Etchant Contains Fluoride Ion Patents (Class 216/107)
  • Patent number: 12139639
    Abstract: A heat transfer system is disclosed that includes a heat transfer fluid circulation loop, and also a heat exchanger that includes an aluminum alloy exterior surface having thereon a top surface coat derived from a composition comprising a trivalent chromium salt and an alkali metal hexafluorozirconate.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: November 12, 2024
    Assignee: CARRIER CORPORATION
    Inventors: Mark R. Jaworowski, Mary Teresa Lombardo, Michael F. Taras, Mel Woldesemayat, Stephanie Bealing, Matthew Patterson
  • Patent number: 9978610
    Abstract: Methods and apparatuses for filling features with metal materials such as tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a metal such as a tungsten-containing material followed by removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ratio feature. The portion may be removed by exposing the tungsten-containing material to a plasma generated from a fluorine-containing nitrogen-containing gas and pulsing and/or ramping the plasma during the exposure.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 22, 2018
    Assignee: Lam Research Corporation
    Inventors: Waikit Fung, Liang Meng, Anand Chandrashekar
  • Patent number: 9799533
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: October 24, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Patent number: 9460961
    Abstract: In one embodiment, a method for etching a copper layer disposed on a substrate includes directing reactive ions to the substrate when a mask that defines an exposed area and protected area is disposed on the copper layer, wherein an altered layer is generated in the exposed area comprising a chemically reactive material; and exposing the copper layer to a molecular species that is effective to react with the chemically reactive material so as to remove the altered layer.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: October 4, 2016
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Thomas R. Omstead, Tristan Ma, Ludovic Godet
  • Patent number: 9390940
    Abstract: Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 12, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, Benjamin Schmiege, David Thompson
  • Patent number: 8945415
    Abstract: A method is described for etching ceramic phosphor converters. The method includes contacting a surface of the converter with a solution of phosphor acid for a time sufficient to etch the converter. The method is applicable to ceramic phosphor converters comprising a phosphor having a general formula MxAlyOz:RE wherein M is a metal and RE is a rare earth element.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 3, 2015
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Alan Piquette
  • Patent number: 8877075
    Abstract: In accordance with an embodiment of the present invention, a method of polishing a device includes providing a layer having a non-uniform top surface. The non-uniform top surface includes a plurality of protrusions. The method further includes removing the plurality of protrusions by exposing the layer to a fluid that has gas bubbles and a liquid.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 4, 2014
    Assignee: Infineon Technologies AG
    Inventor: Johann Kosub
  • Patent number: 8623236
    Abstract: A titanium nitride-stripping liquid for stripping a titanium nitride coating film, the titanium nitride-stripping liquid being capable of stripping a titanium nitride coating film even in a semiconductor multilayer laminate having particularly a layer that includes tungsten or a tungsten alloy, without corrosion of this layer is provided, and furthermore, a titanium nitride-stripping liquid which can strip a titanium nitride coating film without affecting an insulating layer is provided. A titanium nitride-stripping liquid including hydrofluoric acid, hydrogen peroxide and water, and further including an inorganic acid other than hydrofluoric acid.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: January 7, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Akira Kumazawa, Takahiro Eto, Takayuki Haraguchi
  • Patent number: 8426319
    Abstract: An etching solution for a metal hard mask. The etching solution comprises a mixture of a dilute HF (hydrofluoric acid) and a silicon containing precursor. The etching solution also comprises a surfactant agent, a carboxylic acid, and a copper corrosion inhibitor. The etching solution is selectively toward etching the metal hard mask material (e.g., Titanium) while suppressing Tungsten, Copper, oxide dielectric material, and carbon doped oxide.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Intel Corporation
    Inventors: Nabil G. Mistkawi, Lourdes Dominguez
  • Patent number: 8377325
    Abstract: Exemplary embodiments of the present invention provide a metal wiring etchant. A metal wiring etchant according to an exemplary embodiment of the present invention includes ammonium persulfate, an organic acid, an ammonium salt, a fluorine-containing compound, a glycol-based compound, and an azole-based compound.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 19, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Nam-Seok Suh, Sun-Young Hong, Jong-Hyun Choung, Bong-Kyun Kim, Hong-Sick Park, Jean-Ho Song, Wang-Woo Lee, Do-Won Kim, Sang-Woo Kim, Won-Guk Seo, Hyun-Cheol Shin, Ki-Beom Lee, Sam-Young Cho
  • Patent number: 8308963
    Abstract: The present invention discloses an etchant for etching at least two different metal layers, the etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—). The present invention also discloses a method of fabricating a metal wiring on a substrate, the method comprising forming a first metal layer on a substrate, forming a second metal layer on the first metal layer, and simultaneously etching the first metal layer and the second metal layer with an etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—).
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 13, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Gee Sung Chae, Gyoo Chul Jo, Yong Sup Hwang
  • Patent number: 8043974
    Abstract: A semiconductor wet etchant includes deionized water, a fluorine-based compound, an oxidizer and an inorganic salt. A concentration of the fluorine-based compound is 0.25 to 10.0 wt % based on a total weight of the etchant, a concentration of the oxidizer is 0.45 to 3.6 wt % based on a total weight of the etchant, and a concentration of the inorganic salt is 1.0 to 5.0 wt % based on a total weight of the etchant. The inorganic salt comprises at least one of an ammonium ion (NH4+) and a chlorine ion (Cl?).
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dae Park, Young You, Tae-Hyo Choi, Hun-Jung Yi, Kun-Hyung Lee
  • Patent number: 8007594
    Abstract: A method for manufacturing a semiconductor device includes the step of conducting a cleaning process for a wafer formed with copper wiring lines to remove contaminations produced on a back surface of the wafer. The cleaning process is conducted by injecting onto the back surface of the wafer an etchant for removing contaminations and simultaneously injecting onto a front surface of the wafer a reductant containing hydrogen.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 30, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Young Bang Lee, Kwang Kee Chae, Ok Min Moon
  • Patent number: 7998359
    Abstract: A method for selectively etching a silicon-containing film on a silicon substrate is disclosed. The method includes depositing a silicon-containing film on the silicon substrate. The method further includes baking the silicon-containing film to create a densified silicon-containing film, wherein the densified film has a first thickness. The method also includes exposing the silicon substrate to an aqueous solution comprising NH4F and HF in a ratio of between about 6:1 and about 100:1, at a temperature of between about 20° C. and about 50° C., and for a time period of between about 30 seconds and about 5 minutes; wherein between about 55% and about 95% of the densified silicon-containing film is removed.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: August 16, 2011
    Assignee: Innovalight, Inc.
    Inventors: Elena Rogojina, Eric Rosenfeld, Dmitry Poplavskyy
  • Patent number: 7902081
    Abstract: A method of etching polysilicon includes exposing a substrate comprising polysilicon to a solution comprising water, HF, and at least one of a conductive metal nitride, Pt, and Au under conditions effective to etch polysilicon from the substrate. In one embodiment, a substrate first region comprising polysilicon and a substrate second region comprising at least one of a conductive metal nitride, Pt, and Au is exposed to a solution comprising water and HF. The solution is devoid of any detectable conductive metal nitride, Pt, and Au prior to the exposing. At least some of the at least one are etched into the solution upon the exposing. Then, polysilicon is etched from the first region at a faster rate than any etch rate of the first region polysilicon prior to the etching of the at least some of the conductive metal nitride, Pt, and Au.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Prashant Raghu, Vishwanath Bhat, Niraj Rana
  • Patent number: 7686899
    Abstract: The invention relates to a process for producing a sliding bearing with a sliding surface, which is made of a copper multicomponent alloy with at least two phase constituents, in which process at least one phase constituent at the sliding surface is dissolved by means of an acid, and at least one further phase constituent is retained in a raised form. The sliding bearing preferably is made of a copper/aluminum multicomponent bronze.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: March 30, 2010
    Assignee: Wieland-Werke AG
    Inventors: Adolf Grohbauer, Manfred Hage, Michael Scharf
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Patent number: 7314575
    Abstract: A method for manufacturing a glass substrate for a magnetic disk comprises mirror surface polishing and cleaning of a glass substrate, wherein polishing agent of which the principal component is rare-earth oxide with content of fluorine 5% by weight or less, is supplied to the glass substrate, the surface of the glass substrate is subjected to mirror surface polishing by relatively moving the polishing cloth and the glass substrate, then this glass substrate is brought into contact with a cleaning solution including ascorbic acid, fluorine ion, and sulfuric acid of 3% by weight or more, and the polishing agent is dissolved and removed. The concentration of the ascorbic acid included in the cleaning solution is 0.1% by weight or more, and the content of the fluorine ion is 1 ppm to 40 ppm. At least a magnetic layer is formed on the obtained glass substrate to manufacture a magnetic disk.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: January 1, 2008
    Assignees: Hoya Corporation, Hoya Glass Disk (thailand) Ltd.
    Inventors: Yoshinori Marumo, Intanon Sitalaphruek
  • Patent number: 7306681
    Abstract: A cleaning method and cleaning recipes are disclosed. The present invention relates to a method for cleaning a semiconductor substrate and cleaning recipes. The present invention utilizes a first cleaning solution including diluted hydrofluoric acid and a second cleaning solution including hydrogen chloride and hydrogen peroxide (H2O2) to clean a semiconductor substrate without using an alkaline solution including ammonium hydroxide. Accordingly, a clean surface of a semiconductor substrate is provided in selective epitaxial growth (SEG) process to grow an epitaxial layer with smooth surface.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: December 11, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Ya-Lun Cheng, Yi-Chia Lee, Yu-Ren Wang, Neng-Hui Yang
  • Patent number: 7060631
    Abstract: The invention encompasses a semiconductor processing method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising Cl?, NO3? and F?. The invention also includes a semiconductor processing method of forming an opening to a copper-containing substrate. Initially, a mass is formed over the copper-containing substrate. The mass comprises at least one of a silicon nitride and a silicon oxide. An opening is etched through the mass and to the copper-containing substrate. A surface of the copper-containing substrate defines a base of the opening, and is referred to as a base surface. The base surface of the copper-containing substrate is at least partially covered by at least one of a copper oxide, a silicon oxide or a copper fluoride.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Morgan
  • Patent number: 6936183
    Abstract: A two-step method of releasing microelectromechanical devices from a substrate is disclosed. The first step comprises isotropically etching a silicon oxide layer sandwiched between two silicon-containing layers with a gaseous hydrogen fluoride-water mixture, the overlying silicon layer to be separated from the underlying silicon layer or substrate for a time sufficient to form an opening but not to release the overlying layer, and the second step comprises adding a drying agent to substitute for moisture remaining in the opening and to dissolve away any residues in the opening that can cause stiction.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 30, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey D. Chinn, Sofiane Soukane
  • Patent number: 6902626
    Abstract: A liquid etchant and a method for roughening a copper surface each capable of providing copper with a roughened surface increased in acid resistance regardless of a chlorine ion in a short period of time, to thereby ensure firm adhesion between a copper conductive pattern and an outer layer material during manufacturing of a printed circuit board, resulting in the manufacturing being highly simplified. The liquid etchant includes a main component containing an oxo acid such as sulfuric acid and a peroxide such as hydrogen peroxide. Also, the liquid etchant includes an auxiliary component containing a tetrazole such as 5-aminotetrazole or the like, or a 1,2,3-azole. The liquid etchant permits a copper surface to be roughened in an acicular manner.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Ebara Densan Ltd.
    Inventors: Yoshihiko Morikawa, Kazunori Senbiki, Nobuhiro Yamazaki
  • Patent number: 6893578
    Abstract: An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H2SO4). These acids can be used in the ratio of 1:3 to 3:1 HF:H2SO4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H2SO4 can be provided as “semiconductor grade” acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H2SO4.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 17, 2005
    Assignee: Sandia Corporation
    Inventors: Peggy J. Clews, Seethambal S. Mani
  • Patent number: 6793838
    Abstract: The present invention relates to a chemical milling solution and a chemical milling process for removing a desired depth of material from metal parts. The milling solution contains nitric acid, hydrofluoric acid, a wetting agent, such as a surfactant, dissolved titanium, and the balance water. The solution is maintained at a temperature in the range of from about 110° F. to about 130° F. The metal part to be milled is immersed in the milling solution for a time sufficient to remove a desired depth of material from at least one surface of the part.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 21, 2004
    Assignee: United Technologies Corporation
    Inventors: James O. Hansen, Kenneth C. Long, Michael A. Jackson, Henry M. Hodgens
  • Patent number: 6706121
    Abstract: In a method of treating substrates a treatment fluid is fed into a collection vessel after treatment, at least a portion of the treatment fluid is withdrawn from the collection vessel and returned to respective reservoir and the collection vessel is rinsed before receiving another treatment fluid.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: March 16, 2004
    Assignee: Mattson Wet Products
    Inventors: Manfred Schenkl, Robert Pesce, John Oshinowo, Uwe Müller
  • Patent number: 6692580
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: February 17, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6666987
    Abstract: A liquid etchant and a method for roughening a copper surface each capable of providing copper with a roughened surface increased in acid resistance regardless of a chlorine ion in a short period of time, to thereby ensure firm adhesion between a copper conductive pattern and an outer layer material during manufacturing of a printed circuit board, resulting in the manufacturing being highly simplified. The liquid etchant includes a main component containing an oxo acid such as sulfuric acid and a peroxide such as hydrogen peroxide. Also, the liquid etchant includes an auxiliary component containing a tetrazole such as 5-aminotetrazole or the like, or a 1,2,3-azole. The liquid etchant permits a copper surface to be roughened in an acicular manner.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: December 23, 2003
    Assignee: Ebara Densan Ltd.
    Inventors: Yoshihiko Morikawa, Kazunori Senbiki, Nobuhiro Yamazaki
  • Patent number: 6656294
    Abstract: It is an object of the present invention to provide a processing method for preventing elution of lead in a lead-containing copper alloy to prevent lead from eluting from a faucet metal, etc. made of a lead-containing copper alloy, and a drinking water service fitting made of a lead-containing copper alloy in which elution of lead has been prevented. By forming a chromate film on the surface of a lead-containing copper alloy material, it is possible to reduce elution of the lead left in a limited amount on the surface. A drinking water service fitting made of a lead-containing copper alloy is immersed in an alkaline etching solution in a pre-processing step for a nickel chromium plating step to selectively remove lead on the surface of the lead-containing copper alloy material and is then activated in a solution such as sulfuric acid and hydrochloric acid.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 2, 2003
    Assignee: Toto Ltd.
    Inventors: Masashi Kawamoto, Akira Gotou, Mituo Imamoto
  • Patent number: 6653243
    Abstract: The invention encompasses a semiconductor processing method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising Cl+, NO3+ and F+. The invention also includes a semiconductor processing method of forming an opening to a copper-containing substrate. Initially, a mass is formed over the copper-containing substrate. The mass comprises at least one of a silicon nitride and a silicon oxide. An opening is etched through the mass and to the copper-containing substrate. A surface of the copper-containing substrate defines a base of the opening, and is referred to as a base surface. The base surface of the copper-containing substrate is at least partially covered by at least one of a copper oxide, a silicon oxide or a copper fluoride.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: November 25, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Morgan
  • Patent number: 6605230
    Abstract: The present invention relates to a novel process for removing sidewall residue after dry-etching process. Conventionally, after dry-etching, photoresist and sidewall residues are removed by ozone ashing and hot sulfuric acid. Normally, they are hard to be removed completely. It was found in the present invention that the addition of fluorine-containing compound, preferably hydrogen fluoride and ammonium fluoride, in sulfuric acid results in complete removal of photoresist and sidewall residue without the need for stripper. The process is simple and does not affect the original procedures or the other films on the substrate. The present invention also relates to a novel solution for removing sidewall residue after dry-etching, which comprises sulfuric acid and a fluorine-containing compound, preferably hydrogen fluoride and ammonium fluoride, in the range of from 10:1 to 1000:1 by weight.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: August 12, 2003
    Assignee: Merck Patent GmbH
    Inventors: Ming-Chi Liaw, Tien-Sheng Chao, Tan-Fu Lei
  • Patent number: 6589439
    Abstract: A composition for selective etching of oxides over a metal. The composition contains water, hydroxylammonium salt, carboxylic acid, a fluorine containing compound, and optionally, a base. The pH of the composition is about 2 to 6.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: July 8, 2003
    Assignee: Arch Specialty Chemicals, Inc.
    Inventors: Kenji Honda, Michelle Elderkin
  • Patent number: 6589882
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 6585910
    Abstract: An etching treatment agent which can etch insulating film with high speeds without damaging the resist pattern, provide realistic throughput when the insulting film etching process in the semiconductor manufacturing process is replaced with the single wafer processing etching treatment method, and prevent roughness on the surface of the semiconductor after etching.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: July 1, 2003
    Assignee: Stella Chemifa Kabushiki Kaisha
    Inventors: Hirohisa Kikuyama, Masayuki Miyashita, Tatsuhiro Yabune, Tadahiro Ohmi
  • Patent number: 6540931
    Abstract: When iron group, especially high nickel, metal alloys that contain substantial amounts of copper are pickled, a displacement coating of copper that is called a “copper kiss” often forms on the pickled surface from the dissolved copper ions in the pickling solution before the pickling solution can be rinsed away. Traditionally this has been removed by treatment with aqueous ammonia, an annoying and potentially hazardous reagent that in many instances requires expensive pollution abatement devices. In this invention, copper kiss is equally effectively removed by treatment with a mixture of sulfuric acid and hydrogen peroxide, optionally also containing hydrofluoric acid.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: April 1, 2003
    Assignee: Henkel Corporation
    Inventors: Lawrence E. Faw, Dane G. Armendariz, John M. Binkley, Paul F. Davis
  • Patent number: 6383272
    Abstract: A composition and process are described which are useful in treating metal surfaces, which composition comprises an oxidizer, an acid, a corrosion inhibitor, an organic nitro compound and, optionally, a benzotriazole with an electron withdrawing group in the 1-position which electron withdrawing group is a stronger electron withdrawer than a hydrogen group, optionally, a source of adhesion enhancing species selected from the group consisting of molybdates, tungstates, tantalates, niobates, vanadates, isopoly or heteropoly acids of molybdenum, tungsten, tantalum, niobium, vanadium, and combinations of any of the foregoing and optionally but preferably a source of halide ions. The composition and process are useful in increasing the adhesion of metal surfaces to polymeric substances and in preserving said adhesion through temperature variation.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: May 7, 2002
    Inventor: Donald Ferrier
  • Patent number: 6361712
    Abstract: A composition for selective etching of oxides over a metal. The composition contains water, hydroxylammonium salt, carboxylic acid, a fluorine containing compound, and optionally, a base. The pH of the composition is about 2 to 6.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: March 26, 2002
    Assignee: Arch Specialty Chemicals, Inc.
    Inventors: Kenji Honda, Michelle Elderkin
  • Publication number: 20020033379
    Abstract: The present invention is to provide a hydrophilic treating method of the surface of metal comprising, the first process which treat the surface of metal with a chemical conversion solution to form a chemical conversion film on the metal surface while etching the metal surface and the second process which remove said film formed on the surface of metal to obtain rougher surface, and the final process which forms a hydrophilic film on the surface of metal. Desirably the surface roughness indicated by Rz after above mentioned second process is rougher than 1.5 &mgr;m.
    Type: Application
    Filed: August 1, 2001
    Publication date: March 21, 2002
    Applicant: Nihon Parkerizing Co., Ltd.
    Inventors: Hiroki Hayashi, Mitsuhiro Matsumoto, Hiroyuki Iizuka
  • Patent number: 6270590
    Abstract: A method for treating a component made of a copper-based alloy containing lead. The component has Pb and Pb salts on a surface thereof. The method includes the step of etching the surface of the component selectively to remove almost entirely the Pb and Pb salts from the surface. The etching includes treating the surface with an acidic aqueous solution that is a) a non-oxidizing acidic aqueous solution of an acid capable of forming soluble Pb salts or b) an oxidizing acidic aqueous solution of an organic acid mixed with peroxide. The method also includes the step of passivating the etched surface whereby to inhibit release of any Pb or Pb salts remaining in the component when the passivated surface is in contact with water.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: August 7, 2001
    Assignee: Europa Metalli S.p.A.
    Inventor: Aldo Giusti
  • Patent number: 6123088
    Abstract: A cleaner composition for removing from within a microelectronic fabrication a copper containing residue layer in the presence of a copper containing conductor layer, and a method for stripping from within a microelectronic fabrication the copper containing residue layer in the presence of the copper containing conductor layer. The cleaner composition comprises: (1) a hydroxyl amine material; (2) an ammonium fluoride material; and (3) a benzotriazole (BTA) material. The cleaner composition contemplates the method for stripping from within the microelectronic fabrication the copper containing residue layer in the presence of the copper containing conductor layer.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: September 26, 2000
    Assignee: Chartered Semiconducotor Manufacturing Ltd.
    Inventor: Kwok Keung Paul Ho
  • Patent number: 6123865
    Abstract: A method for improving etch uniformity during a wet etching process is disclosed. The method comprises the steps of first rinsing the wafer to form a water film over the wafer surface, followed by liquid phase etching. The water film helps the subsequent viscous etchant to be spread across the wafer surface more uniformly to thereby improve the etch uniformity.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: September 26, 2000
    Assignees: ProMOS Technologies, Inc., Mosel Vitelic, Inc., Siemens AG
    Inventors: Wei-Chih Lin, Ming-Sheng Kao, Ming-Li Kung, Chih-Ming Lin
  • Patent number: 6083413
    Abstract: A process for removing metallic material, for instance copper, iron, nickle and their oxides, from a surface of a substrate such as a silicon, silicon oxide or gallium arsenide substrate. The process includes the steps of: a) placing the substrate in a reaction chamber; b) providing in the reaction chamber a gas mixture, the mixture comprising a first component which is fluorine or a fluorine-containing compound, which will spontaneously dissociate upon adsorption on the substrate surface and a second component which is a halosilane compound, the halosilane, and the fluorine if present, being activated by: i) irradiation with UV; ii) heating to a temperature of about 800.degree. C. or higher; or iii) plasma generation, to thereby convert said metallic material to a volatile metal-halogen-silicon compound, and c) removing the metal-halogen-silicon compound from the substrate by volatilization. The process may be used to remove both dispersed metal and bulk metal films or islands.
    Type: Grant
    Filed: October 1, 1998
    Date of Patent: July 4, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Herbert H. Sawin, Jane P. Chang, Andrew Scott Lawing, Zhe Zhang, Han Xu
  • Patent number: 5620558
    Abstract: The linewidth in patterns produced by etching copper layers is more easily maintained using a specific etching medium. In particular, this medium includes aqueous hydrofluoric acid, copper chloride, and an additional chloride salt. The etching medium is also particularly useful for bilayer metal constructions such as the copper/titanium structure found in many multichip modules.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: April 15, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Karrie J. Hanson, Barry Miller, Barbara J. Sapjeta, Akshay V. Shah, Ken M. Takahashi
  • Patent number: 5575962
    Abstract: Optical quality molds and mold inserts include an optically flat substrate, a layer of material applied to the substrate and one or more depressions in a predetermined pattern formed in the layer of material applied to the substrate. The depth of the depressions are precisely determined by the thickness of the layer applied to the substrate. By contacting the mold with resin in a fluid state, a component is fabricated having microfeatures formed monolithically thereon.
    Type: Grant
    Filed: December 2, 1994
    Date of Patent: November 19, 1996
    Assignee: Lucent Technologies Inc.
    Inventor: Ken M. Takahashi
  • Patent number: 5554254
    Abstract: A process for preventing the formation of precipitates on a substrate surface after a contact layer (e.g., tungsten layer) etch back. The process involves removing the precursor chemicals of the precipitate. In one embodiment of the invention, the precursors are removed after etching contact layer by rinsing the substrate in water at about 30.degree. C. for about 10 minutes. In a second embodiment of the invention, the precursors are removed by baking the substrate at a temperature of approximately 120.degree. C. for approximately 180 seconds.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: September 10, 1996
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yuan-Chang Huang, Kuang-Hui Chang
  • Patent number: 5431774
    Abstract: A dry etch for metals such as copper using .pi.-acids in an energetic environment such as a plasma, laser, or afterglow reactor (102) or by using ligands forming volatiles at low temperature within a pulsed energetic environment.
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: July 11, 1995
    Assignee: Texas Instruments Incorporated
    Inventor: Monte A. Douglas