Noble Metal Or Oxide Thereof Patents (Class 208/138)
  • Patent number: 8425760
    Abstract: The invention concerns a process for converting a stream of natural or associated gas into liquid fractions, comprising: a) a step for converting said stream of gas into a synthesis gas SG; b) a step FT for Fischer-Tropsch synthesis to convert the SG into liquid fractions; c) a step for fractionating the effluents from the Fischer-Tropsch synthesis into at least one relatively heavy fraction comprising waxes with a boiling point of 565° C. or more and at least one relatively light fraction; d) a step HCKI for isomerization hydrocracking of the relatively heavy fraction, in which at least 75% by weight of the fraction of the feed with a boiling point of more than 565° C. is converted into compounds boiling below 565° C.; e) at least one step for mixing at least the effluents from step HCKI (step d)), the light fraction from step c) and a crude oil P, to thereby produce an oil P*.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Lenglet, Patrick Chaumette
  • Patent number: 8404104
    Abstract: A method for obtaining an olefin is disclosed, the method comprising subjecting a paraffin to dehydrogenation in the absence of oxygen and in the presence of a catalyst comprising a crystalline substrate, to obtain an olefin. The catalyst includes an inert stabilizing agent for maintaining the catalyst crystal structure. The catalyst may be regenerated by being subjected, in air, to a temperature between about 550° C. and about 750° C., for a period of time between about 15 minutes and about 4 hours.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Wei Pan, Stephen M. Casey, Bryan K. Glover, Feng Xu
  • Patent number: 8404105
    Abstract: One exemplary embodiment can be a process for facilitating a transfer of a metal catalyst component from at least one donor particle to at least one recipient particle in a catalytic naphtha reforming unit. The process can include transferring an effective amount of the metal catalyst component from the at least one donor particle to the at least one recipient particle under conditions to effect such transfer to improve a conversion of a hydrocarbon feed.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Gregory J. Gajda, Jeffry T. Donner, Richard R. Rosin, Marc R. Scheier, Simon R. Bare
  • Patent number: 8366911
    Abstract: The present invention provides a method of producing a liquid fuel enabling production of middle distillate at a high yield from a feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components without losing the high cracking activity and also enabling provision of high quality gas oil included in the middle distillate. A feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components is subjected to hydrotreating in the present of a prespecified hydrotreating catalyst and under the conditions for hydrotreating including a temperature of 200 to 350° C., a liquid hourly space velocity of 0.1 to 5.0 h?1, and a partial pressure of hydrogen of 0.5 to 8 MPa to obtain an effluent oil, and then the effluent oil is fractionated to obtain middle distillate including a gas oil with a cetane number of 75 or over and a pour point of ?27.5° C. or below at a yield of 55% or over against a total weight of the feed oil.
    Type: Grant
    Filed: April 26, 2008
    Date of Patent: February 5, 2013
    Assignees: Nippon Oil Corporation, JGC Catalysts & Chemicals Ltd.
    Inventors: Hiroyuki Seki, Masahiro Higashi, Sumio Saito, Ryuzo Kuroda, Takashi Kameoka
  • Patent number: 8366909
    Abstract: Processes for reforming of naphtha feedstocks are described. Briefly, a two stage naphtha reforming process is described. The first stage uses a low acidity beta zeolite catalyst under relatively mild reforming conditions to form an effluent. This effluent is passed to a subsequent stage where further reforming occurs using a catalyst containing ZSM-5 zeolite. The second stage is run under mild reforming conditions. The low pressures employed in the reforming process described maximize liquid product yield by avoiding unwanted cracking reactions and production of light products.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: February 5, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 8362310
    Abstract: A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 29, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Christopher D. Blessing, Scott H. Brown, Tin-Tack Peter Cheung, David J. Glova, Daniel M. Hasenberg, Dennis L. Holtermann, Gyanesh P. Khare, Daniel B. Knorr, Jr.
  • Publication number: 20130015103
    Abstract: One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, a lanthanide-series metal including one or more elements of atomic numbers 57-71 of the periodic table, and a support. Generally, an average bulk density of the catalyst is about 0.300-about 0.620 gram per cubic centimeter, and an atomic ratio of the lanthanide-series metal:noble metal is less than about 1.3:1. Moreover, the lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than about two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Applicant: UOP, LLC
    Inventors: Mark Paul Lapinski, Paul Barger
  • Patent number: 8309778
    Abstract: The present invention provides a catalyst comprising metallic Pt and/or Pd supported on a binder-free zeolite for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock, wherein the amount of metallic Pt and/or Pd is of 0.01-0.8 wt %, preferably 0.01-0.5 wt % on the basis of the total weight of the catalyst, and the binder-free zeolite is selected from the group consisting of mordenite, beta zeolite, Y zeolite, ZSM-5, ZSM-11 and composite or cocrystal zeolite thereof. The present invention also provides a process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using said catalyst.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 13, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Deju Wang, Zhongneng Liu, Xueli Li, Minbo Hou, Zheming Wang, Jianqiang Wang
  • Patent number: 8282815
    Abstract: The invention relates to a method of treating feedstocks from renewable sources without intermediate gas-liquid separation in order to produce diesel fuel bases of excellent quality. The feedstocks used can be raw vegetable oils or such oils that have been previously subjected to a prerefining stage, animal fats, or mixtures of such feedstocks. The invention relates to a method allowing high diesel fuel base yields to be obtained from such feedstocks.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 9, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Christophe Bouchy, Antoíne Daudin, Emmanuelle Guillon, Nathalie Dupassieux, Thierry Chapus
  • Patent number: 8236171
    Abstract: A process is described for improving the quality as a fuel of hydrotreated hydrocarbon blends by reaction with hydrogen in the presence of a bifunctional catalytic system comprising one or more metals selected from Pt, Pd, Ir, Ru, Rh and Re, and a silico-aluminate of an acidic nature, selected from a micro-mesoporous silico-alumina and a zeolite belonging to the MTW family. The process of the invention produces an increase in the cetane index and a decrease in the density and T95.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 7, 2012
    Assignees: ENI S.p.A, Enitecnologie S.p.A.
    Inventors: Roberto Giardino, Vincenzo Calemma, Ugo Cornaro
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Patent number: 7932425
    Abstract: A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: April 26, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Christopher D. Blessing, Scott H. Brown, Tin-Tack Peter Cheung, David J. Glova, Daniel M. Hasenberg, Dennis L. Holtermann, Gyanesh P. Khare, Daniel B. Knorr, Jr.
  • Patent number: 7909988
    Abstract: One exemplary embodiment can be a process for facilitating a transfer of a metal catalyst component from at least one donor particle to at least one recipient particle in a catalytic naphtha reforming unit. The process can include transferring an effective amount of the metal catalyst component from the at least one donor particle to the at least one recipient particle under conditions to effect such transfer to improve a conversion of a hydrocarbon feed.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 22, 2011
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Gregory J. Gajda, Jeffry T. Donner, Richard R. Rosin, Marc R. Schreier, Simon R. Bare
  • Patent number: 7901566
    Abstract: A method of reforming a sulfur containing hydrocarbon involves contacting the sulfur containing hydrocarbon with a sulfur tolerant catalyst containing a non-sulfating carrier and one or more of a sulfur tolerant precious metal and a non-precious metal compound so that the sulfur tolerant catalyst adsorbs at least a portion of sulfur in the sulfur containing hydrocarbon and a low sulfur reformate is collected, and contacting the sulfur tolerant catalyst with an oxygen containing gas to convert at least a portion of adsorbed sulfur to a sulfur oxide that is desorbed from the sulfur tolerant catalyst.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: March 8, 2011
    Assignee: BASF Corporation
    Inventors: Thomas Giroux, Earl Waterman, Robert Joseph Farrauto
  • Patent number: 7901565
    Abstract: A method of reforming a sulfur containing hydrocarbon involves contacting the sulfur containing hydrocarbon with a sulfur tolerant catalyst containing a sulfur tolerant precious metal and a non-sulfating carrier so that the sulfur tolerant catalyst adsorbs at least a portion of sulfur in the sulfur containing hydrocarbon and a low sulfur reformate is collected, and contacting the sulfur tolerant catalyst with an oxygen containing gas to convert at least a portion of adsorbed sulfur to a sulfur oxide that is desorbed from the sulfur tolerant catalyst.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 8, 2011
    Assignee: BASF Corporation
    Inventors: Thomas Giroux, Earl Waterman, Robert Joseph Farrauto
  • Patent number: 7892500
    Abstract: A system and method for recycling plastics. The system and method recover materials such as hydrocarbon gases, liquid hydrocarbon distillates, various polymers and/or monomers used to produce the original plastics. The system and method allow about one unit of input of energy input to the plastic recycler to be used to create one or more gaseous components and one or more liquid distillate components from a plastic that is being recycled. The one or more gaseous components and one or more liquid distillate components produce about one corresponding unit of useable output energy recovered from the recycling of the plastic.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 22, 2011
    Inventor: William E. Carner
  • Patent number: 7892417
    Abstract: The present invention relates to a catalyst for reforming a hydrocarbon comprising a carrier containing manganese oxide and carried thereon (a) at least one component selected from a ruthenium component, a platinum component, a rhodium component, a palladium component, an iridium component and a nickel component and a process for producing the same and to a process for reforming a hydrocarbon (steam reforming, self thermal reforming, partial oxidation reforming and carbon dioxide reforming) using the above catalyst. Provided are a catalyst for reforming a hydrocarbon which comprises ruthenium, platinum, rhodium, palladium, iridium or nickel as an active component and in which a reforming activity is elevated, a process for producing the same, and a steam reforming process, a self thermal reforming process, a partial oxidation reforming process and a carbon dioxide reforming process for a hydrocarbon using the above catalyst.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: February 22, 2011
    Assignee: Idemitsu Kosan, Co., Ltd.
    Inventors: Tetsuya Fukunaga, Tomoki Yanagino, Kozo Takatsu, Takashi Umeki
  • Patent number: 7850842
    Abstract: The invention relates to a process for preparing a catalyst support, in which zirconium dioxide powder is mixed with a binder, if desired a pore former, if desired an acid, water and, if desired, further additives to give a kneadable composition and the composition is homogenized, shaped to produce shaped bodies, dried and calcined, wherein the binder is a monomeric, oligomeric or polymeric organosilicon compound. Suitable binders are monomeric, oligomeric or polymeric silanes, alkoxysilanes, aryloxysilanes, acryloxysilanes, oximinosilanes, halosilanes, aminoxysilanes, aminosilanes, amidosilanes, silazanes or silicones. The invention also provides the catalyst support which has been prepared in this way, a catalyst comprising the support and its use as dehydrogenation catalyst.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 14, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Hofstadt, Michael Hesse, Götz-Peter Schindler, Klaus Harth, Falk Simon
  • Publication number: 20100236986
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Application
    Filed: October 24, 2008
    Publication date: September 23, 2010
    Applicant: IFP
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon
  • Publication number: 20100236985
    Abstract: A supported catalyst and process for dehydrogenating a hydrocarbon, the catalyst comprising a first component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium, and compounds thereof; a second component selected from the group consisting of metals of Group 8 of the Periodic Table of the Elements and compounds thereof, and a support comprising alumina in the gamma crystalline form. The catalysts are especially active and efficient when employed in concurrent flow in a dehydrogenation reactor having an average contact time between the hydrocarbon and catalyst of from 0.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 23, 2010
    Inventors: Lin Luo, Susan Domke, Howard W. Clark, Richard A. Pierce, Michael M. Olken
  • Patent number: 7691774
    Abstract: A process for producing a catalyst for hydrodesulfurization and isomerization of a sulfur-containing hydrocarbon oil, which comprises supporting palladium on a composition comprising a platinum-supported sulfated zirconia and alumina.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: April 6, 2010
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Katsuya Watanabe, Takao Kimura, Takahito Kawakami, Kouji Baba
  • Patent number: 7687676
    Abstract: The activity of a dehydrogenation catalyst is improved by increasing the water concentration maintained in the reactants toward the start of the catalyst's life, but after the catalyst has deactivated to the extent that the temperature required to maintain the conversion per pass of paraffinic hydrocarbon through the reaction zone increases by at least 2° C.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Christopher J. Vogel, Dean E. Rende, Andrea G. Bozzano, Paul G. Wing
  • Patent number: 7686946
    Abstract: One exemplary embodiment can include a method of altering a feed to a transalkylation zone by changing a destination of a stream rich in an aromatic C9 for increasing production of at least one of benzene, toluene, para-xylene, and an aromatic gasoline blend. The method can include providing the stream rich in an aromatic C9 from a first fractionation zone that receives an effluent from a second fractionation zone. The second fractionation zone may produce a stream rich in at least one of benzene and toluene. The stream rich in the aromatic C9 can be at least partially comprised in at least one of the feed to the transalkylation zone and the aromatic gasoline blend.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventor: Lubo Zhou
  • Patent number: 7686945
    Abstract: Process to prepare a water-white lubricating base oil having a saturates content of more than 90 wt %, a sulphur content of less than 0.03 wt % and a viscosity index of between 80-120 by subjecting a non-water-white hydrocarbon feed having a lower saturates content than the desired saturates content to a hydrogenation step, the hydrogenation step comprising contacting the feed with hydrogen in the presence of a hydrogenation catalyst, wherein the contacting is performed in two steps: (a) contacting the hydrocarbon feed with hydrogen in the presence of a hydrogenation catalyst at a temperature of above 300° C. and at a WSHV of between 0.3 and 2 kg of oil per litre of catalyst per hour, and (b) contacting the intermediate product obtained in step (a) with hydrogen in the presence of a hydrogenation catalyst at a temperature of below 280° C.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: March 30, 2010
    Assignee: Shell Oil Company
    Inventors: Gerard Benard, Patrick Moureaux
  • Patent number: 7686986
    Abstract: Magnesium hydroxide nanoparticles are made from a magnesium compound that is reacted with an organic dispersing agent (e.g., a hydroxy acid) to form an intermediate magnesium compound. Magnesium hydroxide nanoparticles are formed from hydrolysis of the intermediate compound. The bonding between the organic dispersing agent and the magnesium during hydrolysis influences the size of the magnesium hydroxide nanoparticles formed therefrom. The magnesium hydroxide nanoparticles can be treated with an aliphatic compound (e.g., a monofunctional alcohol) to prevent aggregation of the nanoparticles during drying and/or to make the nanoparticles hydrophobic such that they can be evenly dispersed in a polymeric material. The magnesium hydroxide nanoparticles exhibit superior fire retarding properties in polymeric materials compared to known magnesium hydroxide particles.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 30, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7670476
    Abstract: Process to optimize the yield of gas oils from a Fischer-Tropsch derived feed by performing the following steps: (a) performing a hydroconversion/hydroisomerisation step on part of the Fischer-Tropsch derived feed; (b) performing a hydroconversion/hydroisomerisation step on another part of the Fischer-Tropsch feed at a conversion greater than the conversion in step (a); and (c) isolating by means of distillation a gas oil fraction from the two reaction products obtained in steps (a) and (b).
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: March 2, 2010
    Assignee: Shell Oil Company
    Inventors: Jan Lodewijk Maria Dierickx, Arend Hoek, Lip Piang Kueh
  • Patent number: 7662273
    Abstract: A process for producing lube oil basestocks wherein a wax containing lube oil boiling range feedstream is converted into a basestock suitable for use in motor oil applications by contacting it with a hydrodewaxing catalyst containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: February 16, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: 7655134
    Abstract: Process to optimize the yield of base oils from a Fischer-Tropsch derived feed by performing the following steps (a) performing a hydroconversion/hydroisomerization step on part of the Fischer-Tropsch derived feed; (b) performing a hydroconversion/hydroisomerization step on another part of the Fischer-Tropsch feed at a conversion greater than the conversion in step (a); and (c) isolating by means of distillation a fraction boiling in the base oil range from the two reaction products obtained in steps (a) and (b) and performing a pour point reducing step on said fraction.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: February 2, 2010
    Assignee: Shell Oil Company
    Inventors: Jan Lodewijk Maria Dierickx, Arend Hoek, Lip Piang Kueh
  • Patent number: 7626062
    Abstract: A system and method for recycling plastics. The system and method recover materials such as hydrocarbon gases, liquid hydrocarbon distillates, various polymers and/or monomers used to produce the original plastics. The system and method allow about one unit of input of energy input to the plastic recycler to be used to create one or more gaseous components and one or more liquid distillate components from a plastic that is being recycled. The one or more gaseous components and one or more liquid distillate components produce about one corresponding unit of useable output energy recovered from the recycling of the plastic.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 1, 2009
    Inventor: William E. Carner
  • Patent number: 7622032
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using an hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and processes employing SSZ-74 in a catalyst.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Patent number: 7608747
    Abstract: A process for the selective ring opening of ring-containing hydrocarbons in a feed stream having at least 10% ring-containing hydrocarbons includes contacting the feed stream with a ring opening catalyst containing a metal or a mixture of metals active for the selective ring opening of the ring-containing hydrocarbons on a support material, wherein the support material is a non-crystalline, porous inorganic oxide or mixture of inorganic oxides having at least 97 volume percent interconnected mesopores based on micropores and mesopores, and wherein the ring-containing hydrocarbons have at least one C6 ring and at least one substituent selected from the group consisting of fused 5- or 6-membered rings, alkyl, cycloalkyl and aryl groups.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: October 27, 2009
    Assignee: Lummus Technology Inc.
    Inventors: Bala Ramachandran, Lawrence L. Murrell, Martin Kraus, Zhiping Shan, Philip J. Angevine
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7563358
    Abstract: A hydrocarbon conversion process for producing an aromatics product containing of benzene, toluene, xylenes, or mixtures thereof. The process is carried out by converting precursors of benzene, toluene, and xylenes that are contained in a hydrocarbon feed (C6+ non-aromatic cyclic hydrocarbons, A8+ single-ring aromatic hydrocarbons having at least one alkyl group containing two or more carbon atoms; and A9+ single-ring aromatic hydrocarbons having at least three methyl groups) to produce a product that contains an increased amount of benzene, toluene, xylenes, or combinations thereof compared to said hydrocarbon feed.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: July 21, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Elizabeth L. Stavens, Stephen H. Brown, J. Scott Buchanan, Yun-Feng Chang, Larry L. Iaccino, Paul F. Keusenkothen, John D. Y. Ou, Randall D. Partridge
  • Patent number: 7541309
    Abstract: Catalysts suitable for use in reforming hydrocarbons have a halogen promoter and a plurality of dispersed nanocatalyst particles supported on a solid support. The dispersed nanocatalyst particles are manufactured using a dispersing agent to control the size and/or crystal face exposure of the particles. The controlled size and dispersion of the nanocatalyst particles allows the reforming catalyst to be loaded with significantly less halogen promoter while still maintaining or increasing the catalyst's reforming performance. The catalysts of the present invention have shown improved C5+ production with the significantly reduced levels of halogen promoter.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 2, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Horacio Trevino, Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7538063
    Abstract: Bismuth- and phosphorus-containing naphtha reforming catalysts, methods of making such catalysts, and a naphtha reforming process using such catalysts.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 26, 2009
    Assignee: Shell Oil Company
    Inventor: Peter Tanev Tanev
  • Publication number: 20080245704
    Abstract: A reforming and isomerization process has been developed. A reforming feedstream is charged to a reforming zone containing a reforming catalyst and operating at reforming conditions to generate a reforming zone effluent. Hydrogen and an isomerization feedstream is charged into an isomerization zone to contact an isomerization catalyst at isomerization conditions to increase the branching of the hydrocarbons. The isomerization catalyst is a solid acid catalyst comprising a support comprising a sulfated oxide or hydroxide of at least an element of Group IVB, a first component being at least one lanthanide series element, mixtures thereof, or yttrium, and a second component being a platinum group metal or mixtures thereof. The reforming zone effluent and the isomerization zone effluent are each separated to form a light ends stream and a product stream. The light ends streams are combined for processing in a net gas re-contacting zone.
    Type: Application
    Filed: May 29, 2008
    Publication date: October 9, 2008
    Inventors: Douglas A. Nafis, Gregory F. Maher, Lynn H. Rice, William D. Schlueter, Ralph D. Gillespie, Michelle J. Cohn
  • Publication number: 20080128327
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Application
    Filed: January 30, 2008
    Publication date: June 5, 2008
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7375049
    Abstract: A catalyst suitable for the dehydrogenation and hydrogenation of hydrocarbons comprises at least one first metal and at least one second metal bound to a support material. The at least one first metal comprises at least one transition metal, suitably a platinum group metal. The support material is provided with an overlayer such that acidic sites on the support material are substantially blocked. In a preferred embodiment the catalyst is also substantially chloride free. Method of preparing catalyst are also disclosed.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: May 20, 2008
    Assignee: Johnson Matthey PLC
    Inventors: Martin John Hayes, Chandresh Malde, Michael Ian Petch, Stephen David Pollington, Brian Ronald Charles Theobald
  • Patent number: 7344633
    Abstract: A process to prepare a base oil having a saturates content of more than 90 wt %, a sulphur content of less than 0.03 wt %, and, a viscosity index of between 80 and 120 from a solvent refined base oil feedstock, which process comprises: (a) contacting the solvent refined base oil feedstock in the presence of a hydrogen containing gas in a first reaction zone containing one or more fixed beds of a catalyst, which catalyst comprises at least one Group VIB metal component and at least one non-noble Group VIII metal component supported on a refractory oxide carrier; and (b) contacting the effluent of step (a) in the presence of a hydrogen containing gas in a second reaction zone containing one or more fixed beds of a catalyst, which catalyst comprises a catalyst comprising a noble metal component supported on an amorphous refractory oxide carrier, wherein the oil feedstock in step (a) flows counter-current to the up flowing hydrogen containing gas.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: March 18, 2008
    Assignee: Shell Oil Company
    Inventors: Marc Collin, Eric Duprey
  • Publication number: 20080035525
    Abstract: The invention relates to a zeolite of the ZSM-12 type, especially for the hydroisomerization of higher paraffins, which has a primary crystal size of <0.1 ?m; as well as a specific volume, determined by mercury porosimetry at a maximum pressure of 4000 bar, of 30-200 mm3/g in a pore radius range of 4-10 nm; and which has further been prepared from a synthesis gel composition comprising an aluminum source, precipitated silica as a silicon source, TEA+ as a template, an alkali metal and/or alkaline earth metal ion source M having the valency n; in which the molar H2O:SiO2 ratio is selected between 5 and 15. The invention further relates to a catalyst comprising the above zeolite and its use.
    Type: Application
    Filed: March 27, 2004
    Publication date: February 14, 2008
    Inventors: Gotz Burgfels, Volker Kurth, Alfred Reimer, Friedrich Schmidt, Stephan Wellach
  • Publication number: 20070284284
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium)dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 13, 2007
    Inventors: Stacey I. Zones, Allen W. Burton, Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 7304195
    Abstract: A process for increasing the production of benzene from a hydrocarbon mixture. A process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a solvent extraction process for separating and recovering polar hydrocarbons from a hydrocarbon mixture containing polar hydrocarbons (that is, aromatic hydrocarbons) and nonpolar hydrocarbons (that is, non-aromatic hydrocarbons) are integrated, thereby it is possible to increase the production of benzene.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: December 4, 2007
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung Hoon Oh, Kyoung Hak Sung, Jong Hyung Lee, Sin Choel Kang, Yong Seung Kim, Byeung Soo Lim, Byoung Mu Chang
  • Patent number: 7297831
    Abstract: Disclosed is a process of preparing aromatic hydrocarbons and liquefied petroleum gas (LPG) from a hydrocarbon mixture, in which a non-aromatic compound in the hydrocarbon feedstock mixture is converted into a gaseous material having a large amount of LPG through hydrocracking, and an aromatic compound therein is converted into an oil component having large amounts of benzene, toluene, and xylene (BTX) through dealkylation and transalkylation, in the presence of a catalyst obtained by supporting platinum/bismuth onto a mixture support having zeolite and an inorganic binder. The gaseous product is separated into LPG and a mixture of methane and ethane depending on differences in boiling point through distillation, while the liquid product is separated into benzene, toluene, xylene, and C9+ aromatic compounds depending on differences in boiling point through distillation.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 20, 2007
    Assignee: SK Corporation
    Inventors: Jong Hyung Lee, Seung Hoon Oh, Kyoung Hak Sung, Sun Choi, Yong Seung Kim, Byeung Soo Lim
  • Patent number: 7132043
    Abstract: Process to prepare a lubricating base oil starting from a lubricating base oil which is obtained by first removing part of the aromatic compounds from a petroleum fraction boiling in the lubricating oil range by solvent extraction and subsequently dewaxing the solvent extracted product, wherein the following steps are performed, (a) contacting the lubricating base oil with a suitable sulphided hydrotreating catalyst in a first hydrotreating step; (b) separating the effluent of step (a) into a gaseous fraction and a liquid fraction; (c) contacting the liquid fraction of step (b) with a catalyst comprising a noble metal component supported on an amorphous refractory oxide carrier in the presence of hydrogen in a second hydrotreating step; and (d) recovering the lubricating base oil.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: November 7, 2006
    Assignee: Shell Oil Company
    Inventors: Eric Duprey, Jean-Paul Fattaz, Roland Albert Charles Garin, Patrick Moureaux
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6984310
    Abstract: Alumina having a pore structure characterized by the absence of macropores, no more than 5% of the total pore volume in pores greater than 350 ?, a high pore volume (greater than 0.8 cc/g measured by mercury intrusion) and a bi-modal pore volume distribution character, where the two modes are separated by 10 to 200 ?, and the primary pore mode is larger than the median pore diameter (MPD), calculated either by volume or by surface area, the MPD by volume being itself larger than the MPD by surface area. Also provided are catalysts made from and processes using such alumina.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 10, 2006
    Assignee: Shell Oil Company
    Inventors: Josiane M. Ginestra, Russell C. Ackerman, Christian G. Michel
  • Patent number: 6977322
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element, yttrium or mixtures thereof, which is preferably ytterbium or holmium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 20, 2005
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6900365
    Abstract: A catalytic hydrodealkylation/reforming process which comprises contacting a heavy hydrocarbon feedstream under catalytic hydrodealkylation/reforming conditions with a composition comprising borosilicate molecular sieves having a pore size greater than about 5.0 Angstroms and a Constraint Index smaller than about 1.0; further containing a hydrogenation/dehydrogenation component; wherein at least a portion of the heavy hydrocarbon feedstream is converted to a product comprising benzene, toluene, xylenes and ethylbenzene.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: May 31, 2005
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Cong-Yan Chen, Stacey I. Zones, Andrew Rainis, Dennis J. O'Rear
  • Patent number: 6884340
    Abstract: The use of a novel catalyst in a reforming process is disclosed. The catalyst comprises a refractory inorganic oxide, platinum-group metal, Group IVA(IUPAC 14) metal, indium and lanthanide-series metal. Utilization of this catalyst in the conversion of hydrocarbons, especially in a reforming process, results in significantly improved selectivity to the desired gasoline or aromatics products.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: April 26, 2005
    Assignee: UOP LLC
    Inventor: Paula L. Bogdan