Metal Is Elemental Copper, An Alloy, Or Compound Thereof Patents (Class 216/105)
  • Patent number: 11627664
    Abstract: A method for manufacturing a flexible circuit electrode array, comprising: a) depositing a metal trace layer containing a base coating layer, a conducting layer and a top coating layer on the insulator polymer base layer; b) applying a layer of photoresist on the metal trace layer and patterning the metal trace layer and forming metal traces on the insulator polymer base layer; c) activating the insulator polymer base layer and depositing a top insulator polymer layer and forming one single insulating polymer layer with the base insulator polymer layer; d) applying a thin metal layer and a layer of photoresist on the surface of the insulator polymer layer and selective etching the insulator layer and the top coating layer to obtain at least one via; and e) filling the via with electrode material. A layer of polymer is laid down. A layer of metal is applied to the polymer and patterned to create electrodes and leads for those electrodes.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: April 11, 2023
    Assignee: Cortigent, Inc.
    Inventors: Robert Jay Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok
  • Patent number: 11257684
    Abstract: A method of etching a copper (Cu) thin film and a Cu thin film prepared therefrom, the method including patterning a hard mask layer on the Cu thin film to form a hard mask on the Cu thin film; forming a plasma of a mixed gas, the mixed gas including an inert gas and an organic chelator material including an amine group, the mixed gas not including a halogen gas or a halide gas; and etching the Cu thin film through the hard mask using the plasma generated in the forming of the plasma of the mixed gas.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: February 22, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Cheewon Chung, Jaesang Choi
  • Patent number: 11208726
    Abstract: A microetching agent is an acidic aqueous solution containing an organic acid, cupric ions, and halide ions. The molar concentration of halide ion of the microetching agent is 0.005 to 0.1 mol/L. By bringing the microetching agent into contact with a copper surface, the copper surface is roughened. An average etching amount in the depth direction during roughening is preferably 0.4 ?m or less. The microetching agent can impart on copper surfaces a roughened shape having excellent adhesiveness to resins and the like, even with a low etching amount.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: December 28, 2021
    Assignee: MEC COMPANY LTD.
    Inventors: Yuki Ogino, Takahiro Sakamoto, Kaoru Urushibata
  • Patent number: 11056269
    Abstract: In an embodiments, a coil component includes: an element body part 10 and a coil 30 of spiral shape constituted by multiple winding conductors 32 and through hole conductors 34 that interconnect the winding conductors 32; wherein each winding conductor 32 has, in a cross-sectional view in the width direction of the winding conductor 32, a flat side 40 that extends in a second direction substantially perpendicular to the coil axis of the coil 30; and the point of intersection 48 between a figure line 42 corresponding to the longest part in a first direction, and a figure line 44 corresponding to the longest part in the second direction, with respect to the coil axis, is positioned on the figure line 42 within one-quarter of the figure line away from one end 50 on the side 40 or from the other end 52 opposing the side 40.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 6, 2021
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Yoshikazu Maruyama, Noriyuki Mabuchi, Ichiro Yokoyama, Masataka Kohara, Keiichi Nozawa, Masakazu Okazaki, Hideaki Hoshino, Tomoyuki Oyoshi, Takehumi Yamada, Chikako Yoshida
  • Patent number: 10800711
    Abstract: A ceramic and plastic composite and a method for fabricating the same are disclosed. A chemical cleaning treatment, a microetching treatment, a hole reaming treatment, and a surface activating treatment are performed on the surface of a ceramic matrix to form nanoholes with an average diameter ranging between 150 nm and 450 nm. Plastics are injected onto the surface of the baked ceramic matrix to form a plastic layer. The plastic layer more deeply fills the nanoholes to have higher adhesion. Thus, the higher combined strength and air tightness exist between the ceramic matrix and the plastic layer to improve the reliability and the using performance of the ceramic and plastic composite.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: October 13, 2020
    Assignees: COXON PRECISE INDUSTRIAL CO., LTD, SINXON PLASTIC (DONG GUAN) CO., LTD, DONG GUAN CHENG DA METAL PRODUCT CO., LTD, DONG GUAN CHENSONG PLASTIC CO., LTD
    Inventors: Wen-Tung Chang, Jong-Yi Su
  • Patent number: 10779405
    Abstract: A landless multilayer circuit board includes a first substrate, a first circuit, at least one connecting pillar, a second substrate, and a second circuit. The second substrate is on the surface of the first substrate, covering the first circuit, and exposing at least one top of the at least one connecting pillar exposed out of a surface of the second substrate, wherein an area of a portion of the at least one connecting pillar that is exposed out of the surface of the second substrate is greater than an area of a portion of the at least one connecting pillar that is connected to the first circuit. The second circuit is on the surface of the second substrate and the at least one connecting pillar, and connected to the portion of the at least one connecting pillar that is exposed out of the surface of the second substrate.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 15, 2020
    Assignee: KINSUS INTERCONNECT TECHNOLOGY CORP.
    Inventors: Ting-Hao Lin, Chiao-Cheng Chang, Yi-Nong Lin
  • Patent number: 10619251
    Abstract: An etching solution for copper and copper alloy surfaces comprising at least one acid, at least one oxidising agent suitable to oxidise copper, at least one source of halide ions and further at least one polyamide containing at least one polymeric moiety according to formula (I) wherein each a is independently from each other selected from 1, 2 and 3; each b is an integer independently from each other ranging from 5 to 10000; each R1 is a monovalent residue independently from each other selected from the group consisting of substituted or unsubstituted C1-C8-alkyl groups and a method for its use are provided. Such etching solution is particularly useful for retaining the shape of treated copper and copper alloy lines.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 14, 2020
    Assignee: Atotech Deutschland GmbH
    Inventors: Fabian Michalik, Norbert Lützow, Josef Gaida, Thomas Hülsmann, Gabriela Schmidt
  • Patent number: 10586654
    Abstract: A method for making a glass dielectric capacitor may include providing a plurality of foil sheets, cutting each of the plurality of foil sheets with a laser beam by melting each of the plurality of foil sheets, forming a respective smooth foil edge on each of said plurality of foil sheets during the cutting, providing a plurality of glass sheets, and stacking the plurality of foil sheets in alternating layers with the plurality of glass sheets.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 10, 2020
    Assignee: GENERAL ATOMICS
    Inventors: James Ross MacDonald, Esteban Balarezo Bagdy, Mark Aoraha Cacause, Mark Allen Schneider
  • Patent number: 10433432
    Abstract: The printed circuit board with at least one substrate layer having signal lines on a corresponding upper surface and on a corresponding lower surface has a sleeve-sized conductive layer on a circumference of at least one via hole between the upper and lower surface for a conductive connection between at least one signal line on the upper surface and at least one signal line on the lower surface. An axial enlargement of the sleeve-sized conductive layer is radially bent above a base layer of copper on the upper surface and below a base layer of copper on the lower surface.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Uwe Hassel
  • Patent number: 10362681
    Abstract: A method for manufacturing a flexible circuit electrode array adapted to electrically communicate with organic tissue including the following steps: a) providing a flexible polymer base layer; b) curing the base layer; c) depositing a metal layer on base layer; d) patterning the metal layer and forming metal traces on the base layer; e) roughening the surface of the base layer; f) chemically reverting the cure of the surface of the base layer; g) depositing a flexible polymer top layer on the surface of the base layer and the metal traces; h) curing the top layer and the surface of the base layer forming one single flexible polymer layer; and i) creating openings through the single layer to the metal trace layer.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 23, 2019
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith
  • Patent number: 10174428
    Abstract: An etchant for copper includes an acid and one or more compounds selected from the group consisting of an aliphatic noncyclic compound, an aliphatic heterocyclic compound and a heteroaromatic compound. The aliphatic noncyclic compound is a saturated aliphatic noncyclic compound (A) including only two or more nitrogen atoms as heteroatoms, and 2 to 10 carbon atoms. The aliphatic heterocyclic compound is a compound (B) including a five-, six-, or seven-membered ring having one or more nitrogen atoms as one or more heteroatoms constituting the ring. The heteroaromatic compound is a compound (C) including a six-membered heteroaromatic ring having one or more nitrogen atoms as one or more heteroatoms constituting the ring.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: January 8, 2019
    Assignee: MEC Company Ltd.
    Inventors: Hirofumi Kodera, Ikuyo Katayama, Shota Hishikawa
  • Patent number: 9946159
    Abstract: A fragmentation pattern is formed on a surface of a warhead using a lithographic process. A photoresistant material is coated on an interior surface of the warhead casing. A portion of the photoresistant material is selectively cured by projecting an image of the fragmentation pattern onto the photoresistant material. The uncured portion of the photoresistant material is removed and an etchant is applied to the exposed portion of the warhead casing surface thereby etching the fragmentation pattern. Alternatively, a protective coating is applied over the entire surface thereby creating the fragmentation pattern.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 17, 2018
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Paul C. Manz, Philip J. Magnotti, Ductri H. Nguyen
  • Patent number: 9899234
    Abstract: Methods and techniques for fabricating metal interconnects, lines, or vias by subtractive etching and liner deposition methods are provided. Methods involve depositing a blanket copper layer, removing regions of the blanket copper layer to form a pattern, treating the patterned metal, depositing a copper-dielectric interface material such that the copper-dielectric interface material adheres only to the patterned copper, depositing a dielectric barrier layer on the substrate, and depositing a dielectric bulk layer on the substrate.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: February 20, 2018
    Assignee: Lam Research Corporation
    Inventors: Hui-Jung Wu, Thomas Joseph Knisley, Nagraj Shankar, Meihua Shen, John Hoang, Prithu Sharma
  • Patent number: 9820388
    Abstract: A PCB includes a base layer, a wiring pattern formed on a surface of the base layer, and a protecting layer formed on the wiring pattern. The protecting layer is formed by printing and solidifying an ink on the wiring pattern. The ink includes a cycloaliphatic epoxy resin, a phenoxyl resin solution, a solvent, a hardener, and an antifoaming agent.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: November 14, 2017
    Assignees: Avary Holding (Shenzhen) Co., Limited., GARUDA TECHNOLOGY CO., LTD
    Inventors: Ming-Jaan Ho, Xian-Qin Hu, Zhi-Tian Wang
  • Patent number: 9768674
    Abstract: The present document discloses motors and motor components that are constructed on a planar substrate. In some implementations, the planar substrate is made from rigid or semi-rigid sheet material, such as a printed circuit board (“PCB”). One or more coils are formed using spiral-shaped conductive traces that overlay the front and/or back surfaces of the substrate. In one implementation, a plurality of alternating right-hand and left-hand spiral-shaped conductive traces are separated by insulating layers, and connected with conductive vias to form inductive coils. Alternative coil-configurations include single-drive counter-wound coils and coils having a central ferrous or magnetic core.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: September 19, 2017
    Assignee: Resonant Systems, Inc.
    Inventors: Robin Elenga, Brian Pepin, Dan Knodle
  • Patent number: 9748186
    Abstract: A semiconductor device has a module structure in which a semiconductor element and a circuit layer are electrically connected to each other by a wire. A front metal layer is formed on a surface of a top side electrode of the semiconductor element and the wire is bonded to the front metal layer by wire bonding. The front metal layer has a higher hardness than the top side electrode or the wire. A bonding interface of the wire with the metal film has a recrystallization temperature that is equal to or higher than 175° C. According to this structure, it is possible to improve the power cycle resistance of the semiconductor device.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 29, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Fumihiko Momose, Takashi Saito, Kazumasa Kido, Yoshitaka Nishimura
  • Patent number: 9674967
    Abstract: A via in a printed circuit board is composed of a patterned metal layer that extends through a hole in dielectric laminate material that has been covered with catalytic adhesive material on both faces of the dielectric laminate material. The layer of catalytic adhesive coats a portion of the dielectric laminate material around the hole. The patterned metal layer is placed over the catalytic adhesive material on both faces of the dielectric laminate material and within the hole.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: June 6, 2017
    Assignee: Sierra Circuits, Inc.
    Inventors: Konstantine Karavakis, Kenneth S. Bahl
  • Patent number: 9451711
    Abstract: A printed wiring board includes an insulating substrate having a penetrating hole formed through the substrate, a first conductive pattern formed on first surface of the substrate, a second conductive pattern formed on second surface of the substrate on the opposite side of the first surface, and a through-hole conductor formed in the penetrating hole in the substrate such that the conductor is connecting the first conductive pattern on the first surface of the substrate and the second conductive pattern on the second surface of the substrate. The penetrating hole has a first opening portion opening on the first surface of the substrate, a second opening portion opening on the second surface of the substrate and a third opening portion connecting the first and second opening portions, and the third opening portion has the maximum diameter which is greater than the minimum diameters of the first and second opening portions.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: September 20, 2016
    Assignee: IBIDEN CO., LTD.
    Inventor: Toshiaki Hibino
  • Patent number: 9034201
    Abstract: A method of forming an implant to be implanted into living bone is disclosed. The method comprises the act of roughening at least a portion of the implant surface to produce a microscale roughened surface. The method further comprises the act of immersing the microscale roughened surface into a solution containing hydrogen peroxide and a basic solution to produce a nanoscale roughened surface consisting of nanopitting superimposed on the microscale roughened surface. The nanoscale roughened surface has a property that promotes osseointegration.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: May 19, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Robert L. Mayfield, Ross W. Towse
  • Patent number: 9017569
    Abstract: A method for preparing a copper alloy given a certain special surface shape yields tremendous bonding strength through compatibility with an epoxy resin adhesive. With a composite part in which this technology is utilized to integrate a copper alloy member as a cover material with a CFRP, it is possible to take advantage of the characteristics of both the copper alloy and the FRP due to the tremendous bonding strength. In a step in which an FRP prepreg is put into a mold and heated and cured, usually the mold is first coated with a release agent to facilitate release from the mold, but with high-technology CFRP, bleeding of the release agent often diminishes the properties. A copper alloy sheet 21 is used as a cover material, and a CFRP 22 is cured.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: April 28, 2015
    Assignee: Taisei Plas Co., Ltd.
    Inventors: Masanori Naritomi, Naoki Andoh
  • Patent number: 8968583
    Abstract: A method for cleaning a dielectric and metal structure within a microelectronic structure uses an oxygen containing plasma treatment, followed by an alcohol treatment, in turn followed by an aqueous organic acid treatment. Another method for cleaning a dielectric and metal structure within a microelectronic structure uses an aqueous surfactant treatment followed by an alcohol treatment and finally followed by an aqueous organic acid treatment. The former method may be used to clean a plasma etch residue from a dual damascene aperture. The second method may be used to clean a chemical mechanical polish planarizing residue from a dual damascene structure. The two methods may be used sequentially, absent any intervening or subsequent sputtering method, to provide a dual damascene structure within a microelectronic structure.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mary Beth Rothwell, Roy Rongqing Yu
  • Publication number: 20150048053
    Abstract: A layer of a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride, tantalum nitride, or an alloy of these metals, the layer being provided on an underlying base material selected from glass, silicon, copper and nickel, is selectively etched with an alkaline etching solution containing a predefined complexing agent.
    Type: Application
    Filed: September 3, 2012
    Publication date: February 19, 2015
    Applicant: JCU CORPORATION
    Inventors: Christopher Cordonier, Mitsuhiro Nabeshima, Shingo Kumagai, Naoki Takahashi
  • Patent number: 8945415
    Abstract: A method is described for etching ceramic phosphor converters. The method includes contacting a surface of the converter with a solution of phosphor acid for a time sufficient to etch the converter. The method is applicable to ceramic phosphor converters comprising a phosphor having a general formula MxAlyOz:RE wherein M is a metal and RE is a rare earth element.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 3, 2015
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Alan Piquette
  • Patent number: 8932476
    Abstract: Apparatuses and methods are provided where porous metal is deposited on a substrate, a mask is provided on the porous metal and then an etching is performed.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Infineon Technologies AG
    Inventors: Thomas Kunstmann, Stefan Willkofer, Anja Gissibl, Johann Strasser, Matthias Mueller, Eva-Maria Hess
  • Publication number: 20140353278
    Abstract: A copper foil for producing graphene including Cu having a purity of 99.95% by mass or more.
    Type: Application
    Filed: October 31, 2012
    Publication date: December 4, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yoshihiro Chiba, Toshiyuki Ono
  • Patent number: 8900478
    Abstract: Disclosed are an etchant which is used for redistribution of a semiconductor substrate having an electrode and which is capable of selectively etching copper without etching nickel; and a method for manufacturing a semiconductor device using the same. Specifically disclosed are an etchant which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and citric acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of citric acid of from 1 to 20% by mass, with a molar ratio of hydrogen peroxide and citric acid being in the range of from 0.3 to 5; an etchant for selective etching of copper which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and malic acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of malic acid of from 1.5 to 25% by mass, with a molar ratio of hydrogen peroxide and malic acid being in the range of from 0.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Akira Hosomi, Kensuke Ohmae
  • Patent number: 8889555
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 18, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8859429
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 14, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8845909
    Abstract: A process of fabricating a heat dissipation substrate is provided. A metal substrate having an upper surface, a lower surface, first recesses located on the upper surface and second recesses located on the lower surface is provided. The metal substrate is divided into carrier units and connecting units connecting the carrier units. A first and a second insulating materials are respectively filled into the first and the recesses. A first conductive layer is formed on the upper surface and the first insulating material. A second conductive layer is formed on the lower surface and the second insulating material. The first and the second conductive layers are patterned to form a first and a second patterned conductive layers. The first and the second insulating materials are taken as an etching mask to etch the connecting units of the metal substrate so as to form a plurality of individual heat dissipation substrates.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: September 30, 2014
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Tzu-Shih Shen
  • Patent number: 8778197
    Abstract: The present invention relates to graphene windows and methods for making same. One method comprises selecting a high purity metal foil, growing a layer of graphene on a first face of the metal foil, patterning the second face of the graphene-modified foil with a polymer, wherein the second face of the graphene-modified foil has an exposed region and etching the second face of the graphene-modified foil in the exposed region until exposing the first layer of graphene.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 15, 2014
    Assignee: Clean Energy Labs, LLC
    Inventors: William Neil Everett, William Martin Lackowski, Joseph F. Pinkerton
  • Patent number: 8764996
    Abstract: A method of patterning a first material on a polymeric substrate is described. The method includes providing a polymeric film substrate having a major surface with a relief pattern including a recessed region and an adjacent raised region, depositing a first material onto the major surface of the polymeric film substrate to form a coated polymeric film substrate, forming a layer of a functionalizing material selectively on the raised region of the coated polymeric film substrate to form a functionalized raised region and an unfunctionalized recessed region, and etching the first material from the polymeric substrate selectively from the unfunctionalized recessed region.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: July 1, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Khanh P. Nguyen
  • Patent number: 8765614
    Abstract: A method of forming a metal pattern on a display substrate includes blanket depositing a copper-based layer having a thickness between about 1,500 ? and about 5,500 ? on a base substrate, and forming a patterned photoresist layer on the copper-based layer. The copper-based layer is over-etched by an etching composition containing an oxidizing moderating agent where the over-etch factor is between about 40% and about 200% while using the patterned photoresist layer as an etch stopping layer, and where the etching composition includes ammonium persulfate between about 0.1% by weight and about 50% by weight, includes an azole-based compound between about 0.01% by weight and about 5% by weight and a remainder of water. Thus, reliability of the metal pattern and that of manufacturing a display substrate may be improved.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choung, Ji-Young Park, Seon-Il Kim, Sang-Gab Kim, In-Bae Kim, Jae-Woo Jeong
  • Patent number: 8758634
    Abstract: Disclosed is a composition for and applying said method for micro etching of copper or copper alloys during manufacture of printed circuit boards. Said composition comprises a copper salt, a source of halide ions, a buffer system and a benzothiazole compound as an etch refiner. The inventive composition and method is especially useful for manufacture of printed circuit boards having structural features of ?100 ?m.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 24, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Dirk Tews, Christian Sparing, Martin Thoms
  • Patent number: 8641913
    Abstract: A method includes applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step. A microelectronic unit includes a substrate, and a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 4, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Yoichi Kubota, Teck-Gyu Kang, Jae M. Park
  • Publication number: 20140008327
    Abstract: Provided in one embodiment is a method of forming a movable joint or connection between parts that move with respect to one another, wherein at least one part is at least partially enclosed by at least one second part. The method includes positioning an etchable material over an at least one first part, molding or forming an at least one second part over at least the etchable material, and removing the etchable material.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Inventors: CHRISTOPHER D. PREST, Joseph C. Poole, Matthew S. Scott, Dermot J. Stratton
  • Patent number: 8580129
    Abstract: A method for processing a surface involves depositing at least one class of enzymes (2) onto the surface (1); introducing at least a reactant (3) into an environment of the surface (1), and causing interaction between the enzymes (2) and the reactant (3), thereby to cause processing of a region of the surface (1), the processed region of the surface (1) being defined with respect to a region thereof that is proximate (4) to where the enzymes (3) have been deposited.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: November 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Matthias Geissler
  • Publication number: 20130240484
    Abstract: A method for providing copper filled features in a layer is provided. A deposition of copper is provided to fill features in the layer. Tops of the copper deposit are cleaned to remove copper or copper oxide at tops of the copper deposit. A selective copper alloy plating on the tops of the copper deposit is provided. The copper deposit and selective copper alloy plating are annealed.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventor: Artur KOLICS
  • Patent number: 8518281
    Abstract: A composition for providing acid resistance to copper surfaces in the production of multilayered printed circuit boards. The composition comprises an acid, an oxidizer, a five-membered heterocyclic compound and a thiophosphate or a phosphorous sulfide compound. In a preferred embodiment, the phosphorous compound is phosphorus pentasulfide. The composition is applied to a copper or copper alloy substrate and the copper substrate is thereafter bonded to a polymeric material.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 27, 2013
    Inventors: Kesheng Feng, Ming De Wang, Colleen Mckirryher, Steven A. Castaldi
  • Patent number: 8470191
    Abstract: Plating accelerator is applied selectively to a substantially-unfilled wide (e.g., low-aspect-ratio feature cavity. Then, plating of metal is conducted to fill the wide feature cavity and to form an embossed structure in which the height of a wide-feature metal protrusion over the metal-filled wide-feature cavity is higher than the height of metal over field regions. Most of the overburden metal is removed using non-contact techniques, such as chemical wet etching. Metal above the wide feature cavity protects the metal-filled wide-feature interconnect against dishing, and improved planarization techniques avoid erosion of the metal interconnect and dielectric insulating layer. In some embodiments, plating of metal onto a substrate is conducted to fill narrow (e.g., high-aspect-ratio feature cavities) in the dielectric layer before selective application of plating accelerator and filling of the wide feature cavity.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: June 25, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Mark L. Rea, Richard S. Hill, Avishai Kepten, R. Marshall Stowell, Eric G. Webb
  • Patent number: 8419964
    Abstract: Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems provide the thin layer of pre-rinsing liquid before applying etchant at the edge bevel region of the wafer. The etchant is less diluted and diffuses faster through a thinned layer of rinsing liquid. An edge bevel removal embodiment involving that is particularly effective at reducing process time, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 16, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Kousik Ganesan, Shanthinath Ghongadi, Tariq Majid, Aaron Labrie, Steven T. Mayer
  • Patent number: 8383437
    Abstract: An etchant according to exemplary embodiments of the present invention includes about 0.5 wt % to about 20 wt % of persulfate, about 0.01 wt % to about 2 wt % of a fluorine compound, about 1 wt % to about 10 wt % of inorganic acid, about 0.5 wt % to about 5 wt % of a cyclic amine compound, about 0.1 wt % to about 5 wt % of a chlorine compound, about 0.05 wt % to about 3 wt % of copper salt, about 0.1 wt % to about 10 wt % of organic acid or organic acid salt, and water.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 26, 2013
    Assignees: Samsung Display Co., Ltd., Dongwoo Fine-Chem Co., Ltd.
    Inventors: Ji-Young Park, Shin-Il Choi, Jong-Hyun Choung, Sang Gab Kim, Seon-Il Kim, Sang-Tae Kim, Joon-Woo Lee, Young-Chul Park, Young-Jun Jin, Kyong-Min Kang, Suck-Jun Lee, O-Byoung Kwon, In-Ho Yu, Sang-Hoon Jang, Min-Ki Lim, Yu-Jin Lee
  • Patent number: 8372757
    Abstract: Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: February 12, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Eric Webb, David W. Porter
  • Patent number: 8282841
    Abstract: A printed circuit board includes a flexible insulated substrate with a first surface and a second surface at both sides respectively, a wiring layer on the first surface, a reinforcement plate on a part of the second surface and an auxiliary layer between the second surface and the reinforcement plate. A reinforcement edge side of the reinforcement plate is located at the outside of an auxiliary edge side of the auxiliary layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: October 9, 2012
    Assignee: Fujikura Ltd.
    Inventors: Kanako Nakajima, Masatoshi Inaba, Yoshiharu Unami
  • Patent number: 8262769
    Abstract: A Cu-based material 5 is immersed into an alkali hydroxide solution with a concentration of 3.0 to 37.5 mass % and a H2O2 solution with a concentration of 3.0 to 50.0 mass % is added in the alkali hydroxide solution, a temperature of the alkali hydroxide solution when the Cu-based material is immersed ranges from 60 to 105° C., a ratio A/B between a mol number A of alkali hydroxide in the alkali hydroxide solution and a mol number B of H2O2 in the H2O2 solution is 10 or more, and where a mol number of Sn in the Sn layer is C and a mol number of Sn in the CuSn layer is D, B?C×2+D×6.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 11, 2012
    Assignee: Dowa Metaltech Co., Ltd
    Inventors: Hiroto Narieda, Yuta Sonoda, Masaaki Izaki
  • Patent number: 8257609
    Abstract: The present invention discloses an etchant for etching at least two different metal layers, the etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—). The present invention also discloses a method of fabricating a metal wiring on a substrate, the method comprising forming a first metal layer on a substrate, forming a second metal layer on the first metal layer, and simultaneously etching the first metal layer and the second metal layer with an etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—).
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: September 4, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Gee Sung Chae, Gyoo Chul Jo, Yong Sup Hwang
  • Patent number: 8202438
    Abstract: A method for processing a surface involves depositing at least one class of enzymes (2) onto the surface (1); introducing at least a reactant (3) into an environment of the surface (1), and causing interaction between the enzymes (2) and the reactant (3), thereby to cause processing of a region of the surface (1), the processed region of the surface (1) being defined with respect to a region thereof that is proximate (4) to where the enzymes (3) have been deposited.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: June 19, 2012
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Matthias Geissler
  • Patent number: 8158532
    Abstract: Plating accelerator is applied selectively to a substantially-unfilled wide (e.g., low-aspect-ratio feature cavity. Then, plating of metal is conducted to fill the wide feature cavity and to form an embossed structure in which the height of a wide-feature metal protrusion over the metal-filled wide-feature cavity is higher than the height of metal over field regions. Most of the overburden metal is removed using non-contact techniques, such as chemical wet etching. Metal above the wide feature cavity protects the metal-filled wide-feature interconnect against dishing, and improved planarization techniques avoid erosion of the metal interconnect and dielectric insulating layer. In some embodiments, plating of metal onto a substrate is conducted to fill narrow (e.g., high-aspect-ratio feature cavities) in the dielectric layer before selective application of plating accelerator and filling of the wide feature cavity.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: April 17, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Mark L. Rea, Richard S. Hill, Avishai Kepten, R. Marshall Stowell, Eric G. Webb
  • Patent number: 8052882
    Abstract: A method of manufacturing a wiring substrate of the present invention, includes the steps of forming a seed layer on an underlying layer, forming a plating resist in which an opening portion is provided on the seed layer, forming a copper plating layer in the opening portion by an electroplating, removing the plating resist, wet-etching the seed layer using the copper plating layer as a mask to obtain the wiring layer, roughening a surface of the wiring layer by a blackening process, and forming an insulating layer on the wiring layer, wherein a surface of the copper plating layer is soft-etched simultaneously in the step of etching the seed layer, whereby a soft etching step of the wiring layer carried out prior to the step of the blackening process is omitted.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Hitoshi Kondo
  • Patent number: 8043974
    Abstract: A semiconductor wet etchant includes deionized water, a fluorine-based compound, an oxidizer and an inorganic salt. A concentration of the fluorine-based compound is 0.25 to 10.0 wt % based on a total weight of the etchant, a concentration of the oxidizer is 0.45 to 3.6 wt % based on a total weight of the etchant, and a concentration of the inorganic salt is 1.0 to 5.0 wt % based on a total weight of the etchant. The inorganic salt comprises at least one of an ammonium ion (NH4+) and a chlorine ion (Cl?).
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dae Park, Young You, Tae-Hyo Choi, Hun-Jung Yi, Kun-Hyung Lee
  • Patent number: 8007594
    Abstract: A method for manufacturing a semiconductor device includes the step of conducting a cleaning process for a wafer formed with copper wiring lines to remove contaminations produced on a back surface of the wafer. The cleaning process is conducted by injecting onto the back surface of the wafer an etchant for removing contaminations and simultaneously injecting onto a front surface of the wafer a reductant containing hydrogen.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 30, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Young Bang Lee, Kwang Kee Chae, Ok Min Moon