Silica Or Silicate Containing Catalyst Patents (Class 208/118)
  • Patent number: 11254878
    Abstract: A zeolite fluid catalytic cracking catalyst is provided that passivates nickel and vanadium during catalytic cracking. The zeolite fluid catalytic cracking catalyst includes Y-faujasite crystallized in-situ from a metakaolin-containing calcined microsphere. The zeolite fluid catalytic cracking catalyst further includes an alumina-containing matrix obtained by calcination of a dispersible crystalline boehmite and a kaolin contained in the metakaolin-containing calcined microsphere, where the dispersible crystalline boehmite has a crystallite size of less than 500 ?. Also provided are a method of reducing contaminant coke and hydrogen yields and a method of catalytic cracking of heavy hydrocarbon feed stocks.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: February 22, 2022
    Assignee: BASF CORPORATION
    Inventors: Robert McGuire, Gary Smith, Bilge Yilmaz, Sven Serneels
  • Patent number: 11247197
    Abstract: The present disclosure relates to the technical field of industrial waste gas purification, in particular to a core-shell structured catalyst, a preparation method and use thereof. The present disclosure provides a core-shell structured catalyst including a metal oxide-molecular sieve as a core and porous silica (SiO2) as a shell, where the metal oxide-molecular sieve includes a molecular sieve and a metal oxide loaded on the molecular sieve, the metal oxide includes an oxide of a first metal and an oxide of a second metal, the first metal is Fe, Cu, Ti, Ni or Mn, and the second metal is Ce or La. The core-shell structured catalyst of the present disclosure can enable effective removal of HCN and AsH3 at the same time with a stable effect, and no secondary pollution.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 15, 2022
    Assignee: KUNMING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Kai Li, Yaxi Zhang, Ping Ning, Chi Wang, Fei Wang, Xin Sun, Yixing Ma, Xin Song, Qian Li
  • Patent number: 11185855
    Abstract: Catalysts for the direct decomposition of NO are provided. The catalysts comprise SiO2 pillared magadiite or ilerite comprising intercalated Cu, Fe or Mn oxide. Methods and systems for using the catalysts to directly decompose NO are also provided.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: November 30, 2021
    Assignee: KING ABDULAZIZ UNIVERSITY
    Inventors: Katabathini Narasimharao, Mohamed Mokhtar, Islam Hamdy Abd El Maksod
  • Patent number: 10351484
    Abstract: Broadly, the instant disclosure is directed towards: fertilizer compositions and methods of making the same, in which, due to the composition, the fertilizer exhibits blast suppression (e.g. measured via specific impulse) and/or desensitization (e.g. measured via unconfined critical diameter and/or booster quantity needed to initiate detonation) as compared to existing ammonium nitrate fertilizer(s).
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 16, 2019
    Assignee: Alcoa USA Corp.
    Inventors: Mark L. Weaver, Vincent Paola, John Cravener, Narsimhan Raghunathan, Judodine Nichols
  • Patent number: 9726369
    Abstract: The invention relates to an improved method for chemical-looping combustion of a solid hydrocarbon-containing feed using a particular configuration of the reduction zone with: a first reaction zone R1 operating under dense fluidized bed conditions; a second reaction zone R2; a fast separation zone S3 for separation of the unburnt solid feed particles, of fly ashes and of the oxygen-carrying material particles within a mixture coming from zone R2; fumes dedusting S4; a particle stream division zone D7, part of the particles being directly recycled to first reaction zone R1, the other part being sent to an elutriation separation zone S5 in order to collect the ashes through a line 18 and to recycle the dense particles through a line 20 to first reaction zone R1. The invention also relates to a chemical-looping combustion plant allowing said method to be implemented.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: August 8, 2017
    Assignees: TOTAL SA, IFP ENERGIES NOUVELLES
    Inventors: Thierry Gauthier, Ali Hoteit, Florent Guillou, Sébastien Rifflart
  • Patent number: 9494315
    Abstract: The invention relates to a method for chemical-looping combustion of a solid hydrocarbon-containing feedstock, wherein the ashes and fines are removed at the outlet of reactive oxidation zone R1 by sending transported phase (5) coming from reactive zone R1, comprising gas and solid, to a gas-solid separation zone S2, then by sending solid stream (7) coming from gas-solid separation zone S2 to a dense phase elutriation separation zone S3 fluidized by a non-reducing gas (8) allowing the fines and the fly ashes to be separated from the oxygen-carrying material particles. Optionally, deeper separation is carried out in a dedusting zone S5 arranged downstream from dense phase elutriation separation zone S3. The invention also relates to a chemical-looping combustion plant allowing the method according to the invention to be implemented.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: November 15, 2016
    Assignees: TOTAL SA, IFP ENERGIES NOUVELLES
    Inventors: Florent Guillou, Thierry Gauthier, Ali Hoteit, Sebastien Rifflart
  • Patent number: 9227891
    Abstract: Process for the production of paraxylene from a C8 aromatic feedstock that comprises the following stages: A stage for separation by adsorption in a simulated moving bed SMB that produces an extract that contains at least 95% paraxylene and at least one raffinate R that contains ethylbenzene, A recycling of raffinate to the SMB separation stage after isomerization, in which R is separated in membrane separation means to obtain a first fraction F1 that is relatively high in ethylbenzene, which is purged, and an additional fraction F2 that is relatively low in ethylbenzene, which is recycled to the SMB after a single isomerization, preferably in the liquid phase.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: January 5, 2016
    Assignee: IFP BNERGIES NOUVELLES
    Inventors: Philibert Leflaive, Arnaud Baudot, Helene Rodeschini, Tom Frising
  • Patent number: 9120090
    Abstract: A modified zeolite catalyst derived from a zeolite of a structural type which consists of a one-dimensional micropore structure of channels made from rings containing between 8 and 12 silicon/aluminum atoms is disclosed. It consists substantially of a plurality of crystallites having additional mesoporosity whose volume is in the range 0.09 to 0.25 cc/g as mentioned by nitrogen adsorption at 77° K and calculated by the BJH method. The mesoporosity may be introduced into the crystallites by e.g. treatment with aqueous sodium hydroxide at a pH at 25° C. in excess of 8 for an extended period at elevated temperature. The catalyst shows improved resistance to catalyst deactivation and greater selectivity to higher hydrocarbons when used to e.g. oligomerize light alkenes e.g. propene or the butenes.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 1, 2015
    Assignees: BP Oil International Limited, BP Corporation North America Inc.
    Inventors: Avelino Corma, Cristina Martinez, Eric J. Doskocil, George Yaluris
  • Publication number: 20150096922
    Abstract: A process for reactivating an iron-contaminated FCC catalyst is disclosed. The process comprises contacting the iron-contaminated FCC catalyst with an iron transfer agent. The iron transfer agent comprises a magnesia-alumina hydrotalcite material that contains a modifier selected from the group consisting of calcium, manganese, lanthanum, iron, zinc, or phosphate.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: Paul DIDDAMS, Mehdi ALLAHVERDI, Elbert Arjan DE GRAAF
  • Patent number: 8999146
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8933286
    Abstract: A process is described for maximization of light olefins, preferably ethylene, by the catalytic cracking of feeds of saturated hydrocarbons, with molecular size in the range from 4 to 6 carbon atoms. The process uses a catalyst based on a zeolite of type ZSM-5 with low sodium content and modified with nickel, with concentration by weight of nickel, expressed in the form of oxide, in the range from 0.1% to 20% relative to the weight of zeolite in the catalyst, and operating conditions that involve a temperature between 400° C. and 650° C. and feed partial pressure between 0.1 and 1.0 MPa, so that the product recovered is rich in light olefins, with ethylene/propylene ratio in the range from 0.25 to 2.00.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: January 13, 2015
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Aline Barbosa Junqueira de Souza, Marcelo Maciel Pereira, Lam Yiu Lau, Janaina Gorne, Andrea de Rezende Pinho
  • Patent number: 8912380
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone, in turn including a reactor receiving, a fluidizing stream, a fuel gas stream, a fluidizable catalyst, a stream having an effective amount of oxygen for combusting the fuel gas stream, and a feed.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventor: Robert L. Mehlberg
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Patent number: 8895790
    Abstract: A catalyst composition useful for producing olefins and aromatic compounds from a feedstock is formed from a fluidized catalytic cracking (FCC) catalyst and a ZSM-5 zeolite catalyst, wherein the amount of ZSM-5 zeolite catalyst makes up from 10 wt. % or more by total weight of the FCC catalyst and the ZSM-5 zeolite catalyst. The catalyst composition may be used in a method of producing olefins and aromatic compounds from a feedstock by introducing a hydrocarbon feedstock and the catalyst composition within a reactor, at least a portion of the reactor being at a reactor temperature of 550° C. or higher. The feedstock and catalyst composition are introduced into the reactor at a catalyst-to-feed (C/F) ratio of from 6 or greater.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 25, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ravichander Narayanaswamy, Krishna Kumar Ramamurthy, P. S. Sreenivasan
  • Patent number: 8864979
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking. The process can include sending a first catalyst from a first riser reactor and a second catalyst from a second riser reactor to a regeneration vessel having a first stage and a second stage. The first catalyst may be sent to the first stage and the second catalyst may be sent to the second stage of the regeneration vessel. Generally, the first stage is positioned above the second stage.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventor: Paolo Palmas
  • Patent number: 8834709
    Abstract: A process of producing a light oil stream from slurry oils. The process begins by obtaining slurry oil from a fluid catalytic cracking unit. The slurry oil is then flowed over a fixed bed catalyst, consisting essentially of a non-metal catalyst, to produce a processed slurry oil. The processed slurry oil is then separated by boiling point to separate out the light oil stream.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 16, 2014
    Assignee: Phillips 66 Company
    Inventors: Tushar Choudhary, Ayyappan Subbiah
  • Patent number: 8715487
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, Jr., Terry G. Roberie, Ruizhong Hu
  • Patent number: 8704023
    Abstract: This disclosure relates to a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Douglas L. Dorset, Gordon J. Kennedy, Thomas Yorke, Terry Eugene Helton, Prasenjeet Ghosh, Joshi V. Yogesh
  • Patent number: 8685232
    Abstract: Manufacture of propylene and ethylene in a FCC unit. Each FCC riser comprises an acceleration zone, a lift stream feed nozzle, a main hydrocarbon stock feed nozzle, and an olefinic naphtha feed nozzle. Mixed FCC catalyst comprising at least 2 percent by weight pentasil zeolite and at least 10 percent by weight Y-zeolite is injected at the bottom of each FCC riser. Olefinic naptha is injected through the olefinic feed nozzle, main hydrocarbon stock is injected through the main hydrocarbon stock feed nozzle and lift stream is injected through the lift stream feed nozzle. Lift stream comprises olefinic C4 hydrocarbon stream and optionally steam and/or a fuel gas. Olefinic C4 hydrocarbon steam is cracked in the acceleration zone at 600 to 800° C., 0.8 to 5 kg/cm2 (gauge) pressure, WHSV 0.2 to 100 hr up 1 and vapour residence time 0.2 to 5 seconds.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 1, 2014
    Assignee: Reliance Industries Limited
    Inventors: Sukumar Mandal, Asit Kumar Das, Ashwani Yadav, Manoj Yadav, Akhilesh Bhatnagar, Rajeshwar Dongara, Veera Venkata Satya Bhaskara Sita Rama Murthy Katravulapalli
  • Patent number: 8617513
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 31, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Javier García-Martínez
  • Patent number: 8608944
    Abstract: A catalytic conversion process for increasing the light olefin yields, which comprises bringing a hydrocarbon oil feedstock into contact with a catalytic conversion catalyst in a catalytic conversion reactor including one or more reaction zones to carry out the reaction, wherein the hydrocarbon oil feedstock is subjected to the catalytic conversion reaction in the presence of an inhibitor; and separating the reactant vapor optionally containing the inhibitor from the coke deposited catalyst, wherein a target product containing ethylene and propylene is obtained by separating the reactant vapor, and the coke deposited catalyst is stripped and regenerated for recycle use by being returned to the reactor. The process can weaken the further converting reaction of produced light olefins such as ethylene and propylene to 50-70% of the original level by injecting the inhibitor; thereby it can increase the yields of the target products.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: December 17, 2013
    Assignees: Research Institute of Petroleum Processing SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Zheng Li, Jun Long, Shuandl Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Patent number: 8551324
    Abstract: The present invention describes a process for the production of gasoline in a fluid catalytic cracking unit having at least one principal reactor operating using feeds with a low Conradson Carbon and a high hydrogen content, said process comprising recycling a coking cut either to a side chamber branching off the stripper or within the stripper itself by means of a tubular vessel within said stripper.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Frederic Feugnet, Romain Roux
  • Patent number: 8513150
    Abstract: This invention relates to the composition and synthesis of an Extra Mesoporous Y (or “EMY”) zeolite and its use in the catalytic conversion of organic compounds. In particular, this invention relates to a Y-type framework zeolite possessing a high large mesopore pore volume to small mesopore pore volume ratio. The novel zeolite obtained provides beneficial structural features for use in petroleum refining and petrochemical processes.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: August 20, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Jason Wu
  • Patent number: 8491781
    Abstract: The present invention describes a reaction zone comprising at least two fluidized reactors, a principal reactor for cracking a heavy hydrocarbon cut, the other, additional, reactor for cracking one or more light cuts, the effluents from the two reactors being treated in a common gas-solid separation and quench zone. Performance is enhanced because the thermal degradation reactions in the reaction zone are controlled in an optimum manner.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Gauthier, Vincent Coupard, Jan Verstraete, Romain Roux
  • Publication number: 20130153465
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 8450550
    Abstract: A process for producing propylene, which including feeding at least one of dimethyl ether and methanol to a reactor to be reacted in the presence of a catalyst; supplying an obtained reaction product to a separator by which low-boiling compounds having a boiling point of ?50° C. or lower at atmospheric pressure among the reaction product are separated; and recycling a proportion of at least 70% of a total amount of the separated low-boiling compounds to said reactor.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 28, 2013
    Assignee: JGC Corporation
    Inventors: Hirofumi Ito, Jiro Yoshida, Shuichi Funatsu, Koji Ooyama, Nobuyasu Chikamatsu
  • Patent number: 8445398
    Abstract: This disclosure relates to a process for preparing a catalyst composition comprising (a) contacting a molecular sieve composition with a solution of a solvent and a solute under ion-exchange conditions to form an exchanged molecular sieve composition, wherein the solute comprises at least one of an amide compound, an imide compound, a strong proton donor, or any combination thereof, the solute has a solubility in the solvent of at least 0.05 g per 100 grams of the solvent, preferably at least 1 gram per 100 grams of the solvent; and (b) separating the exchanged molecular sieve from the mixture of the step (a).
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohan Kalyanaraman, Darryl D. Lacy
  • Patent number: 8372269
    Abstract: A metal trap particle used for passivation of metals during FCC cracking comprises a calcined spray dried particle formed from kaolin, magnesium oxide or magnesium hydroxide and calcium carbonate. The metal trap particle contains at least 10 wt. % magnesium oxide which improves metals passivation during FCC cracking.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 12, 2013
    Assignee: BASF Corporation
    Inventors: Mitchell James Willis, Kenneth Warren Folmar
  • Patent number: 8337803
    Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Albemarle Netherlands B.V.
    Inventors: Julie Ann Francis, Charles Vadovic
  • Publication number: 20120312722
    Abstract: One exemplary embodiment can be a process for fluid catalytic cracking The process can include providing a mixture of a fuel gas and at least one of steam and nitrogen to a catalyst stripping zone of a reaction zone. Usually, the fuel gas is added in an amount effective to add heat duty to a regeneration zone for a catalyst of the reaction zone.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: UOP, LLC
    Inventors: Neal E. Cammy, Patrick D. Walker, Thomas William Lorsbach, Charles L. Hemler, JR.
  • Patent number: 8278235
    Abstract: A cracking catalyst contains a substantially inert core and an active shell, the active shell containing a zeolite catalyst and a matrix. The catalyst is formed by spray-drying a slurry containing water, substantially inert microspheres and a zeolite precursor and crystallizing zeolite in the active shell to create the cracking catalyst. Methods of using the cracking catalyst are also described.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 2, 2012
    Assignee: BASF Corporation
    Inventors: David Matheson Stockwell, John M. Macaoay
  • Patent number: 8273937
    Abstract: Methods for producing in a reactor natural gas from heavy hydrocarbons. A mixture of heavy hydrocarbons and a catalyst comprising a transition metal are heated under an anoxic condition in a reactor. Natural gas, e.g., catalytic natural gas, is generated from the heavy hydrocarbons by a disproportionation reaction promoted by the catalyst. The anoxic condition can be created by flowing an anoxic stimulation gas in the reactor.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 25, 2012
    Assignee: Petroleum Habitats, LLC
    Inventor: Frank D. Mango
  • Publication number: 20120234727
    Abstract: The present invention relates to a combustion device for meeting the energy demand of processes for producing light olefins (ethylene and propene) in fluidized-bed catalytic cracking units. Said combustion device is used to burn heating oil and to keep burning the coke deposited on the catalyst, with a view to heating it to meet the energy demand of the reaction, combustion taking place smoothly and uniformly, preventing the formation of hotspots within the catalytic bed and in the dilute phase following combustion (afterburning), thereby minimizing deactivation of the catalyst and the risk of damage to the equipment inside of the combustion device.
    Type: Application
    Filed: September 14, 2010
    Publication date: September 20, 2012
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Jose Mozart Fusco, Emanuel Freire Sandes, Naiara Dos Santos Lages, Geovani Aliatti, Jose Geraldo Furtado Ramos, Ricardo Serfaty, Nelson Patricio Junior, JR.
  • Patent number: 8211295
    Abstract: Bitumen within raw oilsands may be cracked and fully recovered by light hydrocarbon extraction following exposure to modified natural zeolite catalysts under cracking conditions. The recovered bitumen is reduced in viscosity, with lower boiling point distributions. Effective cracking of oilsands bitumen using economical, abundant and readily disposable natural zeolites represents a significant step towards a waterless and environment friendly extraction process.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: July 3, 2012
    Assignees: The Governors Of The University Of Alberta, Imperial Oil Resource Limited
    Inventors: Steven M. Kuznicki, William C. McCaffrey, Murray R. Gray, James A. Dunn
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Patent number: 8197669
    Abstract: The present invention is directed to catalytic cracking additives comprising a metals trapping material; and a high activity catalyst. The present invention is directed to processes for the catalytic cracking of feedstock comprising contacting said feedstock under catalytic cracking conditions with a composition comprising a bulk catalyst and a catalytic cracking additive, wherein the catalytic cracking additive comprises a metals trapping material; and a high activity catalyst. The invention is also directed to processes for increasing the performance of a bulk catalyst in the presence of at least one metal comprising contacting a feedstock with a catalytic cracking additive comprising a metals trapping material; and a high activity catalyst.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 12, 2012
    Assignee: Intercat, Inc.
    Inventor: Albert A. Vierheilig
  • Publication number: 20120132567
    Abstract: An offretite metalloalluminosilicate composition, including an aluminosilicate framework containing at least one metal selected from the group consisting of iron, divalent elements and combinations thereof, wherein at least a portion of the metal is incorporated into the framework, and wherein the portion is at least about 0.5% wt. with respect to the composition.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: INTEVEP, S.A.
    Inventors: Andres M. Quesada Perez, Gerardo Vitale-Rojas
  • Patent number: 8177961
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: May 15, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey Zones, Allen Burton, Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 8138386
    Abstract: The invention provides methods for converting hydrocarbons as starting material by industrial fixed-bed reaction processes with a zeolite shaped catalyst which has a low content of inorganic binder and a high pore volume and which shows high catalytic activity, long catalyst life and high crushing strength. A zeolite shaped catalyst used in the methods of the invention includes zeolite and an inorganic binder and is obtained by kneading zeolite, a starting material of an inorganic binder, shaping auxiliary(ies), organic polymer particles having an average diameter of 0.1 to 6 ?m and water into a kneaded product, and extruding, drying and calcining the kneaded product; and the zeolite shaped catalyst has a zeolite component content of not less than 60 wt % relative to the total weight, a pore volume of 0.4 to 1.0 ml/g, a half-volume pore diameter of 80 to 500 nm and a crushing strength of not less than 0.9 kg.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: March 20, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Phala Heng, Teruo Muraishi, Michiaki Umeno, Hirokazu Ikenaga
  • Patent number: 8137534
    Abstract: Catalyst compositions comprising a siliceous zeolite component, either in separately formed catalyst particles or dispersed in the same binder or matrix as other zeolites of the compositions, are described. The catalyst compositions, for example as blends of three different bound zeolite catalysts, are particularly useful in fluid catalytic cracking (FCC) processes due to the reductions in coke and dry gas yields that allow FCC throughput, which is normally constrained by gas handling and/or catalyst regeneration capacity, to be increased.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 20, 2012
    Assignee: UOP LLC
    Inventors: Lawrence L. Upson, Lazlo T. Nemeth
  • Patent number: 8128806
    Abstract: The present invention relates to a process and equipment for fluid catalytic cracking for the production of middle distillates of low aromaticity that comprises cracking a mixed feed consisting of heavy fractions of hydrocarbons, in the absence of added hydrogen and employing a catalyst of low activity and low acidity, in a dense-bed FCC reactor to produce an effluent constituted of fractions of middle distillates and naphtha of low aromaticity.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 6, 2012
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Claudia Maria de Lacerda Alvarenga Baptista, Edisson Morgado Junior, William Richard Gilbert
  • Patent number: 8110092
    Abstract: Disclosed is a process for recovery power from an FCC product. Gaseous hydrocarbon product from an FCC reactor is heat exchanged with a heat exchange media which is delivered to an expander to generate power. Cycle oil from product fractionation may be added to the gaseous FCC product to wash away coke precursors.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 7, 2012
    Assignee: UOP LLC
    Inventor: John A. Petri
  • Patent number: 8110093
    Abstract: Described herein are methods for cracking a biocrude, particularly catalytically cracking a biocrude that primarily includes olefmic hydrocarbons. Also described herein are compositions and methods of producing such compositions that are useful as fuels or fuel production feedstock.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 7, 2012
    Assignee: LS9, Inc.
    Inventors: Lisa Friedman, Mathew Rude
  • Patent number: 8022003
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 8021642
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 7993623
    Abstract: Compositions and methods suitable for removing poisonous metals from hydrocarbons are provided. The compositions comprise hydrotalcite having one or more trapping metals dispersed on the outer surface thereof.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 9, 2011
    Assignee: Albemarle Netherlands B.V.
    Inventors: Julie Ann Francis, Charles Vadovic
  • Patent number: 7976696
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: July 12, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Javier García-Martínez
  • Patent number: 7973209
    Abstract: Processing schemes and arrangements for the catalytic cracking of a heavy hydrocarbon feedstock and obtaining light olefins substantially free of carbon dioxide via amine treatment and employing fractionation processing are provided.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, John P. Brady, William J. Lechnick, Michael A. Schultz
  • Patent number: 7943038
    Abstract: Processes for producing one or more olefins are provided. In one or more embodiments, a doped catalyst can be prepared by fluidizing one or more coked-catalyst particles in the presence of one or more oxidants to provide a fluidized mixture. At least a portion of the coke can be removed from the coked-catalyst particles to provide regenerated catalyst particles. One or more doping agents can be distributed throughout the fluidized mixture, depositing on the surface of the regenerated catalyst particles to provide doped catalyst particles. One or more hydrocarbon feeds can be fluidized with the doped catalyst particles to provide a reaction mixture which can be cracked to provide a first product containing propylene, ethylene, and butane.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: May 17, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy