Metal Is Elemental Aluminum, An Alloy, Or Compound Thereof Patents (Class 216/102)
  • Patent number: 7264740
    Abstract: A method is described for the surface treatment of metals to improve the strength, flexibility and fatigue life of the metal, which in a preferred embodiment includes the steps of thoroughly cleaning and drying the metal surface, etching the surface of the metal to remove sharp apexes and ends of cracks in the metal surface, water rinsing and drying the metal surface, and coating the surface with a low water miscible, water displacing, low surface tension corrosion preventive compound.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: September 4, 2007
    Inventor: David Hughes Horne
  • Patent number: 7247227
    Abstract: In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: July 24, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Robert J. Hanson, Won-Joo Kim, Mike E. Pugh
  • Patent number: 7247256
    Abstract: A first chemical mechanical polishing (CMP) slurry includes a polishing agent, an oxidant, a pH control additive, and an oxide film removal retarder which reduces a removal rate of the silicon oxide film. A second chemical mechanical polishing (CMP) slurry includes a polishing agent, an oxidant, a pH control additive, an oxide film removal retarder which reduces a removal rate of silicon oxide, and a defect prevention agent which inhibits scratch defects and/or corrosion defects at a surface of an aluminum film. In a one-step CMP process, either of the first or second slurry is used throughout CMP of an aluminum layer until an upper surface of an underlying silicon oxide layer is exposed. In a two-step CMP process, the first slurry is used in an initial CMP of the aluminum layer, and then the second slurry is used in a subsequent CMP until the upper surface of the underlying silicon layer is exposed.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 24, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-heon Park, Jae-dong Lee, Sung-jun Kim, Chang-ki Hong
  • Patent number: 7232528
    Abstract: The surface treatment agent for copper and copper alloys contains hydrogen peroxide, a mineral acid, an azole compound, silver ion and a halide ion. The surface treatment agent for copper and copper alloys is useful in the production of printed wiring boards in electronics industry. The surface treatment agent roughens the surface of copper and copper alloys. Particularly, the surface treatment agent can form a uniform and undulation-free roughened surface on copper-clad substrates having plated mirror surface, this having been difficult in conventional techniques, thereby significantly improving the adhesion to etching resists, solder resists, in addition, to prepregs and a resin for mounting electronic parts.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: June 19, 2007
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Akira Hosomi, Naoki Kogure, Kenichi Moriyama, Kenichi Takahashi, Atsushi Hosoda, Kazuhiko Ikeda
  • Patent number: 7169315
    Abstract: A method of producing a reflector sheet, which method comprises treating an Al alloy sheet to increase the total reflectance of a surface of the sheet for use as a lighting reflector by bringing the sheet into contact with an acid or alkaline fluid that dissolves aluminium metal, said fluid having a viscosity of less than 0.01 Pa·s, under conditions to remove from 10 nm to 2000 nm of metal from the surface, and cutting or forming the treated Al alloy sheet into the shape of a reflector sheet.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 30, 2007
    Assignee: Novelis, Inc.
    Inventors: Robin Christopher Furneaux, Barry Roy Ellard
  • Patent number: 7159298
    Abstract: A thin and flexible radio frequency (RF) antenna tag or label is disclosed which contains an RF circuit connected to an antenna which is created by demetallizing the area around the antenna pattern on a thin, metallized substrate such as a film or paper web. Antenna(s) may be formed on one or both sides of the substrate and can contain printed, holographic, optical variable device, diffractive, dot matrix, computer-generated holograms or computer-generated optical images. The demetallized RF antenna on the substrate can optionally further be transferred to a second substrate or web by means of a cold foil stamping process. The tag or label is thin and flexible, enabling a wide range of applications including RF tagging of anti-theft devices, product packaging of all types, credit cards, passports, admission tickets, stamps, vehicles, badges, fare cards, roadway tolls, customs and immigration checkpoints identification, and animal identification/tracking devices.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 9, 2007
    Inventor: Daniel Lieberman
  • Patent number: 7138065
    Abstract: The invention relates to a method for removing an area of a layer of a component consisting of metal or a metal compound. According to prior art, corrosion products of a component are removed in a first step by applying a molten mass or by heating in a voluminous powder bed. This requires high temperatures or a large amount of space. The inventive method for removing corrosion products of a component is characterized in that a cleaning agent is applied locally, which removes the corrosion products by means of a gaseous reaction product.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: November 21, 2006
    Assignees: Siemens Aktiengesellschaft, Diffusion Alloys Ltd.
    Inventors: Norbert Czech, Andre Jeutter, Adrian Kempster, Ralph Reiche, Rolf Wilkenhöner
  • Patent number: 7138064
    Abstract: The present invention relates to a method of manufacturing a semiconductor device. In the method, an etching-back layer consisting of aluminum or copper is formed on a base substrate and a multilayer wiring board is manufactured on the etching-back layer. After that the etching-back layer is etched to be removed under the condition that the multilayer wiring board and the base substrate are not etched, so that the base substrate is separated from the multilayer wiring board. Accordingly, the base substrate can be reused.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: November 21, 2006
    Assignee: NEC Electronics Corporation
    Inventor: Hirokazu Honda
  • Patent number: 7115193
    Abstract: Provided is a sputtering target, backing plate or apparatus inside a sputtering device in which an electrical discharge machining mark is formed on the face to which unwanted films during sputtering are deposited, and the electrical discharge machining mark is formed from numerous inclined protrusions having a depression angle of less than 90°. When necessary, chemical etching is further performed to the portions subject to such electrical discharge machining. Thereby, the separation and flying of deposits arising from the face to which unwanted films of the target, backing plate and apparatus inside the sputtering device are deposited can be prevented.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 3, 2006
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Hideyuki Takahashi
  • Patent number: 7097780
    Abstract: An aluminum composite material has a surface structure in which a part of lubricative granules projects by 2 ?m to 25 ?m from the surface of the aluminum alloy base material. The lubricative property of the lubricative granules is utilized sufficiently, and the abrasion of the aluminum alloy base material can be prevented. Further, according to a manufacturing method of the aluminum composite material where the surface of the aluminum alloy base material is eroded with a etching solution, a level of erosion of the aluminum alloy base material can be easily adjusted and a surface structure from which the lubricative granules project can be formed sufficiently.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: August 29, 2006
    Assignee: Central Motor Wheel Co., Ltd.
    Inventor: Makoto Fujita
  • Patent number: 7091862
    Abstract: The present invention provides systems and methods for transmitting and receiving information from a radio frequency (RF) transponder. A conductive adhesive connects an antenna in a non-metallized region to a metallized region. This feature transforms the entire metallized region of the radio frequency device (i.e., the remainder of the metallized material outside the non-metallized region) into an antenna.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: August 15, 2006
    Assignee: Neology, Inc.
    Inventor: Francisco Martinez de Velasco Cortina
  • Patent number: 7037350
    Abstract: A composition for chemical-mechanical polishing, comprising an aqueous solution and an abrasive that comprises polymer particles, is described. The polymer particles carry an electrical charge, such that nearby particles repel one another. Accordingly, aggregation of polymer particles may be reduced, minimized or eliminated. The composition may additionally comprise an oxidizing agent. A method of using the composition to polish a substrate surface, such as a substrate surface having a metal surface feature or layer, is also described. A substrate so polished may exhibit good surface characteristics, such as a relatively smooth surface or a reduced number of, or a lack of, microscratches on the surface of the substrate.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 2, 2006
    Assignee: DA NanoMaterials L.L.C.
    Inventors: Robert J. Small, Zhefei J. Chen
  • Patent number: 7034688
    Abstract: A method for selectively removing metal from a metallized substrate (e.g., a metallized polymer film) and the formation fo devices thereby are provided. The method involves selectively exposing the metallized surface to a demetallizing (i.e., an oxidizing) chemical solution. The metallized layer can be selectively exposed to the demetallizing solution using a flexographic printing process wherein printing rollers are used to transfer the demetallizing solution to the metallized surface. An identification device including, for example, a holographic, retro-reflective, or other metallized material and a radio-frequency transponder are also provided. The radio-frequency transponder includes an RF chip and an antenna in electrical communication with the chip. The identification device including the holographic image allows both electronic identification through the reading of identification data stored in the chip and optical identification via the holographic image.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 25, 2006
    Assignee: Neology, Inc.
    Inventors: Manfred Rietzler, Francisco Martinez de Velasco Cortina
  • Patent number: 7029597
    Abstract: A process for selectively etching a surface of an anodized aluminum article. A preferred process includes: providing an aluminum sheet or web including first and second sides having anodized finishes; etching the first side to improve the adhesion capabilities of that side but not etching the second side so that the second side retains its anodized finish. The anodized aluminum may be colored before etching, thus the second side retains its color after etching. In a more preferred embodiment, sodium hydroxide or phosphoric acid is used to etch the anodized aluminum. Optionally, the etching of the second side is prevented by administering gas or liquid over the second side, masking the second side with a protective film, or shielding the second side with a shield. Further, the gas or liquid administered over the second side may be controlled to increase or decrease the rate of etching on the first side.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: April 18, 2006
    Assignee: Lorin Industries, Inc.
    Inventors: Gregory S. Marczak, Rick A. Minner
  • Patent number: 7022254
    Abstract: Non-chromate solutions for treating and/or etching metals, particularly, aluminum, aluminum alloys, steel and titanium, and method of applying same wherein the solutions include either a titanate or titanium dioxide as a “drop-in replacement” for a chromium-containing compound in a metal surface etching solution that otherwise would contain chromium.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: April 4, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Wayne C. Tucker, Maria G. Medeiros, Richard Brown
  • Patent number: 7001533
    Abstract: Non-chromate solutions for treating and/or etching metals, particularly, aluminum, aluminum alloys, steel and titanium, and method of applying same wherein the solutions include either a titanate or titanium dioxide as a “drop-in replacement” for a chromium-containing compound in a metal surface etching solution that otherwise would contain chromium.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: February 21, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Wayne C. Tucker, Maria G. Medeiros, Richard Brown
  • Patent number: 6908561
    Abstract: Methods for adhering polyimide dielectric materials to copper-, titanium-, aluminum-, or copper-and-titanium-containing portions of a substrate are described. The methods include the steps of applying adhesion promoter to a clean surface of the substrate, and curing the adhesion promoter. SPIE varnish is applied over the cured adhesion promoter, and is itself cured. A further layer of adhesion promoter is applied over the cured SPIE varnish, and is cured. The polyimide dielectric material is then laminated to the adhesion promoter. Cleaning of the copper-containing substrate portions is performed by etching with etchant including cupric chloride, cleaning of the titanium-containing substrate portions is performed with etchant including HF, and cleaning of copper- and titanium-containing portions is performed by HF etching followed by cupric chloride etching. Aluminum-containing portions of the substrate are not etched.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: June 21, 2005
    Assignee: Lockhead Martin Corporation
    Inventors: Donald Franklin Foust, William Francis Nealon, Robert G. Davies, Jr., Charles E. Crepeau
  • Patent number: 6893578
    Abstract: An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H2SO4). These acids can be used in the ratio of 1:3 to 3:1 HF:H2SO4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H2SO4 can be provided as “semiconductor grade” acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H2SO4.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 17, 2005
    Assignee: Sandia Corporation
    Inventors: Peggy J. Clews, Seethambal S. Mani
  • Patent number: 6821447
    Abstract: A method of surface treatment of friction members includes providing a friction member made of PMMC material. A transfer layer is formed on the active surface of the friction member of removing the top layer of the matrix material to expose a surface with the embedded reinforcing particles.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: November 23, 2004
    Assignees: Norsk Hydro ASA, Volvo Car Corporation
    Inventors: Torkil Storstein, Claes Kuylenstierna, Jouko Kalmi
  • Patent number: 6811583
    Abstract: A polishing composition for a substrate for a magnetic disk, which comprises: (a) a polishing accelerator composed of at least one compound selected from the group consisting of malic acid, glycolic acid, succinic acid, citric acid, maleic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, crotonic acid, nicotinic acid, aluminum nitrate, aluminum sulfate and iron(III) nitrate, (b) an edge sagging preventive agent composed of at least one compound selected from the group consisting of a polyvinylpyrrolidone, a polyoxyethylene sorbitan fatty acid ester and a polyoxyethylene sorbit fatty acid ester, (c) at least one abrasive selected from the group consisting of aluminum oxide, silicon dioxide, cerium oxide, zirconium oxide, titanium oxide and silicon carbide, and (d) water.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: November 2, 2004
    Assignee: Fujimi Incorporated
    Inventor: Tomoaki Ishibashi
  • Patent number: 6793838
    Abstract: The present invention relates to a chemical milling solution and a chemical milling process for removing a desired depth of material from metal parts. The milling solution contains nitric acid, hydrofluoric acid, a wetting agent, such as a surfactant, dissolved titanium, and the balance water. The solution is maintained at a temperature in the range of from about 110° F. to about 130° F. The metal part to be milled is immersed in the milling solution for a time sufficient to remove a desired depth of material from at least one surface of the part.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 21, 2004
    Assignee: United Technologies Corporation
    Inventors: James O. Hansen, Kenneth C. Long, Michael A. Jackson, Henry M. Hodgens
  • Patent number: 6776810
    Abstract: The invention provides a chemical-mechanical polishing systems, and methods of polishing a substrate using the polishing systems, comprising (a) an abrasive, (b) a liquid carrier, and (c) a positively charged polyelectrolyte with a molecular weight of about 15,000 or more, wherein the abrasive comprises particles that are electrostatically associated with the positively charged electrolyte.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: August 17, 2004
    Assignee: Cabot Microelectronics Corporation
    Inventors: Isaac K. Cherian, Phillip Carter, Jeffrey P. Chamberlain, Kevin Moeggenborg, David W. Boldridge
  • Patent number: 6764773
    Abstract: A heat-dissipating substrate is made of a composite material comprising a first composition primarily composed of aluminum and a second composition primarily composed of silicon carbide and/or silicon The heat-dissipating substrate has a recess in one of its main faces. The main faces have fine unevenness, and the maximum amplitude of the fine unevenness in the depth direction of a main face is smaller than the maximum length in the depth direction of composite particles comprising the first composition and the second composition or particles of the second composition, the particles being exposed at the surface of the main face.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: July 20, 2004
    Assignee: Sumitomo Electric Industrial Co., Ltd.
    Inventors: Masahiro Omachi, Akira Fukui
  • Patent number: 6706207
    Abstract: Non-chromate solutions for treating and/or etching metals, particularly, aluminum, aluminum alloys, steel and titanium, and method of applying same wherein the solutions include either a titanate or titanium dioxide as a “drop-in replacement” for a chromium-containing compound in a metal surface etching solution that otherwise would contain chromium.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: March 16, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Wayne C. Tucker, Maria G. Medeiros, Richard Brown
  • Publication number: 20040006924
    Abstract: The present invention provides a composition for chemical-mechanical polishing which comprises at least one abrasive particle having a surface at least partially coated by a activator. The activator comprises a metal other than a metal of Group 4(b), Group 5(b) or Group 6(b). The composition further comprises at least one oxidizing agent. The composition is believed to be effective by virtue of the interaction between the activator coated on the surface of the abrasive particles and the oxidizing agent, at the activator surface, to form free radicals. The invention further provides a method that employs the composition in the polishing of a feature or layer, such as a metal film, on a substrate surface. The invention additionally provides a substrate produced this method.
    Type: Application
    Filed: February 11, 2003
    Publication date: January 15, 2004
    Inventors: Brandon Shane Scott, Robert J. Small
  • Patent number: 6666983
    Abstract: The present invention is directed to an article with a patterned appearance provided by a visually observable contrast between one or more genereally transparent thin film coatings deposited over a substrate. At least one of the deposited coatings exhibits a reflected color and/or contrast and visible differing transmitted color and/or contrast or a plurality of coatings together exhibit different reflected colors and/or contrasts. The coatings are selected from the group of: metals depositable by magnetron sputtering vacuum deposition, chemical vapor deposition, pyrolytic coating, or sol-gel techniques, metal oxide coatings, metal nitride coatings, semi-conductor containing coatings, metal oxynitrides and mixtures thereof. The present invention is also directed to a method of making the articles having a visually observable patterned appearance involving masking and applying the coating or applying the coating and removing a portion of the coating to form the pattern.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: December 23, 2003
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gary J. Marietti, Mehran Arbab, James J. Finley
  • Patent number: 6641630
    Abstract: The invention provides a chemical-mechanical polishing system, and a method of polishing using the system, comprising (a) an abrasive, a polishing pad, or both an abrasive and a polishing pad, (b) iodine, (c) an iodine vapor-trapping agent, and (d) a liquid carrier.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: November 4, 2003
    Assignee: Cabot Microelectronics Corp.
    Inventor: Tao Sun
  • Patent number: 6625862
    Abstract: A wafer processing apparatus (14) has a wafer processing vessel (16). A wafer is mounted on a susceptor (22) included in the wafer processing apparatus. Process gases are supplied to the wafer through a shower head (74) disposed in an upper region within the processing vessel to carry out a predetermined process for processing the wafer. The surfaces of aluminum members (16, 74) employed in the wafer processing apparatus are subjected to an organic mechanical chemical polishing process, a blasting process and an aluminum oxide film forming process in that order. It is difficult for unnecessary films to adhere to the thus treated surfaces and it is difficult for unnecessary films deposited on the thus treated surfaces to come off the surfaces. Consequently, intervals between cleaning operations can be extended and production of particles can be suppressed.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: September 30, 2003
    Assignees: Hitachi Ltd., Tokyo Electron Limited
    Inventors: Morio Kajiyama, Sakae Nakatsuka, Yasushi Aiba
  • Patent number: 6596150
    Abstract: Disclosed is a production method of an aluminum support for a lithographic printing plate, capable of stable and low-cost production of an aluminum support for a lithographic printing plate, the support being scarcely subject to generation of treatment unevenness called streaks or grainy unevenness ascribable to the different in the aluminum dissolving rate due to the difference in the orientation of the crystal grain. The aluminum support is produced by surface graining and then polishing an aluminum plate or by polishing an aluminum plate while etching it in an aqueous acid or alkali solution. The aluminum plate may be subjected to polishing and then to anodization or may be subjected to polishing, to surface graining, again to or not to polishing and then to anodization. A production method for producing a high-quality support for a lithographic printing plate, free of local unevenness is also disclosed.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: July 22, 2003
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Atsuo Nishino, Yoshitaka Masuda, Hirokazu Sawada, Akio Uesugi, Masahiro Endo
  • Patent number: 6589882
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 6533951
    Abstract: A method of manufacturing a pump [10] for pumping various primary fluids. A body is formed from silicon dies [102,104]. A primary fluid channel [110] is formed in the body and a primary fluid supply [122] is coupled to the primary fluid channel [110] to supply a primary fluid to the primary fluid channel [110]. A mechanism for introducing a secondary fluid to an interface region of the primary fluid channel [110] is formed in the body. An energy delivery device is formed in the body to deliver energy to an interface between region between the primary fluid and the secondary fluid to create a thermal gradient along the fluid interface. The thermal gradient results in a surface tension gradient along the interface. The primary fluid will move to compensate for the surface tension gradient. Various semiconductor fabrication processes can be used to form the elements on the body.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: March 18, 2003
    Assignee: Eastman Kodak Company
    Inventors: Michael Debar, Constantine N. Anagnostopoulos, Gilbert A. Hawkins, Ravi Sharma
  • Publication number: 20030042226
    Abstract: A method of forming a nano-supported sponge catalyst (10) on a substrate (12) is comprised of depositing an active catalytic metallic element (16) on the substrate (12) and depositing a structural metallic element (18) with the active catalytic metallic element (16) to form a mixed metal alloy layer (14). The method is further comprised of etching the mixed metal alloy layer (14) with an etchant to oxidize the active catalytic metallic element (16) and the structural metallic element (18) and to remove at least a portion of the structural metallic element (18) from a first sub-layer of the mixed metal alloy layer (14). The first sub-layer of the mixed metal alloy layer (14) is porous and comprised of nano-particles of the active catalytic metallic element (16) that are supported by a metal oxide structure derived from the structural metallic element (18).
    Type: Application
    Filed: August 29, 2001
    Publication date: March 6, 2003
    Applicant: Motorola, Inc.
    Inventors: Bernard F. Coll, Yi Wei
  • Patent number: 6527818
    Abstract: There is provided an aqueous dispersion for CMP with an excellent balance between chemical etching and mechanical polishing performance. The aqueous dispersion for CMP of the invention is characterized by comprising an abrasive, water and a heteropolyacid. Another aqueous dispersion for CMP according to the invention is characterized by comprising an abrasive, water, a heteropolyacid and an organic acid. Yet another aqueous dispersion for CMP according to the invention is characterized by comprising colloidal silica with a primary particle size of 5-100 nm, water and a heteropolyacid. Preferred for the heteropolyacid is at least one type selected from among silicomolybdic acid, phosphorotungstic acid, silicotungstic acid, phosphoromolybdic acid and silicotungstomolybdic acid. Preferred for the organic acid is at least one selected from among oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid, malic acid, tartaric acid and citric acid.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: March 4, 2003
    Assignee: JSR Corporation
    Inventors: Masayuki Hattori, Kiyonobu Kubota, Kazuo Nishimoto, Nobuo Kawahashi
  • Patent number: 6488729
    Abstract: To provide a polishing composition which enables maintenance of excellent properties and high quality of the surface of a hard disk without lowering polishing rate during polishing of the surface, and which can provide a polished surface in which the amount of dub-off is considerably reduced as compared with that of a conventional level, a polishing composition containing water, a polishing material (particularly alumina), a polishing accelerator, and at least one of hydroxypropyl cellulose and hydroxyalkyl alkyl cellulose is provided.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: December 3, 2002
    Assignees: Showa Denko K.K., Yamaguchi Seiken Kogyo K.K.
    Inventors: Ken Ishitobi, Masahiro Nozaki, Tadanori Nagao, Yoshiki Hayashi
  • Patent number: 6468439
    Abstract: A process for the etching of multiple layers of at least two different metals comprisies: forming a resist pattern over a first layer of metal, said resist pattern having a pattern of openings therein, applying a first etch solution onto said resist pattern so that at least some etch solution contacts exposed areas of the first layer of metal, etching away the majority of the depth of the first metal in exposed areas of metal in the first layer of metal, applying a second etch solution onto the resist pattern the second etch solution having a rate of etch towards the first metal as compared to the first etch solution that is at least 20% less than the millimeter/minute rate of etch of the first etch solution at the same etch solution temperature, removing the second etch solution from said resist pattern after at least the first metal layer has been etched sufficiently to expose areas of a second metal layer underlying the first metal layer by forming an etched first metal layer, and applying a third etch so
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: October 22, 2002
    Assignee: BMC Industries, Inc.
    Inventors: Donald A. Whitehurst, Paul D. Wyatt, Charles Ring, Michael J. Dufresne, Jose F. Brenes, Bruce A. Finger, Dave R. Zeipelt
  • Patent number: 6454958
    Abstract: A method of operating a milling bath wherein a metal workpiece to be milled is immersed in a milling bath containing a milling medium, the metal oxidizing owing to a chemical reaction between the metal and milling medium and being transformed into a soluble complex. The resultant mixture is subjected to a separation process which separates the excess milling medium from the complex, the recovered milling medium being used for the further operation of milling baths and the complex being subjected to a preparation process. A mixture of dissolved complexed metallic ions and milling medium is removed from the milling bath at a concentration of dissolved complexed metallic ions which is far below the saturation limit thereof. The separation process is a nanofiltration process in which the milling medium is separated from the mixture according to the principle of reverse osmosis, the residue simultaneously being concentrated with complexed metallic ions.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: September 24, 2002
    Assignee: DaimlerChrysler AG
    Inventor: Karsten Loehr
  • Patent number: 6449123
    Abstract: A marking method for a sintered product of the invention includes forming a concave portion on the sintered product by irradiating the sintered product with laser light thereby to write identification information on the sintered product. The depth of the concave portion is adjusted in a range between 0.1 &mgr;m and 5 &mgr;m, inclusive.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 10, 2002
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Shinji Tsujimoto, Takayuki Morikawa
  • Patent number: 6444140
    Abstract: Metal surfaces, particularly copper surfaces, which are oxidatively micro-etched to increase surface area through the use of molybdenum. The micro-etch solutions contain a proton source, e.g., a mineral acid, an oxidizer agent, e.g., hydrogen peroxide, an azole compound, and a molybdenum source. These micro-etched surfaces can further be rendered acid-resistant by exposure to a thiazole compound and/or a thiocarbamide compound. The thiazole compound and/or thiocarbamide compound may be provided either in the oxidative micro-etching solution or provided in a post-micro-etching solution.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: September 3, 2002
    Assignee: Morton International Inc.
    Inventors: John Schemenaur, Todd Johnson, Michael Marsaglia
  • Patent number: 6436305
    Abstract: The present invention provides a process for etching a corrosion layer, such as oxide or hydroxide, from and concomitantly forming a passivating layer on the surface of metallic nanoparticles. A reaction mixture is prepared by dispersing sodium hexafluoroacetylacetonate (Na(hfa)) and a metallic particle powder having oxide or hydroxide corrosion layers in hexane solvent. The mixture is allowed to react for a time sufficient to etch the oxide or hydroxide groups from the particulate surface and passivate the surfaces with (hfa). Hexane may be evaporated from the mixture and any excess Na(hfa) separated from the reaction mixture by sublimation or rinsing with a polar aprotic solvent. In an embodiment of the present invention, aluminum particles are first etched and passivated and then used to form ohmic contacts with p-type silicon. This etching/passivation improves the electrical properties of the contact.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: August 20, 2002
    Assignee: Midwest Research Institute
    Inventors: Douglas L. Schulz, Calvin J. Curtis, David S. Ginley
  • Patent number: 6432219
    Abstract: A method for separating layers from articles made of high-speed steel and having at least one layer of TiAlN, includes applying an alkaline solution containing hydrogen peroxide, a base as well as acid to the layer. The acid is selected from phosphates, phosphonates and phosphonic acids.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: August 13, 2002
    Assignee: Unakis Trading AG
    Inventors: Jan Hendrik Wijngaard, Hans Braendle
  • Patent number: 6428717
    Abstract: A hydrophilic polymer material such as polyvinyl alcohol is formed into a porous film (301). A film (holding film) (303) made from a hydrophobic polymer material such as polyvinyl acetate is formed on the inner walls of a large number of pores (302) formed in the porous film (301). Lithium chloride (304) is held in these pores (302).
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: August 6, 2002
    Assignee: Yamatake-Honeywell Co., Ltd.
    Inventors: Yoshiro Sakai, Masanobu Matsuguchi, Hiroyuki Hara, Sachiko Suzuki, Nobuaki Honda
  • Patent number: 6428715
    Abstract: A method for producing sliders without alumina overcoat protrusion on the air bearing surface. The method comprises a method for removing alumina protrusion on the air bearing surface of a slider comprising contacting the air bearing surface of the slider with an aqueous base having a pH of about 9 to about 11.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporation
    Inventors: Daniel Gerard Abels, Yu-En Percy Chang, Peter Beverley Powell Phipps, Jila Tabib, Benjamin Lu-Chen Wang
  • Patent number: 6420099
    Abstract: A method for patterning an aluminum-containing layer. A tungsten-containing layer is provided over an aluminum-containing layer. The tungsten-containing layer is patterned to form an opening therein, so that the opening exposes an underlying portion of the aluminum-containing layer. The patterned tungsten-containing layer is exposed to an etch having a substantially higher etch rate of the aluminum-containing layer than of the tungsten-containing layer to remove the exposed portion of the aluminum-containing layer.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: July 16, 2002
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Martin Gutsche, Satish D. Athavale
  • Publication number: 20020036183
    Abstract: A method of forming a pattern, which comprises forming a first resist film on a surface of a substrate, patterning the first resist film to form a first resist pattern, and forming a covering layer containing silicon or a metal on the first resist pattern by making use of a coating method using a solution containing a solvent which is incapable of dissolving the first resist.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 28, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Tsuyoshi Shibata
  • Patent number: 6361708
    Abstract: A method and an apparatus for polishing a metal film formed on a semiconductor device are disclosed. A semiconductor wafer is immersed in an oxidizing solution before it is polished. As a result, the undesirable part of a W film deposited on the circumferential edge of the wafer is removed by etching.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: March 26, 2002
    Assignee: NEC Corporation
    Inventors: Akira Kubo, Mieko Suzuki
  • Patent number: 6346772
    Abstract: A gas discharge display device comprising a front side substrate having a plurality of first electrodes and a back side substrate having a plurality of second electrodes, wherein at least said first electrodes or second electrodes are formed by wet etching using a resist made of an inorganic material, is excellent in the ability to suppress the breakage of wiring in electrodes.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: February 12, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Nishiki, Ryohei Satoh, Yuzo Taniguchi, Shigeaki Suzuki, Michifumi Kawai, Masahito Ijuin, Akira Yabushita, Makoto Fukushima, Tomohiko Murase
  • Publication number: 20020008081
    Abstract: Disclosed is a process for the surface treatment of an aluminum support for printing plate which comprises a step of brush-graining with an abrasive brush and an abrasive slurry, characterized in that as the abrasive there is used aluminum hydroxide, the aluminum hydroxide which has been used in graining is dissolved in a sodium aluminate solution and the sodium aluminate solution having a raised supersaturation degree, the aluminum hydroxide which has been left undissolved and seed crystal aluminum hydroxide undergo hydrolysis reaction to produce crystalline aluminum hydroxide which is then purified and recovered.
    Type: Application
    Filed: August 18, 1998
    Publication date: January 24, 2002
    Inventors: HIROSHI FUKUTA, HIDEKI MIWA
  • Patent number: 6335290
    Abstract: In a method of etching an Al or Al alloy layer, an Al or Al alloy layer is formed on an underlying surface, the surface of the Al or Al alloy layer is processed with TMAH, a resist pattern is formed on the surface of the Al or Al alloy layer processed with TMAH, and by using the resist pattern as an etching mask, the Al or Al alloy layer is wet-etched.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: January 1, 2002
    Assignee: Fujitsu Limited
    Inventor: Yukimasa Ishida
  • Patent number: 6322712
    Abstract: In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Robert J. Hanson, Won-Joo Kim, Mike E. Pugh
  • Publication number: 20010027798
    Abstract: A polishing liquid for components, preferably wafers, a process for producing a polishing liquid and a process for chemical mechanical polishing of components are provided. The polishing liquid has a polishing base liquid and an oxidizing agent. The aim is to provide an economical polishing agent which is also simple to produce, which can be used as an alkaline or acidic polishing agent and with which metallic layers in particular can be polished. Ozone, which is used as an oxidizing agent, is a strong oxidizing agent having a redox potential that is sufficient for oxidizing or polishing the metals in an acidic or alkaline environment.
    Type: Application
    Filed: March 19, 2001
    Publication date: October 11, 2001
    Inventors: Rainer Flierl, Annette Sanger