Plural Parallel Stages Of Chemical Conversion Patents (Class 208/78)
  • Patent number: 7611622
    Abstract: A dual riser FCC process for converting C3/C4-containing feedstocks to aromatics. First and second hydrocarbon feeds (5, 6) are supplied to the respective first and second risers (2, 4) in a dual-riser FCC unit with a gallium enriched catalyst to make an effluent rich in ethylene, propylene and aromatics. The first riser (2) is operated at less severe conditions than the second riser (4) and can receive a relatively heavy feed such as gas oil. The feed to the second riser (4) includes propane, for example LPG, propane recycle from the C3 splitter (72), etc. The FCC catalyst can include gallium to promote aromatics formation.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 3, 2009
    Assignee: Kellogg Brown & Root LLC
    Inventors: Phillip K. Niccum, Eusebius A. Gbordzoe
  • Patent number: 7597796
    Abstract: The present invention concerns an apparatus and associated process for the catalytic cracking of oil cuts in a fluidized bed. The apparatus and process can catalytically crack a conventional feed in a principal riser B and crack a secondary feed in at least one secondary riser C. The lower end of the secondary riser or risers C is open to the bottom portion of the principal riser B; the upper end of the secondary riser or risers C is open to the top portion of the principal riser B.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: October 6, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Régis Andreux, Jean-Luc Duplan
  • Patent number: 7591940
    Abstract: A catalytic hydrocracking process for the production of ultra low sulfur diesel wherein a hydrocarbonaceous feedstock is hydrocracked at elevated temperature and pressure to obtain conversion to diesel boiling range hydrocarbons. The resulting hydrocracking zone effluent is hydrogen stripped in a stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. The first gaseous hydrocarbonaceous stream containing diesel boiling range hydrocarbons is introduced into a desulfurization zone and subsequently partially condensed to produce a hydrogen-rich gaseous stream and a second liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons. At least a portion of the first liquid stream is thermal cracked to produce diesel boiling range hydrocarbons. An ultra low sulfur diesel product stream is recovered.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: September 22, 2009
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 7547386
    Abstract: An integrated process for the hydroprocessing of multiple feedstreams including vacuum gas oil and light cycle oil. The light cycle oil is reacted with hydrogen in a hydrocracking zone and the hydrocarbon feedstream comprising vacuum gas oil is reacted with hydrogen in a hydrodesulfurization reaction zone. The hydrotreated vacuum gas oil is good FCC feedstock. Naphtha and ultra low sulfur diesel are recovered in a common fractionation column.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Richard K. Hoehn
  • Patent number: 7540952
    Abstract: The present invention relates to a thermo catalytic process to produce diesel oil from vegetable oils, in refineries which have two or more Catalytic Cracking (FCC) reactors. At least one reactor processes heavy petroleum or residue in conventional operation conditions while at least one reactor processes vegetable oils in proper operation conditions to produce diesel oil. This process employs the same catalyst employed in the FCC process, which processes conventional feedstocks simultaneously. This process transforms high heat content raw materials into fuel hydrocarbons. It may improve efficiency for the obtainment of highly pure products and may not yield glycerin, one by-product of the transesterification process. The diesel oil produced by said process may have superior qualities and/or a cetane number higher than 40. Once cracking conditions occur at lower temperatures, it may form a less oxidized product, which is consequently purer than those obtained by existent technology.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: June 2, 2009
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Andrea De Rezende Pinho, Mauro Silva, Amilcar Pereira Da Silva Neto, Júlio Amilcar Ramos Cabral
  • Patent number: 7534339
    Abstract: A shell-and tube reactor including at least one reaction tube with a measuring means, substantially same solid particles being filled in the reaction tubes with or without the measuring means, a length of the filled solid particle layer, and a pressure drop thereof while passing a gas through the reaction tube, per each reaction tube, being substantially the same, respectively. By measuring the temperature of the catalyst particle layer, such a temperature as a representative can be gasped.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: May 19, 2009
    Assignee: Nippon Shokubai Co., Ltd
    Inventors: Yukihiro Matsumoto, Takeshi Nishimura, Sei Nakahara, Naoto Kasaya
  • Patent number: 7510646
    Abstract: Process for the production of hydrocarbon blends with a high octane number by the hydrogenation of hydrocarbon blends, containing branched C8, C12 and C16 olefinic cuts, characterized by sending said blends, as such or fractionated into two streams, one substantially containing the branched C8 olefinic cut, the other substantially containing the branched C12 and C16 olefinic cuts, to a single hydrogenation zone or to two hydrogenation zones in parallel, respectively, only the stream substantially containing of saturated C8 hydrocarbons, obtained by the fractionation of the stream produced by the single hydrogenation zone or obtained by the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, being at least partly recycled to the single hydrogenation zone or to the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, and the hydrocarbon blend with a high octane number, obtained by the fractionation of the st
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: March 31, 2009
    Assignee: Snamprogetti S.p.A.
    Inventors: Roberto Catani, Marco Di Girolamo, Massimo Conte, Ambrogio Gusberti
  • Patent number: 7462275
    Abstract: The present invention relates to a process for the conversion of hydrocarbon streams with 95% true boiling point less than 400° C. to very high yield of liquefied petroleum gas in the range of 45-65 wt % of feed and high octane gasoline, the said process comprises catalytic cracking of the hydrocarbons using a solid fluidizable catalyst comprising a medium pore crystalline alumino-silicates with or without Y-zeolite, non crystalline acidic materials or combinations thereof in a fluidized dense bed reactor operating at a temperature range of 400 to 550° C., pressure range of 2 to 20 kg/cm2 (g) and weight hourly space velocity in range of 0.1 to 20 hour?1, wherein the said dense bed reactor is in flow communication to a catalyst stripper and a regenerator for continuous regeneration of the coked catalyst in presence of air and or oxygen containing gases, the catalyst being continuously circulated between the reactor-regenerator system.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: December 9, 2008
    Assignee: Indian Oil Corporation Limited
    Inventors: Asit Kumar Das, Debasis Bhattacharyya, Gadari Saidulu, Satayen Kumar Das, Bandaru Venkata Hari P. Gupta, Ramakrishnan Ramanarayanan, Latoor Lal Saroya, Konduri Lakshminarayana, Marri Rama Rao, Vinod Ramchandra Upadhyay, Sukumar Mandal, Deepa Meghavathu, Arumugam Velayutham Karthikeyani, Wadharwa Ram Kalsi, Arvind Pratap Singh, Veena Bansal, Ashok Kumar Tiwari, Venkatachalam Krishnan, Satish Makhija, Sobhan Ghosh, Niranjan Raghunath Raje
  • Patent number: 7459072
    Abstract: Process for the work-up of naphtha, wherein a) naphtha or a stream produced from naphtha in a pretreatment step is separated in a membrane unit into a stream A which is depleted in aromatics and a stream B which is enriched in aromatics, with the aromatics concentration in stream A being from 2 to 12% by weight (step a), b) at least part of the substream A is fed to a steam cracker (step b), c) at least part of the substream B is fed to a unit in which it is separated by means of a thermal process into a stream C which has a lower aromatics content than stream B or a plurality of streams C?, C?, C?? . . . which each have lower aromatics contents than stream B and a stream D which has a higher aromatics content than stream B or a plurality of streams D?, D?, D?? . . .
    Type: Grant
    Filed: January 24, 2004
    Date of Patent: December 2, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Bitterlich, Hartwig Voss, Gunter Schuch, Rudolf Sinnen, Heinrich Laib, Peter Paessler
  • Patent number: 7431822
    Abstract: Applicants have developed a new residuum full hydroconversion slurry reactor system that allows the catalyst, unconverted oil, hydrogen, and converted oil to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is separated internally, within one of more of the reactors, to separate only the converted oil and hydrogen into a vapor product while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor as a liquid product. A portion of the unconverted oil is then converted to lower boiling point hydrocarbons in the next reactor, once again creating a mixture of unconverted oil, hydrogen, converted oil, and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a concentrated catalyst in unconverted oil which can be recycled directly to the first reactor.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, James Murphy, Bruce Reynolds
  • Patent number: 7431823
    Abstract: The instant invention is directed to a new residuum full hydroconversion slurry reactor system that allows the catalyst, unconverted oil and converted oil to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is partially separated in between the reactors to remove only the products and hydrogen, while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor where a portion of the unconverted oil is converted to lower boiling point hydrocarbons, once again creating a mixture of unconverted oil, converted oil, and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a highly concentrated catalyst in unconverted oil which can be recycled directly to the first reactor.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Bruce Reynolds
  • Patent number: 7431831
    Abstract: A new residuum full hydroconversion slurry reactor system has been developed that allows the catalyst, unconverted oil, products and hydrogen to circulate in a continuous mixture throughout an entire reactor with no confinement of the mixture. The mixture is partially separated in between the reactors to remove only the products and hydrogen while permitting the unconverted oil and the slurry catalyst to continue on into the next sequential reactor. In the next reactor, a portion of the unconverted oil is converted to lower boiling point hydrocarbons, once again creating a mixture of unconverted oil, products, hydrogen and slurry catalyst. Further hydroprocessing may occur in additional reactors, fully converting the oil. The oil may alternately be partially converted, leaving a highly concentrated catalyst in unconverted oil which can be recycled directly to the first reactor. The slurry reactor system is, in this invention, preceded by an in-line pretreating step, such as hydrotreating or deasphalting.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: October 7, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Bruce Reynolds
  • Publication number: 20080156696
    Abstract: A dual riser FCC process for converting C3/C4-containing feedstocks to aromatics. First and second hydrocarbon feeds (5, 6) are supplied to the respective first and second risers (2, 4) in a dual-riser FCC unit with a gallium enriched catalyst to make an effluent rich in ethylene, propylene and aromatics. The first riser (2) is operated at less severe conditions than the second riser (4) and can receive a relatively heavy feed such as gas oil. The feed to the second riser (4) includes propane, for example LPG, propane recycle from the C3 splitter (72), etc. The FCC catalyst can include gallium to promote aromatics formation.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: Phillip K. Niccum, Eusebius A. Gbordzoe
  • Patent number: 7384542
    Abstract: A process for the production of low sulfur diesel and high octane naphtha.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 10, 2008
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Richard K. Hoehn
  • Patent number: 7354507
    Abstract: The present invention is generally related towards enhancing the yield and/or cold-flow properties of certain hydrocarbon products, increasing the degree of isomerization in a diesel product and/or increasing the production rate of a diesel product. The embodiments generally include reducing the residence time of lighter hydrocarbon fractions during hydrocracking, thereby decreasing secondary cracking, by various configurations of introducing at least two hydrocarbon feedstreams of different boiling ranges at different entry points in a hydrocracking unit. A method further includes forming a hydrocarbons stream comprising primarily C5+ Fischer-Tropsch hydrocarbon products; fractionating hydrocarbons stream to form at least a wax fraction and an intermediate fraction which serve as separate feedstreams to a hydrocracking unit comprising at least two hydroconversion zones.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: April 8, 2008
    Assignee: ConocoPhillips Company
    Inventors: Sridhar Gopalakrishnan, Vincent H. Melquist, Rafael L. Espinoza, Doug S. Jack, Keith Henry Lawson
  • Patent number: 7344634
    Abstract: A reactor apparatus and process for contacting hydrocarbons with catalyst. The reactor apparatus comprises a plurality of tubular reactors each having a first end into which a catalyst is fed and a second end through which the catalyst and product exit the tubular reactor. A catalyst retention zone is provided to contain catalyst and feed catalyst to the tubular reactors. A separation zone is provided to separate the catalyst from products of a reaction conducted in the apparatus. A transport conduit having a first end in fluid communication with the second ends of at least two of the tubular reactors and a second end extending into the separation zone transports product and catalyst to the separation zone. A catalyst return in fluid communication with the separation zone and the catalyst retention zone returns catalyst to the catalyst retention zone.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: March 18, 2008
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 7326331
    Abstract: The invention concerns a process for producing middle distillates from effluents obtained from the Fischer-Tropsch process, comprising separating a heavy cut with an initial boiling point of 120-200° C., hydrotreating said cut and fractionating the hydrotreated cut to obtain at least one intermediate fraction and at least one fraction that is heavier than the intermediate fraction. The intermediate fraction boils between T1 and T2, T1 being in the range 120-200° C. and T2 being in the range 300-410° C. The heavy and intermediate fractions are treated over a hydrocracking/hydroisomerisation catalyst and the effluents obtained are distilled. The invention also concerns a unit.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: February 5, 2008
    Assignees: Institut Francais du Petrole, AGIP Petroli, ENI S.p.A., Enitechnologies E Uffici Di Via
    Inventors: Eric Benazzi, Christophe Gueret
  • Patent number: 7318845
    Abstract: A distillate fuel steam reformer system in which a fuel feed stream is first separated into two process streams: an aliphatics-rich, sulfur-depleted gas stream, and an aromatics- and sulfur-rich liquid residue stream. The aliphatics-rich gas stream is desulfurized, mixed with steam, and converted in a reforming reactor to a hydrogen-rich product stream. The aromatics-rich residue stream is mixed with air and combusted to provide heat necessary for endothermic process operations. Reducing the amounts of sulfur and aromatic hydrocarbons directed to desulfurzation and reforming operations minimizes the size and weight of the overall apparatus. The process of the invention is well suited to the use of microchannel apparatuses for heat exchangers, reactors, and other system components, which may be assembled in slab configuration, further reducing system size and weight.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 15, 2008
    Assignee: Applied Research Associates, Inc.
    Inventors: Aly H. Shaaban, Timothy J. Campbell
  • Patent number: 7316773
    Abstract: The present invention relates to a catalytic cracking process and a device used in the process in particular, the present invention provides a catalytic cracking process, which comprises which comprises: 1) catalytic cracking a feedstock in the first riser for less than about 1.5 second and sending the resultant stream into the first separating device,; 2) catalytic cracking the recycle oil obtained from the first separating device in the second riser for less than about 1.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: January 8, 2008
    Assignees: Petrochina Company Limited, University of Petroleum China
    Inventors: Jianfang Zhang, An Ma, Honghong Shan, Chaohe Yang, Genlin Niu, Yongshan Tu, Feng Du, Yudong Sun, Zheng Li, Chunyi Li, Zhongxiang Han
  • Patent number: 7279090
    Abstract: This invention relates to a novel integrated method for economically processing vacuum residue from heavy crude oils. This is accomplished by utilizing a solvent deasphalter (SDA) in the first step of the process with a C3/C4/C5 solvent such that the DAO product can thereafter be processed in a classic fixed-bed hydrotreater or hydrocracker. The SDA feed also includes recycled stripper bottoms containing unconverted residue/asphaltenes from a downstream steam stripper unit. The asphaltenes from the SDA are sent to an ebullated-bed reactor for conversion of the residue and asphaltenes. Residue conversion in the range of 60-80% is achieved and asphaltene conversion is in the range of 50-70%. The overall residue conversion, with the DAO product considered non-residue, is in the range of 80 W %-90 W % and significantly higher than could be achieved without utilizing the present invention.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: October 9, 2007
    Assignee: Institut Francais du Pe'trole
    Inventors: James J. Colyar, Stéphane Kressmann, Christophe Gueret
  • Patent number: 7270739
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain at least a C6 rich fraction and feeding the C6 rich fraction into a reaction stage at a point wherein the residence time of the C6 rich fraction is minimized.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 18, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7267759
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream by fractionating the naphtha feed to obtain a C6 fraction and feeding the C6 fraction either in the riser downstream of the injection point for the reminder of the naphtha feed, in the stripper, and/or in the dilute phase immediately downstream or above the stripper of a process unit.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska
  • Patent number: 7261807
    Abstract: The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60–300° F. naphtha crackate as the feed.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 28, 2007
    Assignee: ExxonMobil Research and Engineering Co.
    Inventors: B. Erik Henry, William A. Wachter, George A. Swan, III
  • Patent number: 7220351
    Abstract: An apparatus and a process for catalytic cracking of a hydrocarbon feed is described, carried out in at least two reaction zones, one (30) operating in catalyst riser mode, wherein the feed and catalyst from regeneration zone (3) are circulated from bottom to top, the first gases produced are separated from the coked catalyst in a first separation zone (38), the catalyst is stripped (40), a first cracking and stripping effluent (42) is recovered and the coked catalyst is recycled (45) to the regeneration zone. Catalyst (12) from regeneration zone (3) and a hydrocarbon feed (19) are introduced into the upper portion of a dropper reaction zone (16), the catalyst and feed being circulated from top to bottom, the coked catalyst is separated from the second gases produced in a second separation zone (20), the second gases (24) produced are recovered and the coked catalyst is recycled (25) to the regeneration zone.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 22, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Renaud Pontier, Patrick Leroy, Jean-Paul Lepage, Marcelin Espeillac
  • Patent number: 7214308
    Abstract: This invention relates to a novel method for economically processing vacuum residue from heavy crude oils by selectively processing the difficult and easy components in reactors whose design and operating conditions are optimized for the specific feed. The process utilizes an integrated solvent deasphalting (SDA)/ebullated-bed design wherein the heavy vacuum residue feedstock is initially sent to an SDA unit operated with C4/C5 solvent to achieve a high deasphalted oil (DAO) yield. The resulting SDA products, namely asphaltenes and DAO are separately treated in ebullated-bed reactor(s) systems whose design and operating conditions are optimized for a particular feedstock. The resulting net conversion, associated distillate yield and product qualities are greatly improved relative to treatment of the entire residue feedstock in a common ebullated-bed reactor system.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: May 8, 2007
    Assignee: Institut Francais du Petrole
    Inventor: James J. Colyar
  • Patent number: 7198710
    Abstract: A method for producing lubricant base oils is provided comprising the steps of: (a) separating a feedstock into a light lubricant base oil fraction and a heavy fraction; (b) hydroisomerizing the fractions over a medium pore size molecular sieve catalyst under hydroisomerization conditions to produce an isomerized light lubricant base oil fraction having a pour point less than or equal to a target pour point of the lubricant base oils and an isomerized heavy fraction having a pour point of equal to or greater than the target pour point of the lubricant base oils and a cloud point greater than the target cloud point of the lubricant base oils; and (c) dehazing the isomerized heavy fraction to provide a heavy lubricant base oil having a pour point less than or equal to the target pour point of the lubricant base oils and a cloud point less than or equal to the target cloud point of the lubricant base oils.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: April 3, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephen J. Miller, John M. Rosenbaum
  • Patent number: 7173160
    Abstract: Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 6, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theo Maesen, Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu, Hye Kyung C. Timken, Waqar R. Qureshi
  • Patent number: 7156978
    Abstract: A system comprising: a paraffin feed produced by the Fischer-Tropsch process is fractionable into at least three fractions: an intermediate fraction boiling between T1 and T2, T1 being in the range 120–200° C. and T2 being more than 300° C. and less than 410° C., a light fraction boiling below it and a heavy fraction boiling above it; at least a portion of the intermediate fraction is hydrotreated then at least a portion thereof is passed over an amorphous hydroisomerisation/hydrocracking catalyst; the heavy fraction is passed over an amorphous hydroisomerisation/hydrocracking catalyst with a conversion of 370° C.+ products into 370° C.? products of more than 80% by weight; the hydrocracked/hydroisomerised fractions are distilled to obtain middle distillates (kerosine, gas oil).
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: January 2, 2007
    Assignees: Institut Francais du Petrole, AGIP Petroli S.p.A., ENI S.p.A., EniTecnolgie SpA
    Inventors: Eric Benazzi, Christophe Gueret
  • Patent number: 7128827
    Abstract: Integration of gas oil and light olefin catalytic cracking zones with a pyrolytic cracking zone to maximize efficient production of petrochemicals is disclosed. Integration of the units in parallel allows production of an overall product stream with maximum ethylene and/or propylene by routing various feedstreams and recycle streams to the appropriate cracking zone(s), e.g. ethane/propane to the steam pyrolysis zone and C4 C6 olefins to the light olefin cracking zone. This integration enhances the value of the material balances produced by the integrated units.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: October 31, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Michael J. Tallman, Chris Santner, Richard B. Miller
  • Patent number: 7108779
    Abstract: A process for the production of low sulfur hydrocarbonaceous products. The hydrocarbon feedstocks are processed in integrated desulfurization zone, hydrocracking and hydrogenation zones to produce ultra low sulfur diesel, low sulfur naphtha products and low sulfur heavy distillate.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: September 19, 2006
    Assignee: UOP LLC
    Inventor: Vasant P. Thakkar
  • Patent number: 7087153
    Abstract: A catalytic hydrocracking process for the production of ultra low sulfur diesel wherein a hydrocarbonaceous feedstock is hydrocracked at elevated temperature and pressure to obtain conversion to diesel boiling range hydrocarbons. The resulting hydrocracking zone effluent is hydrogen stripped in a stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. The first gaseous hydrocarbonaceous stream containing diesel boiling range hydrocarbons is introduced into a desulfurization zone and subsequently partially condensed to produce a hydrogen-rich gaseous stream and a second liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons. At least a portion of the first liquid stream is thermal cracked to produce diesel boiling range hydrocarbons. An ultra low sulfur diesel product stream is recovered.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: August 8, 2006
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 7083762
    Abstract: The present invention is directed to a hydrocarbon conversion apparatus and process. The apparatus comprises the following: a plurality of riser reactors, each having a first end into which a catalyst is fed, a second end through which the catalyst can exit, and optionally a center axis extending therebetween. The apparatus also includes a separation zone having a plurality of inlets, each inlet not being oriented along the center axes of the riser reactors, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus. A plurality of deviating members are also provided, each deviating member being in fluid communication between the second end of a respective riser reactor and a respective inlet of the separation zone. The apparatus also includes a catalyst retention zone provided to contain catalyst, which is fed to the riser reactors.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith Holroyd Kuechler, James R. Lattner, Nicolas P. Coute, Jeffrey S. Smith, Justin Leonard Krieger
  • Patent number: 7074321
    Abstract: An integrated hydrocarbon conversion process for the production of low sulfur fuels utilizing a hydrocracking zone, a diesel hydrodesulfurization zone, a fluid catalytic cracking zone and a gasoline hydrodesulfurization zone. The hydrocracking zone is used to convert at least a portion of the feedstock into diesel boiling range hydrocarbons which are desulfurized in the first hydrodesulfurization zone. The unconverted feedstock is introduced into a fluid catalytic cracking zone to produce gasoline boiling range hydrocarbons which are desulfurized in a second hydrodesulfurization zone.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: July 11, 2006
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 7033488
    Abstract: A defined catalyst withdrawal and replacement program for optimizing the productivity and the economics of catalyst consumption in a multi-reactor system is disclosed. Catalyst cost is reduced by minimizing removal of the newest catalyst and maximizing removal of older catalyst to achieve an overall reduction of catalyst age in the multi-reactor system.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: April 25, 2006
    Assignee: ConocoPhillips Company
    Inventor: James L. Rockwell
  • Patent number: 7033546
    Abstract: A reactor apparatus and process for contacting hydrocarbons with catalyst. The reactor apparatus comprises a plurality of tubular reactors each having a first end into which a catalyst is fed and a second end through which the catalyst and product exit the tubular reactor. A catalyst retention zone is provided to contain catalyst and feed catalyst to the tubular reactors. A separation zone is provided to separate the catalyst from products of a reaction conducted in the apparatus. A transport conduit having a first end in fluid communication with the second ends of at least two of the tubular reactors and a second end extending into the separation zone transports product and catalyst to the separation zone. A catalyst return in fluid communication with the separation zone and the catalyst retention zone returns catalyst to the catalyst retention zone.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: April 25, 2006
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 7029571
    Abstract: According to this invention, there is provided a process and apparatus for catalytic cracking of various petroleum based heavy feed stocks in the presence of solid zeolite catalyst and high pore size acidic components for selective bottom cracking and mixtures thereof, in multiple riser type continuously circulating fluidized bed reactors operated at different severities to produce high yield of middle distillates, in the range of 50–65 wt % of fresh feed.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: April 18, 2006
    Assignee: Indian Oil Corporation Limited
    Inventors: Debasis Bhattacharyya, Asit Kumar Das, Arumugam Velayutham Karthikeyani, Satyen Kumar Das, Pankaj Kasliwal, Manoranjan Santra, Latoor Lal Saroya, Jagdev Kumar Dixit, Ganga Sanker Mishra, Jai Prakash Singh, Satish Makhija, Sobhan Ghosh
  • Patent number: 6866771
    Abstract: A process and apparatus is disclosed for contacting feed with mixed catalyst in a secondary reactor that is incorporated into an FCC reactor. The mixed catalyst used in the secondary reactor is regenerated catalyst from a regenerator that regenerates spent catalyst from an FCC reactor that is mixed with spent catalyst from either the FCC reactor or the secondary reactor. The mixing of spent and regenerated catalyst reduces the catalyst temperature and tempers catalyst activity to inhibit both thermal and catalytic cracking reactions.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: UOP LLC
    Inventors: David A. Lomas, Rusty M. Pittman
  • Patent number: 6833064
    Abstract: A wide cut Fischer-Tropsch derived diesel fuel is produced wherein the distillate boils in a wider range than a conventional diesel fuel while providing favorable low temperature properties and environmentally beneficial effects. In particular, the fuel comprises a hydrocarbon distillate derived from the Fischer-Tropsch process having T90 greater than 640° F. (338° C.) but less than 1000° F. (538° C.) and a cold filter plugging point less than or equal to +5° C.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: December 21, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Paul Joseph Berlowitz, Robert Jay Wittenbrink, Daniel Francis Ryan, William Berlin Genetti, Jack Wayne Johnson
  • Publication number: 20040251166
    Abstract: A process is described for fluid catalytic cracking of hydrocarbons with high levels of basic nitrogen, where hydrocarbon feedstocks A and B with different levels of basic nitrogen are injected in a segregated fashion, into different risers of a multiple riser FCCU that possesses at least two risers. The injection of the feedstocks is made in such a way that feedstock A, to be injected in the riser with greater volume—main riser 7—possessing a level of basic nitrogen at least 200 ppm lower than the level of feedstock B to be injected into the riser with lower volume—secondary riser (8).
    Type: Application
    Filed: October 22, 2003
    Publication date: December 16, 2004
    Applicant: Petroleo Brasileiro S.A. - PETROBRAS
    Inventors: Claudia Maria de L. Alvarenga Baptista, Elizabeth M. Moreira, Henriques Soares Cerqueira
  • Patent number: 6767451
    Abstract: A process for cracking, in a fluidized bed, a hydrocarbon charge wherein the cooling particles, which may optionally also be catalytic particles, circulate in two successive reaction chambers (1; 16), in each of which they are brought into contact with at least one cut of hydrocarbons, and the reaction effluents from each of the chambers are directed towards one and the same fractionating unit. The effluents from each of the reaction chambers (1; 16) are fractionated in part separately in one and the same partially partitioned fractionating unit, and at least one cut (12) obtained by separately fractionating the effluents from one of the two reaction chambers (1; 16) is, as a whole or in part, reinjected into the other chamber.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: July 27, 2004
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marcellin Espeillac, Pierre Crespin
  • Patent number: 6689273
    Abstract: Heavy hydrocarbons are upgraded to higher value distillates in a hydrocarbon conversion process which employs several parallel on-stream reaction zones which each contain both hydrotreating and hydrocracking catalyst beds. The feed and liquid recycled from the bottom of the reaction zone is charged to the top of the uppermost catalyst bed. Hydrogen flow in the reaction zones is countercurrent to the descending liquid, and products are removed as vapor. The flow of feed to one of the reaction zones is periodically stopped to allow sequential on-stream hydrogenative regeneration of the catalysts within the reaction zones. This allows continuous commercial operation at conditions which are otherwise unfeasible.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: February 10, 2004
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Stephen R. Dunne, Vasant P. Thakkar
  • Publication number: 20030221990
    Abstract: This invention relates to a multi-stage process for hydroprocessing gas oils. Preferably, each stage possesses at least one hydrocracking zone. The second stage and any subsequent stages possess an environment having a low heteroatom content. Light products, such as naphtha, kerosene and diesel, may be recycled from fractionation (along with light products from other sources) to the second stage (or a subsequent stage) in order to produce a larger yield of lighter products, such as gas and naphtha. Subsequent zones are maintained at a lower pressure than that of the first zone, thereby reducing operating expenses.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Inventors: H. Alex Yoon, Jay Parekh, Arthur J. Dahlberg
  • Publication number: 20030205504
    Abstract: A method for processing a gasoline range hydrocarbon stream wherein a single reactor/distillation tower stream is fractionated into a light fraction and a heavy fraction, the light fraction is hydrodesulfurized, the heavy fraction is optionally hydrocracked and then hydrodesulfurized, and the light and heavy fractions are separately recovered.
    Type: Application
    Filed: May 2, 2002
    Publication date: November 6, 2003
    Inventors: Mark P. Kaminsky, Kenneth M. Webber
  • Patent number: 6641715
    Abstract: An entrained bed or fluidised bed process for catalytic cracking of a hydrocarbon feed in two reaction zones is described, one zone (1) being in catalyst dropper mode, the other (2) being in catalyst riser mode. A feed (102) and catalyst from at least one regeneration zone (302) are introduced into the upper portion of the dropper zone, the feed and catalyst are circulated in accordance with a catalyst to feed weight ratio, C/O, of 5 to 20, the cracked gases are separated from the coked catalyst in a first separation zone (105), the cracked gases are recovered (107), the coked catalyst is introduced (110) into the lower portion of the riser zone (2), the coked catalyst and said feed are circulated in a C/O weight ratio of 4 to 8, the used catalyst is separated from the effluent produced in a second separation zone (203), the catalyst is stripped in a stripping zone (212), the effluent and stripping gases are recovered (206) and the used catalyst is recycled (7) to the regeneration zone.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: November 4, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Thierry Gauthier
  • Patent number: 6620312
    Abstract: A method for producing a lube basestock from a waxy feed is disclosed in which a feed containing to 50 wt % or more of wax is hydrotreated and stripped to lower the nitrogen and sulfur content of the feed. The feed is then hydroisomerized under conditions to 370° C. hydrocatalytically dewaxed with a catalyst comprising a mixture of a catalytically active metal on a zeolite dewaxing catalyst and an amorphous catalyst, or alternatively is solvent dewaxed and then hydrocatalytically dewaxed with the just described catalyst.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: September 16, 2003
    Assignee: Exxon Research and Engineering Company
    Inventors: William John Murphy, Ian Alfred Cody, Bernard George Silbernagel
  • Publication number: 20030150776
    Abstract: A process for increasing the yield of C10 plus hydrocarbon products from a Fischer-Tropsch plant which comprises the steps of (a) separating a Fischer-Tropsch product into a wax fraction and a condensate fraction; (b) dewaxing the wax fraction to produce a high boiling intermediate; (c) hydrofinishing the high boiling intermediate; (d) dehydrating the alcohols in the condensate fraction to convert them into olefins; (e) oligomerizing the olefins to form higher molecular weight hydrocarbons; (f) hydrofinishing the oligomerization mixture; and (g) and recovering a C10 plus hydrocarbon product from the hydrofinishing zone.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Inventors: David R. Johnson, Christopher A. Simmons, Donald H. Mohr, Stephen J. Miller, Stephen K. Lee, William L. Schinski, Michael S. Driver
  • Patent number: 6605206
    Abstract: A process for increasing the yield of C10 plus hydrocarbon products from a Fischer-Tropsch plant which comprises the steps of (a) separating a Fischer-Tropsch product into a wax fraction and a condensate fraction; (b) dewaxing the wax fraction to produce a high boiling intermediate; (c) hydrofinishing the high boiling intermediate; (d) dehydrating the alcohols in the condensate fraction to convert them into olefins; (e) oligomerizing the olefins to form higher molecular weight hydrocarbons; (f) hydrofinishing the oligomerization mixture; and (g) and recovering a C10 plus hydrocarbon product from the hydrofinishing zone.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 12, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: David R. Johnson, Christopher A. Simmons, Donald H. Mohr, Stephen J. Miller, Stephen K. Lee, William L. Schinski, Michael S. Driver
  • Publication number: 20030141220
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Publication number: 20030116470
    Abstract: A novel apparatus for producing sweet synthetic crude from a heavy hydrocarbon feed comprising: an upgrader for receiving said heavy hydrocarbon feed and producing a distillate fraction including sour products, and high-carbon content by-products; a gasifier for receiving the high-carbon content by-products and producing synthetic fuel gas and sour by-products; a hydroprocessing unit for receiving the sour by-products and hydrogen gas, thereby producing gas and sweet crude; and a hydrogen recovery unit for receiving said synthetic fuel gas and producing further hydrogen gas and hydrogen-depleted synthetic fuel gas, said further hydrogen gas being supplied to said hydroprocessing unit.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Inventors: Philip Rettger, Randall Goldstein, Jim Arnold
  • Patent number: 6576119
    Abstract: The two-stage hydrocracking process of the present invention comprises bringing the first-stage feed oil containing a hydrocarbon component and having a boiling point of 316° C. or higher into contact with the first-stage catalyst in the presence of hydrogen to obtain a first-stage product; separating the first-stage product into heavy component and light component containing the middle distillate products; bringing the second-stage feed oil containing heavy component of the first-stage reaction product into contact with the second-stage catalyst in the presence of hydrogen to obtain the second-stage product; separating the second-stage product into heavy component and light component comprising middle distillate products and recycling part of the heavy component of the second-stage product to the second-stage feed oil. Hydrocracking activity of the first-stage catalyst is higher than hydrocracking activity of the second-stage catalyst.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: June 10, 2003
    Assignee: Japan Energy Corporation
    Inventors: Katsuaki Ishida, Manabu Kobayashi, Hiroki Koyama, Seiji Togawa, Futoshi Sakaguchi