With Group Ii Metal Or Metal Oxide (i.e., Alkaline Earth Metal, Be, Mg, Zn, Cd, Hg, Or Oxide Thereof) Patents (Class 208/120.25)
  • Publication number: 20040262197
    Abstract: The present invention relates to the reduction of the concentrations of nitrogen oxides (NOx) from a fluid catalytic cracking (FCC) regenerator by operating the regenerator in partial CO burn mode with a NOx reducing catalyst system.
    Type: Application
    Filed: April 21, 2004
    Publication date: December 30, 2004
    Inventors: Duane R. McGregor, James O. Guerra
  • Patent number: 6797155
    Abstract: A process for catalytic cracking of a hydrocarbon feedstock comprises contacting the feedstock with a catalyst composition comprising a primary cracking component, such as zeolite Y, and a mesoporous aluminophosphate material which includes a solid aluminophosphate composition modified with at least one element selected from zirconium, cerium, lanthanum, manganese, cobalt, zinc, and vanadium. The mesoporous aluminophosphate material has a specific surface area of at least 100 m2/g, an average pore size less than or equal to 100 Å, and a pore size distribution such that at least 50% of the pores have a pore diameter less than 100 Å.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: Arthur Warren Chester, Frederick Earl Daugherty, Anthony Shiu lun Fung, Charles Theodore Kresge, Hye Kyung Cho Timken, James Clarke Vartuli, Ranjit Kumar, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 6790343
    Abstract: The present invention relates to a sulfur transfer additive for catalytic cracking of hydrocarbons and a catalytic cracking process of hydrocarbons using the sulfur transfer additive, said additive is a uniform liquid comprising at least two metal elements selected from the following three classes: a). alkaline earth metals, b). transition metals and P zone metals, and c). rare earth metals, and wherein there are at least two metal elements from the different classes. The present sulfur transfer additive can reduce the SOx content in the regenerator flue gas and the sulfur content in the light oil products at the same time, and has no negative effect on the activity and selectivity of the catalyst in the FCC system.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: September 14, 2004
    Assignees: China Petro-chemical Corporation, Luoyang Petro-chemical Engineering Corporation, Sinopec
    Inventors: Longyan Wang, Haiqing Guo, Wenyi Qi, Shuqin Su, Xianliang Deng, Jinlong Liu, Shufang Liu
  • Publication number: 20040167013
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4-15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4-15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: John D.Y. Ou, Neeraj Sangar
  • Patent number: 6726834
    Abstract: A process for catalytic cracking of a hydrocarbon feed, includes the steps of providing an initial hydrocarbon fraction; providing a catalyst comprising an aluminosilicate composition having an aluminosilicate composition having an aluminosilicate framework and containing at least one metal other than aluminum incorporated into the aluminosilicate framework; and exposing the hydrocarbon to the catalyst under catalytic cracking conditions so as to provide an upgraded hydrocarbon product.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: April 27, 2004
    Assignee: Intevep, S.A.
    Inventors: Andrés M. Quesada, Gerardo Vitale-Rojas, José Velásquez, María Nieves Alvarez
  • Publication number: 20040004023
    Abstract: An integrated fluid catalytic cracking (FCC) and desulfurization system for processing hydrocarbon-containing fluids. The integrated system employs a cracking/desulfurization unit having a reactor, a regenerator, and a reducer. A mixture of solid FCC catalyst particulates and solid sulfur sorbent particulates are circulated through the reactor, regenerator, and reducer to provide for substantially continuous cracking and desulfurization of the hydrocarbon-containing fluid, as well as substantially continuous regeneration of both the FCC catalyst and the sulfur sorbent.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Inventors: Edward L. Sughrue, Gil J. Greenwood
  • Patent number: 6635168
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: October 21, 2003
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Xinjin Zhao, Wu-Cheng Cheng, John Allen Rudesill, Richard Franklin Wormsbecher, Pilip Stephen Deitz
  • Patent number: 6635169
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of a catalytic cracking process is reduced by the use of a catalyst having a product sulfur reduction component containing a metal component in an oxidation state greater than zero, wherein the average oxidation state of the metal component is increased by an oxidation step following conventional catalyst regeneration. The catalyst is normally a molecular sieve such as a zeolite Y, REY, USY, REUSY, Beta or ZSM-5. The metal component is normally a metal of Groups 5, 7, 8, 9, 12 or 13 of the periodic table, preferably vanadium or zinc. The sulfur reduction component may be a separate particle additive or part of an integrated cracking/sulfur reduction catalyst. A system for increasing the oxidation state of the metal component of a Gasoline Sulfur Reduction additive is also provided.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: October 21, 2003
    Assignees: Mobil Oil Corporation, W. R. Grace & Co.-Conn
    Inventors: Nazeer A. Bhore, Arthur W. Chester, Ke Liu, Hye Kyung Cho Timken
  • Publication number: 20030109376
    Abstract: Catalyst for steam cracking reactions consisting of pure mayenite having the general formula:
    Type: Application
    Filed: December 4, 2002
    Publication date: June 12, 2003
    Applicants: ENICHEM S.p.A, ENITECNOLOGIE S.p.A.
    Inventors: Paolo Pollesel, Caterina Rizzo, Carlo Perego, Renato Paludetto, Gastone Del Piero
  • Publication number: 20030089639
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 3, 2002
    Publication date: May 15, 2003
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 6497811
    Abstract: The present invention comprises a composition for reducing the sulphur content in a hydrocarbon composition, wherein the composition comprises a hydrotalcite material, which has been impregnated with a Lewis acid, and optionally a FCC-catalyst. The hydrotalcite material impregnated with the Lewis acid has been added as a separate component, or incorporated in the matrix of the FCC-catalyst. The Lewis acid is selected from the group comprising elements and compounds of the transition metals, and preferably Zn, Cu, Ni, Co, Fe and Mn, most preferably Zn. Further, the Lewis acid may also be selected from the group comprising elements and compounds of the lanthanides and actinides. The present invention also comprises a method for reducing the sulphur content in a hydrocarbon composition. A method for reducing the sulphur content in a hydrocarbon composition, which is to be cracked, is also described.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: December 24, 2002
    Assignee: Den Norske Stat Oljeselskap A.S.
    Inventors: Trond Myrstad, Bente Boe, Erling Rytter, Hege Engan, Avelino Corma, Fernando Rey
  • Publication number: 20020179492
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
    Type: Application
    Filed: April 13, 2001
    Publication date: December 5, 2002
    Inventors: Xinjin Zhao, Wu-Cheng Cheng, John Allen Rudesill, Richard Franklin Wormsbecher, Philip Stephen Deitz
  • Publication number: 20020153283
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 28, 1998
    Publication date: October 24, 2002
    Inventors: ARTHUR W CHESTER, HYE KYUNG CHO TIMKEN, TERRY G ROBERIE, MICHAEL S ZIEBARTH
  • Publication number: 20020153282
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a rare earth component which enhances the cracking activity of the cracking catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The rare earth component preferably includes cerium which enhances the sulfur reduction activity of the catalyst. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 28, 1998
    Publication date: October 24, 2002
    Inventors: W.C. CHENG, SCOTT K. PURNELL, TERRY G. ROBERIE, HYE-KYUNG C. TIMKEN, XINJIN ZHAO
  • Publication number: 20020092795
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.
    Type: Application
    Filed: February 22, 2002
    Publication date: July 18, 2002
    Inventors: Alan W. Peters, John A. Rudesill, Gordon Dean Weatherbee, Edward F. Rakiewicz, Mary Jane A. Barbato-Grauso
  • Patent number: 6200464
    Abstract: An FCC catalyst containing zeolite particles at least 50% of the outer surface of which is coated with a layer of pre-formed inorganic oxide is used in fluidized catalytic cracking of hydrocarbon feeds. The inorganic oxide layer has a thickness in the range of 10 nm to 5 &mgr;m and the ratio between the particle size of the oxide and the mean particle size of the zeolite particles is in the range of 0.001:1 to 0.5:1. The zeolite particles may be coated by contacting uncoated zeolite particles having a mean particle size in the range of 0.1 to 10 &mgr;m with an aqueous medium containing particles of the oxide having a particle size in the range of 10 to 5,000 nm, after which the particles are optionally dried or calcined. The oxide is preferably alumina. The FCC catalysts are less rapidly deactivated by contaminant metals present in heavy feeds and are less susceptible to blocking of the zeolite pores by coke.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: March 13, 2001
    Assignee: Akzo Nobel N.V.
    Inventors: Franciscus Wilhelmus van Houtert, Hendrik Gerard Bruil, Johannes Ebregt, Nicolaas Gerardus Bader