Forming Or Treating Article Containing Magnetically Responsive Material Patents (Class 216/22)
  • Patent number: 9082428
    Abstract: A write head having a main pole having a pole tip proximate an air bearing surface (ABS), the main pole having a leading side and a trailing side. The write head also includes a yoke having a yoke tip recessed from the ABS, and a helical coil wrapped around the main pole and the yoke. The helical coil has a first turn with its front edge at least substantially aligned with the yoke tip.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: July 14, 2015
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Jianhua Xue, Jiaoming Qiu, Kirill Rivkin, Huaqing Yin, John Wolf, Yonghua Chen
  • Patent number: 9074286
    Abstract: Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 7, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Eric Webb, David W. Porter
  • Publication number: 20150144592
    Abstract: According to one embodiment, a magnetic head includes a reproducing unit to detect a medium magnetic field recorded in a magnetic recording medium. The reproducing unit includes first and second magnetic shields, a stacked body, and a side wall film. The stacked body is provided between the first and second magnetic shields and includes first and second magnetic layer and an intermediate layer provided between them. The stacked body has a side wall. The side wall intersects a plane perpendicular to a stacking direction from the first magnetic shield toward the second magnetic shield. The side wall film covers at least a part of the side wall of the stacked body. The side wall film includes at least one of Fe and Co, and has a composition different from a composition of the first magnetic layer and different from a composition of the second magnetic layer.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Hitoshi IWASAKI, Masayuki TAKAGISHI
  • Publication number: 20150136730
    Abstract: A method for polishing a carbon overcoat of a magnetic media that results in a smooth surface free of carbon cluster debris. The method involves forming a magnetic disk having a carbon overcoat formed thereon. The carbon overcoat is then polished in the presence of ozone (O3). The heat from the polishing process along with the presence of the ozone, cause any carbon particles removed by the polishing to form CO2 gas so that there is no remaining carbon particle debris on the surface of the disk.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Thomas E. Karis, Bruno Marchon, Bala K. Pathem, Franck D. Rose dit Rose, Kurt A. Rubin, Erhard Schreck
  • Publication number: 20150137804
    Abstract: A magnetic field sensing module including a plurality of magnetic flux concentrators and a plurality of sensing elements is provided. Each of the magnetic flux concentrators extends along a first extension direction, and the magnetic flux concentrators are arranged along a second direction. The sensing elements are respectively disposed at a position corresponding to a position between the magnetic flux concentrators and positions corresponding to two sides of the magnetic flux concentrators arranged along the second direction. Sensing directions of the sensing elements are substantially the same. A measurement method and a manufacturing method of a magnetic field sensing module are also provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: May 21, 2015
    Applicant: iSentek, Inc.
    Inventors: Fu-Te Yuan, Meng-Huang Lai, Jen-Tzong Jeng
  • Publication number: 20150138673
    Abstract: A method for forming a protective overcoat onto a tape bearing surface of a tape head used for magnetic tape recording. In order to ensure optimal surface tension and liftoff properties of the ink mask, the tape bearing surface is treated with a first application of ethanol, followed by an application of polydimethylsiloxane, followed by a second application of ethanol. After this treatment an ink mask can be printed onto the tape bearing surface so as to form a mask having an opening over the location of the magnetic transducer. An etching can then be performed followed by the deposition of a protective coating such as alumina.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Que Adrong, Cherngye Hwang, Dung T. Nguyen, Eduardo Torres Mireles
  • Patent number: 9034564
    Abstract: Disclosed are methods for making read sensors using developable bottom anti-reflective coating and amorphous carbon (a-C) layers as junction milling masks. The methods described herein provide an excellent chemical mechanical polishing or planarization (CMP) stop, and improve control in reader critical physical parameters, shield to shield spacing (SSS) and free layer track width (FLTW).
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 19, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Gao, Miao Wang, Hai Sun, Ming Mao, Tong Zhao
  • Publication number: 20150131184
    Abstract: Embodiments described herein provide an MAMR head structure which provides a magnetic recording device equipped with a high density recording magnetic head. Characteristic variations caused by misalignment of a main pole and a STO may be reduced because the STO may be aligned with a position on the main pole where the field intensity is enhanced. The enhanced field intensity may be provided by an angle of inclination ?1 of an inclined surface on which the STO may be formed when compared to an angle of inclination ?2 around the main pole in the region of the ABS. Further embodiments provide a method for producing an MAMR head in which an exposed surface of the main pole has an angle of inclination ?2 which is less than the angle of inclination ?1 for the inclined surface of the main pole where the STO is mounted.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Isao NUNOKAWA, Mikito SUGIYAMA, Yuta UDO
  • Patent number: 9031684
    Abstract: A method and system for integrated circuit fabrication is disclosed. In an example, the method includes determining a first process parameter of a wafer and a second process parameter of the wafer, the first process parameter and the second process parameter corresponding to different wafer characteristics; determining a variation of a device parameter of the wafer based on the first process parameter and the second process parameter; constructing a model for the device parameter as a function of the first process parameter and the second process parameter based on the determined variation of the device parameter of the wafer; and performing a fabrication process based on the model.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chin-Hsiang Lin, Chi-Ming Yang, Chun-Lin Chang, Chih-Hong Hwang
  • Patent number: 9028704
    Abstract: A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Publication number: 20150122772
    Abstract: A method of forming a wave guide for a heat assisted magnetic recording slider of a disk drive includes depositing a layer of waveguide material onto a substrate, and depositing a layer of a hard mask material onto the waveguide material. The method then includes depositing a layer of photoresist onto the hard mask material, and exposing the photoresist to produce a hard mask pattern that includes a waveguide pattern. The method also includes stripping the photoresist material leaving the hard mask pattern having a first line edge roughness. The method also includes removing the waveguide material not covered by the hard mask, the waveguide having sidewalls which having a line edge roughness which is substantially equal to the first line edge roughness. Also disclosed is an apparatus for accomplishing the method.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Thomas William CLINTON, Kanaiyalal Chaturdas PATEL, Vijay Prakash Singh RAWAT, Sue Siyang ZHANG
  • Patent number: 9023219
    Abstract: A method of manufacturing a magnetoresistive-based device includes a metal hard mask that is inert to a top electrode etch chemistry and that has low sputter yield during a magnetic stack sputter. The metal hard mask is patterned by the photo resist and the photo mask is then stripped and the top electrode (overlying magnetic materials of the magnetoresistive-based device) is patterned by the metal hard mask.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Everspin Technologies, Inc.
    Inventors: Sarin Deshpande, Sanjeev Aggarwal, Kerry Nagel
  • Patent number: 9017564
    Abstract: A plasma etching method performs plasma etching on a sample, which has laminated films containing a variable layer of a magnetic film, a barrier layer of an insulating material, and a fixed layer of a magnetic film, using a hard mask, which includes at least one of a Ta film and a TiN film. The plasma etching method includes a first step of etching the laminated films using N2 gas; and a second step of etching the laminated films after the first step using mixed gas of N2 gas and gas containing carbon elements.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 28, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Yoshida, Naohiro Yamamoto, Makoto Suyama, Kentaro Yamada, Daisuke Fujita
  • Publication number: 20150109702
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Application
    Filed: March 31, 2014
    Publication date: April 23, 2015
    Applicant: Western Digital (Fremont), LLC
    Inventors: SHAOPING LI, YUANKAI ZHENG, GERARDO A. BERTERO, QUNWEN LENG, MICHAEL L. MALLARY, RONGFU XIAO, MING MAO, ZHIHONG ZHANG, ANUP G. ROY, CHEN JUNG CHIEN, ZHITAO DIAO, LING WANG
  • Patent number: 9011704
    Abstract: A method according to one embodiment includes contacting an oxidant with an AlTiC portion of a magnetic head for recessing TiC grains of the AlTiC portion. A method according to another embodiment includes contacting a peroxide with an AlTiC portion of a magnetic head for recessing TiC grains of the AlTiC portion from a media bearing surface of the AlTiC portion.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Cherngye Hwang, Jason Liang, Calvin S. Lo
  • Publication number: 20150102008
    Abstract: In one embodiment, there are provided: a substrate; a data area disposed on the substrate and having a plurality of first magnetic dots arrayed in lines in mutually different first, second, and third directions; and a boundary magnetic part having a plurality of first magnetic portions arrayed in a line in the third direction and each having a length longer than that of the first magnetic dot in the third direction, and a second magnetic dot disposed between the first magnetic portions and disposed on extensions in the first and second directions of the first magnetic dots, and disposed along with the data area on the substrate.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Akira KIKITSU, Naoko KIHARA, Yoshiyuki KAMATA, Hiroyuki HIEDA
  • Publication number: 20150103434
    Abstract: In one embodiment, a magnetic head includes a main pole configured to emit a recording magnetic field for affecting a magnetic medium, the main pole configured to serve as a first electrode and having a front portion at an air bearing surface (ABS) of the magnetic head and a rear portion extending from the front portion in an element height direction perpendicular to the ABS, wherein an upper surface of the front portion of the main pole is angled with respect to a plane of deposition at a first angle of inclination of greater than 0°, and wherein at least a portion of an upper surface of the rear portion of the main pole is angled at a first angle of declination greater than 0° with respect to the plane of deposition, an upper shield positioned above the main pole, the upper shield configured to serve as a second electrode, and a microwave oscillator positioned between the main pole and the upper shield at the ABS.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Kimitoshi Etoh, Kazuhiko Hosomi, Mikito Sugiyama, Tomohiro Okada
  • Publication number: 20150098150
    Abstract: A magnetic write head having a write pole with a tapered trailing edge portion and having a spin torque oscillator that is formed entirely on the tapered trailing edge portion and that is self aligned with first and second sides of the write pole. The write pole and spin torque oscillator are formed by a method wherein the sides of the spin torque oscillator and write pole are defined in the same photolithographic and ion milling process, thereby allowing for the self alignment of the spin torque oscillator with the sides of the write pole.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Andrew Chiu, Edward H. P. Lee
  • Patent number: 8997335
    Abstract: A method of manufacturing a magnetic head includes the steps of: forming a pole-layer-encasing layer having a pole-layer-encasing section; and forming a pole layer in the pole-layer-encasing section. The pole layer includes a first layer, and a second layer formed thereon. The step of forming the pole layer includes the steps of: forming an initial first layer by physical vapor deposition; etching the surface of the initial first layer by dry etching so that the initial first layer becomes the first layer; and forming the second layer on the first layer.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Hironori Araki, Kazuo Ishizaki, Takehiro Horinaka
  • Patent number: 8986556
    Abstract: A TAMR (Thermally Assisted Magnetic Recording) write head is formed with a narrow pole tip, a trailing edge magnetic shield and, optionally, a plasmon shield. The narrow pole tipped write head uses the energy of laser generated edge plasmons, formed in a plasmon generating layer, to locally heat a PMR magnetic recording medium slightly below its Curie temperature, Tc. When combined with the effects of the narrow tip, this local heating to a temperature below Tc is sufficient to create good transitions and narrow track widths in the magnetic medium. The write head is capable of writing effectively on state-of-the-art PMR recording media having Hk of 20 kOe or more.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Xuhui Jin, Yuchen Zhou, Kenichi Takano, Joe Smyth
  • Patent number: 8986557
    Abstract: Method and apparatus for forming a patterned magnetic substrate are provided. A patterned resist is formed on a magnetically active surface of a substrate. An oxide layer is formed over the patterned resist by a flowable CVD process. The oxide layer is etched to expose portions of the patterned resist. The patterned resist is then etched, using the etched oxide layer as a mask, to expose portions of the magnetically active surface. A magnetic property of the exposed portions of the magnetically active surface is then modified by directing energy through the etched resist layer and the etched oxide layer, which are subsequently removed from the substrate.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: March 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Brian Saxton Underwood, Abhijit Basu Mallick, Nitin Ingle, Roman Gouk, Steven Verhaverbeke
  • Patent number: 8980109
    Abstract: A method fabricates a magnetic transducer having a nonmagnetic layer and an ABS location corresponding to an ABS. A pole trench is provided in the nonmagnetic layer. The pole trench has a pole tip region and a yoke region. At least one pole material is provided. The pole material(s) have an external protrusion that is above and external to the pole trench. A hard mask that covers at least the external protrusion is provided. A portion of the nonmagnetic layer adjacent to the pole trench is removed to form a side shield trench. At least one side shield material is provided. A portion of the side shield material(s) are adjacent to the hard mask and fill at least a portion of the side shield trench. The side shield material(s) and the pole material(s) are planarized to form at least one side shield and a main pole.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ronghui Zhou, Lily Yao, Ming Jiang, Lien-Chang Wang
  • Publication number: 20150069014
    Abstract: According to one embodiment, there is provided a pattern formation method including coating a substrate or mask layer with a fine particle coating solution containing fine particles including a protective group having a close surface polarity and containing, on at least surfaces thereof, a material selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Mo, Ta, W, Au, Ag, Pd, Cu, Pt and oxides thereof, a viscosity modifier, and a solvent for adjusting mixing of the viscosity modifier and the fine particles having the protective group to form a fine particle layer on the substrate or mask layer.
    Type: Application
    Filed: July 7, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori KIMURA, Kazutaka TAKIZAWA, Akira FUJIMOTO
  • Publication number: 20150072172
    Abstract: According to one embodiment, there is provided a pattern formation method including forming a target layer to be processed on a substrate, adding a second dispersion containing a polymer material including a polymer chain having a base metal at a terminal end and a second solvent to a first dispersion containing noble-metal microparticles and a first solvent, thereby preparing a noble-metal microparticle layer coating solution in which microparticles covered with the polymer material are dispersed, arranging the noble-metal microparticles covered with the polymer material on the target layer by using the noble-metal microparticle layer coating solution, and transferring a projections pattern of the noble-metal microparticles covered with the polymer material to the target layer.
    Type: Application
    Filed: January 10, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazutaka TAKIZAWA, Kaori Kimura, Akihiko Takeo
  • Publication number: 20150069013
    Abstract: According to one embodiment, a magnetic recording layer is coated with a fine particle coating solution containing fine particles coated with a protective layer containing a first additive including a straight-chain structure for increasing wettability to the magnetic recording layer, and a carboxy group or the like, and a second additive including a carboxy group or the like and a polymerizable functional group, each fine particle having, on at least a surface thereof, a material selected from Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Mo, Ta, W, and oxides thereof, thereby forming a fine particle monolayer, and heat or light energy is applied, thereby curing the protective layer and forming a periodic pattern.
    Type: Application
    Filed: January 10, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori KIMURA, Kazutaka TAKIZAWA, Akira FUJIMOTO
  • Publication number: 20150071045
    Abstract: An apparatus includes a waveguide and a near-field transducer adjacent the waveguide. The near-field transducer includes an enlarged region and a peg region extending from the enlarged region towards an air bearing surface. A write pole is adjacent the near-field transducer and include a first portion having an edge extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface. A second portion of the write pole extends orthogonally to the air bearing surface and is in contact with the first portion. The apparatus includes an insulator-filled gap at the air bearing surface between the second portion of the write pole and the peg region of the near-field transducer. The gap is bounded away from the air bearing surface by the enlarged region of the near-field transducer.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Hua Zhou, Yongjun Zhao, Chris Rea, Werner Scholz, James G. Wessel
  • Publication number: 20150062753
    Abstract: Embodiments of the present invention generally relate to a magnetic device having a discontinuous array of columns disposed near a magnetic pole. Each column has a length extending perpendicular to an air bearing surface and a width. The length is greater than the width.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Quan-Chiu Harry LAM, Edward Hin Pong LEE, Xinjiang SHEN, Ning SHI
  • Publication number: 20150062751
    Abstract: A magnetic sensor having a novel pinning structure resulting in a greatly reduced gap spacing. The sensor has a magnetic free layer structure that extends to a first stripe height and a magnetic pinned layer structure that extends to a second stripe height that is longer than the first stripe high. A layer of anti-ferromagnetic material is formed over the pinned layer structure in the region beyond the first stripe height location. In this way, the antiferromagnetic layer is between the pinned layer and the second or upper shield and does not contribute to gap spacing.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu, Kochan Ju, Youfeng Zheng
  • Publication number: 20150062752
    Abstract: A magnetic read sensor having an antiferromagnetic located embedded within a magnetic shield of the sensor so that the antiferromagnetic layer can pin the magnetization of the pinned layer without contributing to read gap thickness. The sensor is configured with a pinned layer having a free layer structure located within an active area of the sensor and a pinned layer that extends beyond the free layer and active area of the sensor. The antiferromagnetic layer can be located outside of the active and exchange coupled with the extended portion of the pinned layer.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Ying Hong, Quang Le, Masaya Nishioka
  • Publication number: 20150055441
    Abstract: A recording device and a method of forming a recording device are disclosed. The recording device includes an air bearing surface and a near field transducer including a surface proximate the air bearing surface. The device also includes a write pole including a sloped pole piece proximate the near field transducer, where the sloped pole piece includes an end proximate the air bearing surface; a capping material disposed proximate the surface of the near field transducer; and an overcoat layer disposed proximate the capping material and at least a portion of the air bearing surface of the recording device.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Edwin F. Rejda, Kurt W. Wierman
  • Patent number: 8961805
    Abstract: A method for performing dry etching on a metal film containing Pt via a mask layer includes performing dry etching on the metal film by generating a plasma of an etching gas including a gaseous mixture of H2 gas, CO2 gas, methane gas and rare gas. With the dry etching method, it is possible to make a vertical sidewall of a hole or trench more vertical without using a halogen gas.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Eiichi Nishimura, Takashi Sone
  • Patent number: 8956562
    Abstract: A substrate having a pattern of magnetic properties may be formed by forming a magnetically inactive layer on the substrate, forming a magnetic precursor on the magnetically inactive layer, and forming magnetically active domains separated by magnetically inactive domains in the magnetic precursor by applying thermal energy to the magnetic precursor. The thermal energy may be applied using a laser, which may be pulsed. Forming the magnetically active domains may include crystallizing portions of the magnetic precursor.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 17, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Stephen Moffatt
  • Publication number: 20150041429
    Abstract: A tool for use in fabricating an electronic component includes a plurality of processing modules and a transfer chamber in communication with each of the plurality of processing modules. The transfer chamber includes a component for transferring a structure to each of the plurality of processing modules. The plurality of processing modules and the transfer chamber are sealed from the surrounding environment and are under a vacuum. The plurality of processing modules includes a first module configured to perform a first process on the structure and a second module configured to perform a second process on the structure. The first process includes performing at least one shaping operation on the structure.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Xilin Peng, Jiaoming Qiu, Yonghua Chen, Michael Christopher Kautzky, Mark Thomas Kief
  • Publication number: 20150036244
    Abstract: A magnetic head, according to one embodiment, includes a sensor structure extending from an air bearing surface end thereof in a stripe height direction, the sensor structure having sidewalls on opposite sides thereof, the sidewalls extending between a top and a bottom of the sensor structure, the sidewalls extending in the stripe height direction, wherein a spacing between the sidewalls in a track width direction along the top of the sensor structure is about constant therealong in the stripe height direction.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Guomin Mao, Yi Zheng
  • Publication number: 20150036468
    Abstract: Embodiments of the present invention generally relate to a method for forming a HAMR device having a photonic integrated circuit that includes an optical detector, an optical emitter, and an optical element distinct from the optical detector and the optical emitter, where the elements of the photonic integrated circuit are aligned with a near field transducer. The method includes forming one or more layers on a substrate, bonding the layers to a partially fabricated recording head, removing the substrate using epitaxial lift-off, and forming the optical elements on the partially fabricated recording head.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Inventor: Thomas Dudley BOONE, JR.
  • Publication number: 20150037614
    Abstract: The present disclosure relates to a planarized bit-patterned magnetic medium that has a magnetic layer, including island regions and trench regions, a first carbon layer applied over the magnetic layer, and a second carbon layer applied over the first carbon layer, wherein the second carbon layer has been removed in the island regions. The first carbon layer may have a lower material removal rate when exposed to chemical-mechanical polishing than the second carbon layer. The present disclosure also relates to a method for planarizing a bit-patterned magnetic medium and a slurry composition for the chemical-mechanical polishing of carbon layers, the slurry composition including an oxidizer component, a catalyst component, a particulate component, and a reaction control component.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Kurt A. Rubin, Richard L. White, Xiaoping Bian
  • Patent number: 8946835
    Abstract: A planarization process may planarize a media disk that has data trenches between data features and larger servo trenches between servo features. A filler material layer is deposited on the media disk and provides step coverage of the trenches. The filler material has data recesses over the data trenches and servo recesses over the servo trenches that must be removed to produce a planar media surface. A first planarization process is used to remove the data recesses and a second planarization process is used to remove the servo recesses.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 3, 2015
    Assignee: Seagate Technology LLC
    Inventors: Yuan Xu, Wei Hu, Justin Jia-Jen Hwu, Gene Gauzner, Koichi Wago, David Shiao-Min Kuo
  • Patent number: 8945405
    Abstract: A magneto-resistive reader includes a first magnetic shield element, a second magnetic shield element and a magneto-resistive sensor stack separating the first magnetic shield element from the second magnetic shield element. The first shield element includes two ferromagnetic anisotropic layers separated by a grain growth suppression layer.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: February 3, 2015
    Assignee: Seagate Technology LLC
    Inventors: Vladyslav Alexandrovich Vas'ko, Venkateswara Rao Inturi, Michael C. Kautzky, Zhihong Lu, Mark T. Kief, Yifan Zhang
  • Publication number: 20150017482
    Abstract: The embodiments disclose a plasmonic cladding structure including at least one conformal plasmonic cladding structure wrapped around plural stack features of a recording device, wherein the conformal plasmonic cladding structure is configured to create a near-field transducer in close proximity to a recording head of the recording device, at least one conformal plasmonic cladding structure with substantially removed top surfaces of the stack features with exposed magnetic layer materials and a thermally insulating filler configured to be located between the stack features.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: Seagate Technology LLC
    Inventors: Kim Y. Lee, Ganping Ju, Chubing Peng, Xiaobin Zhu, Yingguo Peng, Yukiko A. Kubota, Timothy J. Klemmer, Jan-Ulrich Thiele, Michael A. Seigler, Werner Scholz, David S. Kuo, Koichi Wago, Thomas P. Nolan
  • Publication number: 20150017481
    Abstract: The embodiments disclose a structure, including a first layer selectively etched on a substrate with a seedlayer deposited thereon, a first layer bit patterned growth guiding mechanism on the seedlayer, and a plurality of bit patterned magnetic recording features grown on the seedlayer guided by the growth guiding mechanism.
    Type: Application
    Filed: June 18, 2014
    Publication date: January 15, 2015
    Inventors: Thomas P. Nolan, Kim Y. Lee, Shuaigang Xiao, Tom Chang, Yingguo Peng
  • Publication number: 20150017483
    Abstract: Provided herein is a method including oxidizing tops of features of a patterned magnetic layer to form oxidized tops of the features; removing an excess of an applied first protective material down to at least the oxidized tops of the features to form a planarized layer; and applying a second protective material over the planarized layer.
    Type: Application
    Filed: October 24, 2013
    Publication date: January 15, 2015
    Applicant: Seagate Technology LLC
    Inventors: Michael R. Feldbaum, Wago Wago, Bin Lu, David S. Kuo
  • Publication number: 20150017588
    Abstract: Methods herein form a photoresist on an exterior of a cylinder and expose the photoresist to a light source while rotating the cylinder. Such methods develop the photoresist, after exposing, to change the photoresist into a patterned protective layer on the exterior of the cylinder. Then, these methods pattern the exterior of the cylinder while rotating the cylinder using the patterned protective layer to produce a patterned cylinder.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Karl E. Kurz, Amir Prizant, Christopher D. Blair
  • Publication number: 20150016237
    Abstract: The embodiments disclose a patterned composite magnetic layer structure configured to use magnetic materials having differing temperature and magnetization characteristics in a recording device, wherein the patterned composite magnetic layer structure includes magnetic layers, at least one first magnetic material configured to be used in a particular order to reduce a recording temperature and configured to control and regulate coupling and decoupling of the magnetic layers and at least one second magnetic material with differing temperature characteristics is configured to control recording and erasing of data.
    Type: Application
    Filed: October 16, 2013
    Publication date: January 15, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xi Chen, Ganping Ju, Yingguo Peng, Timothy J. Klemmer, Yukiko A. Kubota, Jan-Ulrich Thiele, David S. Kuo, Kai-Chieh Chang, Kangkang Wang, Li Gao, Yinfeng Ding
  • Publication number: 20150015989
    Abstract: A slider for a head to read data from or write data to a magnetic media is disclosed. The slider includes an air bearing surface including raised bearing surface(s) elevated above recessed bearing surface(s) to pressurize air flow along the air bearing surface to provide a fly height for the slider above the media. The raised bearing surfaces are formed along one or more raised substrate structures etched from a substrate body. The slider includes one or more insets inset into the one or more raised substrate structures formed of an inset material having a different coefficient of expansion than a substrate material of the slider to compensate for temperature and/or humidity changes.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventors: Igor Sytine, Jeremy Adam Thurn, Joseph Michael Stephan
  • Publication number: 20150004438
    Abstract: According to one embodiment, there is provided a method for forming a pattern including forming an island-like metal underlayer comprised of a first metal, a phase-separated release layer including a first metal, a second metal, and a metal oxide, a mask layer, and a resist layer on a processed layer in this order, forming a concave-convex pattern on the resist layer, transferring the pattern to the mask layer, the phase-separated release layer, and the processed layer in this order, dissolving the phase-separated release layer using a peeling liquid for dissolving the first metal and the second metal, and removing the mask layer from the processed layer to expose the concave-convex pattern.
    Type: Application
    Filed: October 22, 2013
    Publication date: January 1, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Publication number: 20150002963
    Abstract: The present application relates to a write gap structure for a magnetic recording head. In illustrated embodiments, the write gap structure includes multiple write gap segments along a beveled pole tip surface between a top edge and a bottom edge of the beveled pole tip surface to provide a narrow write gap proximate to the air bearing surface and a larger write gap behind the air bearing surface. In illustrated embodiments, the narrow write gap segment is formed between the beveled pole tip surface and a lower back surface of front shield and the larger write gap is formed between the beveled pole tip surface and an upper back surface of the front shield.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Wei Tian, Huaqing Yin, Yan Dong, Joseph M. Mundenar, Jianhua Xue
  • Publication number: 20140376130
    Abstract: A magnetic head includes a plurality of reproducing elements so that the magnetic head can acquire reproduction signals from a plurality of tracks at the same time. The magnetic head includes a first reproducing element, a first magnetic film formed on a first side wall of the first reproducing element with a first side wall insulating film interposed therebetween, a second magnetic film formed on a second side wall of the first reproducing element with a second side wall insulating film interposed therebetween, a second reproducing element electrically isolated from the first reproducing element and formed on the first magnetic film, a third magnetic film formed on the first magnetic film, and a fourth magnetic film formed on the first reproducing element and electrically isolated from the second reproducing element.
    Type: Application
    Filed: January 10, 2014
    Publication date: December 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akihiko TAKEO, Kazuto KASHIWAGI, Kenichiro YAMADA, Katsuhiko KOUI, Tomomi FUNAYAMA
  • Publication number: 20140374376
    Abstract: A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Sethuraman Jayashankar, Michael C. Kautzky
  • Publication number: 20140376349
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Patent number: 8914970
    Abstract: A tunneling magnetoresistive sensor has an extended pinned layer wherein both the MgO spacer layer and the underlying ferromagnetic pinned layer extend beyond the back edge of the ferromagnetic free layer in the stripe height direction and optionally also beyond the side edges of the free layer in the trackwidth direction. A patterned photoresist layer with a back edge is formed on the sensor stack and a methanol (CH3OH)-based reactive ion etching (RIE) removes the unprotected free layer, defining the free layer back edge. The methanol-based RIE terminates at the MgO spacer layer without damaging the underlying reference layer. A second patterned photoresist layer may be deposited and a second methanol-based RIE may be performed if it is desired to have the reference layer also extend beyond the side edges of the free layer in the trackwidth direction.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: December 23, 2014
    Assignee: HGST Netherlands B.V.
    Inventor: Jordan Asher Katine