framework constituents FeO.sub.2.sup.-, and/or FeO.sub.2.sup.-2, AlO.sub.2.sup.-, PO.sub.2.sup.+ and SiO.sub.2 tetrahedral oxide units. These compositions are prepared hydrothermally, preferably using organic templating agents and are suitably employed as adsorbents and catalysts.
    Type: Grant
    Filed: May 6, 1987
    Date of Patent: April 18, 1989
    Assignee: UOP
    Inventors: Brent M. T. Lok, Lawrence D. Vail, Edith M. Flanigen
  • Patent number: 4816135
    Abstract: A method for making a catalyst containing a vanadium passivating agent in the form of anatase crystalline TiO.sub.2 including a method for processing hydrocarbon feeds containing vanadium.
    Type: Grant
    Filed: October 19, 1987
    Date of Patent: March 28, 1989
    Assignee: Intevep, S.A.
    Inventors: Nelson P. Martinez, Jose R. Velasquez, Juan A. Lujano
  • Patent number: 4814316
    Abstract: A fluid catalytic cracking (FCC) catalyst comprising a microporous crystalline multi-compositional, multiphase composite of SAPO-37 molecular sieve as a phase thereof in contiguous relationship with a different microporous faujasitic crystalline molecular sieve as another phase thereof. The invention encompasses processes for making the catalyst by hydrothermal crystallization and using the novel catalyst for fluid catalytic cracking (FCC) applications.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: March 21, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Jule A. Rabo
  • Patent number: 4801364
    Abstract: Novel class of crystalline microporous metal aluminophosphate compositions containing as lattice constituents in addition to AlO.sub.2 and PO.sub.2 structural units, one or a mixture of two or more of the metals Mg, Mn, Co and Zn in tetrahedral coordination with oxygen atoms. These compositions are prepared hydrothermally using organic templating agents and are suitably employed as catalysts or adsorbents.
    Type: Grant
    Filed: November 4, 1985
    Date of Patent: January 31, 1989
    Assignee: UOP
    Inventors: Stephen T. Wilson, Edith M. Flanigen
  • Patent number: 4789535
    Abstract: Molecular sieve compositions having three-dimensional microporous framework structures of LiO.sub.2, AlO.sub.2 and PO.sub.2 tetrahedral oxide units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Li.sub.x Al.sub.y P.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Li.sub.x Al.sub.y P.sub.z)O.sub.2 ; and "x", "y" and "z" represent the mole fractions of lithium, aluminum and phosphorus, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: February 28, 1986
    Date of Patent: December 6, 1988
    Assignee: Union Carbide Corporation
    Inventors: Edith M. Flanigen, David A. Lesch, Brent M. T. Lok, Robert L. Patton, Stephen T. Wilson
  • Patent number: 4781814
    Abstract: Crystalline molecular sieves having three-dimensional microporous framework structure of MO.sub.2, AlO.sub.2, and PO.sub.2 tetrahedral oxide units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis are expressed by the formula:mR: (M.sub.x Al.sub.y P.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (M.sub.x Al.sub.y P.sub.z)O.sub.2 ; "M" represents at least two elements capable of forming framework tetrahedral oxides and selected from the group consisting of arsenic, beryllium, boron, chromium, gallium, germanium, lithium and vanadium; and "x", "y" and "z" represent the mole fractions of "M", aluminum and phosphorus, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is disclosed. The catalyst is useful in the cracking and hydrocracking of various hydrocarbonaceous feeds.
    Type: Grant
    Filed: May 6, 1987
    Date of Patent: November 1, 1988
    Assignee: Union Carbide Corporation
    Inventors: Edith M. Flanigen, Brent M. Lok, Robert L. Patton, Stephen T. Wilson
  • Patent number: 4765884
    Abstract: A composition of matter, effective as cracking catalyst, comprises zeolite and a matrix material comprising aluminum phosphate, being substantially free of alumina and magnesia. A process for cracking hydrocarbon-containing feed streams having an initial boiling point of at least about 400.degree. F. (at atmospheric pressure) employs the above cracking catalyst.
    Type: Grant
    Filed: July 2, 1987
    Date of Patent: August 23, 1988
    Assignee: Phillips Petroleum Company
    Inventors: Darrell W. Walker, Arnold M. Schaffer
  • Patent number: 4764269
    Abstract: Catalytic cracking catalyst compositions having a high degree of activity and selectivity for the production of high octane gasoline fractions which comprise stabilized crystalline molecular sieve SAPO-37 dispersed in an inorganic oxide matrix. The crystalline structure and activity of the SAPO-37 molecular sieve component is preserved by including a stabilizing amount of the organic template compound used in the manufacture of the molecular sieve within the pore structure thereof until such time as the catalyst is thermally activated during use.
    Type: Grant
    Filed: February 12, 1987
    Date of Patent: August 16, 1988
    Assignee: W. R. Grace & Co.
    Inventors: Grant C. Edwards, Jean-Pierre Gilson, Carl V. McDaniel
  • Patent number: 4756822
    Abstract: This invention provides a novel hydrocracking catalyst composition that contains Zeolite Beta having a framework boron content, a solid source of alumina, and a hydrogenation component. It further provides a low-pressure hydrocracking process that uses such composition.
    Type: Grant
    Filed: March 30, 1987
    Date of Patent: July 12, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Tracy J. Huang
  • Patent number: 4747935
    Abstract: Hydrocarbon feedstocks containing relatively high levels of nitrogen contaminants are converted by catalytic cracking to products of lower average molecular weight by contacting the feedstock with a mixture of a cracking catalyst and separate particles of a nitrogen scavenger comprising microporous solids selected from the group consisting of acid clays; hydrogen or ammonium exchanged mordenite, clinoptilolite, chabazite and erionite; mineral acids or mineral acid precursors supported on an inorganic, refractory oxide; and Catapal alumina.
    Type: Grant
    Filed: March 26, 1986
    Date of Patent: May 31, 1988
    Assignee: Union Oil Company of California
    Inventor: Julius Scherzer
  • Patent number: 4746459
    Abstract: An aqueous sol composition from the group consisting of antimony and tin sols useful in restoring the activity of metal contaminated molecular sieve cracking catalysts which comprises a major portion of an aqueous antimony sol or tin sol containing between 1-50% by weight of antimony oxide as Sb.sub.2 O.sub.5 or tin oxide as SnO.sub.2 and between 0.1-20% by weight of a compatable water-soluble surfactant which is capable of producing a water-in-oil emulsion and having an HLB of at least 6.0.
    Type: Grant
    Filed: January 9, 1987
    Date of Patent: May 24, 1988
    Assignee: Nalco Chemical Company
    Inventor: Morris Kaplan
  • Patent number: 4744885
    Abstract: Novel class of crystalline microporous ferroaluminophosphate compositions containing as lattice constituents in addition to AlO.sub.2 and PO.sub.2 structural units, ferric and/or ferrous iron in tetrahedral coordination with oxygen atoms. These compositions are prepared hydrothermally using organic templating agents and are suitably employed as catalysts or adsorbents.
    Type: Grant
    Filed: August 19, 1985
    Date of Patent: May 17, 1988
    Assignee: Union Carbide Corporation
    Inventors: Celeste A. Messina, Brent M. Lok, Edith M. Flanigen
  • Patent number: 4743574
    Abstract: A cobalt-molybdenum catalyst and a method for preparing same, said catalyst useful for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of distillates of petroleum. The catalyst is supported by aluminum phosphate or an aluminum borate. In a preferred embodiment the catalyst has a low cobalt content, between 0.5% and 2.0% by weight calculated as CoO, and a molybdenum content of between 10% and 20% by weight, calculated as MoO.sub.3. The phosphorus or boron compounds added to the aluminum before the impregnation of the active metals prevents the formation of undesirable compounds of the CoAl.sub.2 O.sub.4 type, which is inactive in HDS. It is for that reason that the catalyst has a formulation with 70% less cobalt than the previous state-of-the-art catalysts. Very small crystals, highly dispersed on the surface of the catalyst, whose formula is CoMoO.sub.4, are responsible for the stability and the high level of activity in HDS and HDN which results.
    Type: Grant
    Filed: January 9, 1986
    Date of Patent: May 10, 1988
    Assignee: Intevep, S.A.
    Inventors: Alfredo L. Morales, Juan J. Garcia
  • Patent number: 4734185
    Abstract: Cracking catalysts and their use in cracking processes are disclosed. The cracking catalyst are prepared using mixtures of catalytic cracking catalysts containing zeolitic aluminosilicates effective in catalytic cracking and selected silicoaluminophosphate molecular sieves of U.S. Pat. No. 4,440,871.
    Type: Grant
    Filed: September 5, 1985
    Date of Patent: March 29, 1988
    Assignee: Union Carbide Corporation
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4728415
    Abstract: The present invention provides for a process for reducing the pour point of a hydrocarbon feedstock containing nitrogen- and sulfur-containing impurities. The hydrocarbon feedstock is contacted with hydrogen and a hydrotreating catalyst under hydrotreating conditions whereby a portion of the nitrogen- and sulfur-containing compounds are converted to hydrogen sulfide and ammonia. A portion of the hydrotreater effluent is then passed to a dewaxing zone and contacted with hydrogen under dewaxing conditions in the presence of a dewaxing catalyst containing a borosilicate molecular sieve on silica-alumina-containing matrix.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: March 1, 1988
    Assignee: Amoco Corporation
    Inventors: Eugene E. Unmuth, Ralph J. Bertolacini, John A. Mahoney
  • Patent number: 4724066
    Abstract: There is provided a catalyst comprising a zeolite component and a microcrystalline, microporous aluminum phosphate component. Examples of the zeolite component are ZSM-5 and zeolite Beta, and an example of an aluminum phosphate component is AlPO.sub.4 -5. The aluminum phosphate component provides increased catalyst activity and lifetime. Also provided for in this disclosure are a method for making the zeolite/aluminum phosphate composite and a process for using this composite in the preparation or conversion of hydrocarbons, e.g., in a dewaxing process.
    Type: Grant
    Filed: December 12, 1985
    Date of Patent: February 9, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Garry W. Kirker, Michael E. Landis, Jeffrey H. Yen
  • Patent number: 4692236
    Abstract: In a catalytic cracking process for heavy oil which comprises contacting a heavy oil with a particulate mixture of a crystalline aluminosilicate-containing cracking catalyst particle and an alumina particle and/or a phosphorus-containing alumina particle mixed in the weight ratio of 80/20-20/80, under cracking conditions, metal contaminants contained in said feed oil are captured preferentially by said alumina particle and/or a phosporous-containing alumina particle, and the coexistent cracking catalyst is poisoned only to a reduced degree by metal contaminants.
    Type: Grant
    Filed: September 19, 1985
    Date of Patent: September 8, 1987
    Assignee: Catalysts & Chemicals Industries Co., Inc.
    Inventors: Goro Sato, Masamitsu Ogata, Tatsuo Masuda, Takanori Ida
  • Patent number: 4689138
    Abstract: An isomerization process for lowering the normal paraffin content of a hydrocarbon oil feedstock by contacting the feedstock with a catalyst comprising an intermediate pore size silicoaluminophosphate molecular sieve and at least one Group VIII metal wherein the metal is occluded in the molecular sieve is described. The n-paraffins in the feedstock become isomerized to isoparaffins to form liquid range materials which contribute to a low viscosity, low pour point product in the case of middle distillate and lube oils and high octane in the case of gasoline.
    Type: Grant
    Filed: October 2, 1985
    Date of Patent: August 25, 1987
    Assignee: Chevron Research Company
    Inventor: Stephen J. Miller
  • Patent number: 4683051
    Abstract: A modified ZSM-5 type zeolite is provided by treatment of a ZSM-5 type zeolite with BF.sub.3. The novel product is characterized by reduced pore size and enhanced shape-selectivity, or by enhanced activity, or by both. This invention also provides a process for catalytically converting organic compounds by use of the novel composition, an illustrative conversion being the catalytic conversion of methanol to hydrocarbons.
    Type: Grant
    Filed: May 6, 1986
    Date of Patent: July 28, 1987
    Assignee: Mobil Oil Corporation
    Inventor: Paul G. Rodewald
  • Patent number: 4683050
    Abstract: Mild hydrocracking is accomplished with a catalyst containing an intermediate pore molecular sieve, such as silicalite or a ZSM-5 type zeolite.
    Type: Grant
    Filed: August 22, 1985
    Date of Patent: July 28, 1987
    Assignee: Union Oil Company of California
    Inventor: John W. Ward
  • Patent number: 4664779
    Abstract: A method to restore the activity of a cracking catalyst which has been deactivated at least partially by metals contamination which involves contacting the cracking catalyst with an aluminum containing treating agent.
    Type: Grant
    Filed: March 17, 1986
    Date of Patent: May 12, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Dwight L. McKay, H. Wayne Mark
  • Patent number: 4664897
    Abstract: A new crystalline silicophosphoaluminate designated MCM-4 and having a particular crystal strcuture is provided. This crystalline material has ion-exchange properties and is readily convertible to catalytically active material.
    Type: Grant
    Filed: September 16, 1986
    Date of Patent: May 12, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Eric G. Derouane, Roland von Ballmoos
  • Patent number: 4654138
    Abstract: The crystalline silicophosphoaluminate designated MCM-10 catalyzes various processes for modifying organic compounds, particularly the cracking of hydrocarbons and the conversion of alcohols and ethers to olefins.
    Type: Grant
    Filed: August 21, 1984
    Date of Patent: March 31, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Eric G. Derouane, Ernest W. Valyocsik, Roland von Ballmoos
  • Patent number: 4584091
    Abstract: A catalyst is provided which comprises a crystalline zeolite, discrete particles of phosphorus-containing alumina dispersed in a non-zeolitic inorganic oxide matrix. A catalytic cracking process utilizing the catalyst is also provided.
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: April 22, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventor: Lloyd A. Pine
  • Patent number: 4578181
    Abstract: A process of preparing a highly dispersed (colloidal or submicron size) heterogeneous catalyst for the hydrothermal conversion of heavy oils and residua is described. The process comprises preparing a reverse micellar dispersion by mixing water, an organic solvent, and an ionic or neutral surfactant to which is added an aqueous solution of a metal salt. The metal salt is reduced to a colloidal dispersion of the catalyst in a mixed water-organic liquid phase. The colloidal catalyst is then blended into resid or heavy oil fractions, and the blend is treated under hydrothermal conditions.
    Type: Grant
    Filed: June 25, 1984
    Date of Patent: March 25, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Eric G. Derouane, Philip Varghese
  • Patent number: 4567152
    Abstract: A catalyst is provided which comprises a crystalline zeolite, discrete particles of phosphorus-containing alumina dispersed in a non-zeolitic inorganic oxide matrix. A catalytic cracking process utilizing the catalyst is also provided.
    Type: Grant
    Filed: December 13, 1984
    Date of Patent: January 28, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventor: Lloyd A. Pine
  • Patent number: 4551236
    Abstract: Titanium-containing molecular sieves are disclosed having use as molecular sieves and as catalyst compositions in hydrocarbon conversion and other processes. The instant invention employs novel titanium-containing molecular sieves comprising titanium, aluminum, phosphorus and oxygen and are generally employable in hydrocarbon conversion processes, including cracking, hydrocracking and hydrotreating.
    Type: Grant
    Filed: July 3, 1984
    Date of Patent: November 5, 1985
    Assignee: Union Carbide Corporation
    Inventors: Brent M. T. Lok, Bonita K. Marcus, Edith M. Flanigen
  • Patent number: 4512875
    Abstract: The process for increasing the production of petrochemical conversion processes in the presence of a carbon-hydrogen fragmentation compound in the presence of a non-zeolitic molecular sieve.
    Type: Grant
    Filed: May 2, 1983
    Date of Patent: April 23, 1985
    Assignee: Union Carbide Corporation
    Inventors: Gary N. Long, Regis J. Pellet, Jule A. Rabo
  • Patent number: 4512876
    Abstract: A process is provided for conducting organic compound conversion over a catalyst composition comprising a supported crystalline zeolite having a high initial silica-to-alumina mole ratio, said supported zeolite being prepared by compositing said crystalline zeolite with a support matrix material, calcining the resulting supported zeolite, contacting said calcined supported zeolite with volatile boron fluoride in a dry environment until said supported zeolite is saturated with said boron fluoride, purging unreacted boron fluoride from said boron fluoride contacted supported zeolite, hydrolyzing said boron fluoride contacted supported zeolite, and converting said hydrolyzed material to hydrogen form.
    Type: Grant
    Filed: November 16, 1983
    Date of Patent: April 23, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Joseph N. Miale, Clarence D. Chang
  • Patent number: 4504382
    Abstract: A phosphorus-containing low alkali metal content zeolitic catalyst made from a clay starting material is provided. The catalyst is obtained by contacting a partially cation exchanged calcined zeolite-containing catalyst with an anion such as a dihydrogen phosphate anion or a dihydrogen phosphite anion and additionally with an ammonium salt other than a salt of an inorganic acid of phosphorus. A hydrocarbon catalytic cracking process utilizing the phosphorus-containing catalyst is also provided.
    Type: Grant
    Filed: April 3, 1984
    Date of Patent: March 12, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventor: Lloyd A. Pine
  • Patent number: 4500418
    Abstract: A process is provided for conducting organic compound conversion over a catalyst comprising alumina and/or gallia which has been treated by a method which comprises contact with ammonium or boron fluoride reagent, contact with a particular aqueous ammonium exchange solution, and thereafter calcination.
    Type: Grant
    Filed: November 16, 1983
    Date of Patent: February 19, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Joseph N. Miale, Clarence D. Chang
  • Patent number: 4498975
    Abstract: A phosphorus-containing low alkali metal content zeolitic catalyst made from a clay starting material is provided. The catalyst is obtained by contacting a partially cation exchanged calcined zeolite-containing catalyst with a dihydrogen phosphate anion or a dihydrogen phosphite anion. A hydrocarbon catalytic cracking process utilizing the phosphorus-containing catalyst is also provided.
    Type: Grant
    Filed: January 9, 1984
    Date of Patent: February 12, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventors: Lloyd A. Pine, Neville L. Cull
  • Patent number: 4490299
    Abstract: A hydrocarbon is catalytically cracked employing a cracking catalyst contacted with a treating agent selected from germanium and germanium compounds.
    Type: Grant
    Filed: September 13, 1983
    Date of Patent: December 25, 1984
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Dwight L. McKay
  • Patent number: 4483764
    Abstract: Hydrocarbon conversion process catalyst comprising an active metallic component comprising at least one metal having hydrocarbon conversion activity and at least one oxygenated phosphorus component, and a support component comprising at least one porous refractory inorganic oxide matrix component and at least one crystalline molecular sieve zeolite component.
    Type: Grant
    Filed: October 27, 1983
    Date of Patent: November 20, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Jeffrey T. Miller, Thomas D. Nevitt, A. Martin Tait
  • Patent number: 4456780
    Abstract: There is disclosed a method for decreasing catalyst coking and extending the usable catalyst life by pre-treatment of the catalyst with steam and/or a phosphorus-containing compound. Catalysts benefiting from such pre-treatment comprise crystalline zeolites characterized by a silica to alumina mole ratio of at least 12 and a constraint index, as herein defined, within the approximate range of 1 to 12.
    Type: Grant
    Filed: July 20, 1983
    Date of Patent: June 26, 1984
    Assignee: Mobil Oil Corporation
    Inventor: Lewis B. Young
  • Patent number: 4431516
    Abstract: A process for hydrocracking gas oil boiling range hydrocarbon feeds comprising contacting the feed with hydrogen under hydrocracking conditions in the presence of a catalyst comprising an active metallic component comprising at least one metal having hydrogenation activity and at least one oxygenated phosphorus component, and a support component comprising at least one non-zeolitic, porous refractory inorganic oxide matrix component and at least one crystalline molecular sieve zeolite component.
    Type: Grant
    Filed: November 13, 1981
    Date of Patent: February 14, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Michael J. Baird, Jeffrey T. Miller, L. Charles Gutberlet
  • Patent number: 4431518
    Abstract: This invention relates to an improved process for reducing the pour point of oil feedstocks containing high levels of total nitrogen, e.g. shale oil or fractions thereof, wherein the same is contacted with a catalyst comprising a boron-containing crystalline material having the structure of zeolite ZSM-5 under conditions including elevated temperature and pressure.
    Type: Grant
    Filed: September 27, 1982
    Date of Patent: February 14, 1984
    Assignee: Mobil Oil Corporation
    Inventors: Philip J. Angevine, Guenter H. Kuehl, Sadi Mizrahi
  • Patent number: 4431517
    Abstract: A process for mild hydrocracking of hydrocarbon feeds comprising contacting the feed with hydrogen under mild hydrocracking conditions in the presence of a catalytic composition comprising an active metallic component comprising at least one metal having hydrogenation activity and at least one oxygenated phosphorus component, and a support component comprising at least one non-zeolitic, porous refractory inorganic oxide matrix component and at least one shape selective crystalline molecular sieve zeolite component.
    Type: Grant
    Filed: November 13, 1981
    Date of Patent: February 14, 1984
    Assignee: Standard Oil Company (Indiana)
    Inventors: Thomas D. Nevitt, A. Martin Tait, P. Donald Hopkins
  • Patent number: 4430199
    Abstract: High gas and coke make due to contamination of a zeolitic fluid cracking catalyst by metal species such as nickel and vanadium during a cracking process is reduced by adding a phosphorus compound to the process. When the catalyst already contains a metals passivating agent or such agents are used in the cracking process further significant reduction in gas and coke make is realized without significant increase in regenerator temperature by adding additional phosphorus.
    Type: Grant
    Filed: May 20, 1981
    Date of Patent: February 7, 1984
    Assignee: Engelhard Corporation
    Inventors: Vincent A. Durante, Dennis J. Olszanski, William J. Reagan, Stanley M. Brown
  • Patent number: 4399024
    Abstract: A method is provided for producing cracked oil with a higher yield and coke having a higher fixed carbon content from petroleum heavy oil or tar sand bitumen or crude shale oil in a short time. This method is characterized by subjecting a petroleum heavy oil or tar sand bitumen or crude shale oil to heat treatment together with at least one additive selected from the group consisting of metal salts of dialkyldithiocarbamic acids, diaryldithiocarbamic acids, alkylxanthogenic acids, arylxanthogenic acids, dialkyldithiophosphoric acids, diaryldithiophosphoric acids, organic phosphoric acid esters, benzothiazoles and disulfides.
    Type: Grant
    Filed: February 10, 1981
    Date of Patent: August 16, 1983
    Assignee: Daikyo Oil Company Ltd.
    Inventors: Yukimasa Fukui, Heihachiro Mukaida, Masato Inden
  • Patent number: 4396496
    Abstract: Antimony compounds are employed to reduce catalyst attrition and improve catalyst performance in catalytic cracking units, especially in conjunction with strontium compounds.
    Type: Grant
    Filed: July 21, 1981
    Date of Patent: August 2, 1983
    Assignee: Phillips Petroleum Company
    Inventors: David R. Scharf, Earl H. Gray