Lens Patents (Class 216/26)
  • Patent number: 11880165
    Abstract: Disclosed is a method including the following steps: a) providing a substrate including a first silicon layer, a second silicon layer and an intermediate silicon oxide layer therebetween; b) etching the first silicon layer in order to form the timepiece components therein; c) releasing from the substrate a wafer formed by at least all or part of the etched, first silicon layer and including the timepiece components; d) thermally oxidizing and then deoxidizing the timepiece components; e) forming by thermal oxidation or deposition a silicon oxide layer on the timepiece components; f) detaching the timepiece components from the wafer.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: January 23, 2024
    Assignee: PATEK PHILIPPE SA GENEVE
    Inventor: Sylvain Jeanneret
  • Patent number: 11437013
    Abstract: The present invention relates to an ultra-thin acoustic lens for subwavelength focusing in a megasonic range and a design method thereof. More particularly, the present invention relates to a super-oscillatory planar ultra-thin acoustic lens for subwavelength focusing in the megasonic range, which includes a plurality of concentric regions arranged in a concentric shape with reference to the center point, wherein the concentric regions include a plurality acoustic insulation region for insulating incident acoustic waves, and a plurality of transmission regions for transmitting acoustic waves, the acoustic insulation regions and the transmission regions being formed alternatively in a radial direction from the center point so as to focus incident acoustic wave energy onto a subwavelength region.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 6, 2022
    Assignee: Korea Research Institute of Standard and Science
    Inventors: Jae-yub Hyun, Yong-tae Kim, Il Doh, Bong-young Ahn, Kyung-min Baik, Se-hwa Kim
  • Patent number: 10910356
    Abstract: A light-emitting diode (LED) display panel includes a substrate, a driver circuit array on the substrate and including a plurality of pixel driver circuits arranged in an array, an LED array including a plurality of LED dies each being coupled to one of the pixel driver circuits, a micro lens array including a plurality of micro lenses each corresponding to and being arranged over at least one of the LED dies, and an optical spacer formed between the LED array and the micro lens array.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 2, 2021
    Assignee: Jade Bird Display (Shanghai) Limited
    Inventors: Lei Zhang, Fang Ou, Qiming Li
  • Patent number: 10795168
    Abstract: Metasurface elements, integrated systems incorporating such metasurface elements with light sources and/or detectors, and methods of the manufacture and operation of such optical arrangements and integrated systems are provided. Systems and methods for integrating transmissive metasurfaces with other semiconductor devices or additional metasurface elements, and more particularly to the integration of such metasurfaces with substrates, illumination sources and sensors are also provided. The metasurface elements provided may be used to shape output light from an illumination source or collect light reflected from a scene to form two unique patterns using the polarization of light. In such embodiments, shaped-emission and collection may be combined into a single co-designed probing and sensing optical system.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 6, 2020
    Assignee: Metalenz, Inc.
    Inventors: Gilbert N. Riley, Jr., Robert Devlin, Adam Erlich, Pawel Latawiec, John Graff
  • Patent number: 10590029
    Abstract: The present invention relates to a manufacturing method for a camera window and a camera window manufactured thereby. A conventional camera window is configured such that an etching pattern is provided on a back surface of a glass sheet, and a deposition layer is provided on the etching pattern, thereby improving reflectivity, whereby indirect external recognition of the etching pattern is performed, but in the present invention, a distinctive pattern is provided on a front surface of a glass sheet such that direct external recognition of the pattern is possible, whereby it is possible to recognize a distinctive pattern line.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: March 17, 2020
    Assignee: UTI, Inc.
    Inventors: Deok Young Park, Jae Young Hwang, Hak Chul Kim, Tea Joo Ha
  • Patent number: 10269847
    Abstract: A method of forming a microlens may include using two layers of photoresist. The first photoresist layer may be patterned to form a first portion of a pixel microlens. A second photoresist layer may be patterned on top of the first portion of the pixel microlens. The second photoresist may then be melted so that the second photoresist layer has a curved upper surface. The first and second photoresist layers may combine to form the pixel microlens. The indices of refraction of the first and second photoresist layers may the same or different. The melting point of the second photoresist may be lower than the melting point of the first photoresist.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 23, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Christopher Parks
  • Patent number: 10216007
    Abstract: Contact lens includes central optical zone for clearly focusing image of incident light onto retina clear central image region of user's eyeball and peripheral optical zone surrounding central optical zone, and one or multiple moiré portions located on peripheral optical zone for focusing the image of incident light onto peripheral out-of focus region of retina of user's eyeball. The moiré portions are processed by: using an aberrometer to measure aberration of retina of user's eyeball and to further generate a three-dimensional image map, dividing the three-dimensional image map into clear central image region and peripheral out-of focus region, and then using an aberration correction software to calculate the power of sphere and the power and axis of cylinder on contact lens and then inputting the three-dimensional image map into processing machine for enabling the processing machine process the desired moiré portions on contact lens according to the three-dimensional image map.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: February 26, 2019
    Assignee: BRIGHTEN OPTIX CORP.
    Inventor: I-Tsung Wu
  • Patent number: 9983334
    Abstract: A micro lens array substrate includes a substrate including a plurality of concave portions arranged in a first direction and a second direction intersecting the first direction on one surface of the substrate, and a lens layer having a different refractive index from the substrate. The lens layer is formed on the one surface of the substrate to fill in the plurality of concave portions. The plurality of concave portions is continuous in at least one of the first direction and the second direction and is arranged to have a discontinuous part in the lens layer between two adjacent concave portions in a third direction intersecting the first and second directions. A first depth of a center of one concave portion from the discontinuous part is greater than a second depth of the discontinuous part from a surface of the lens layer.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: May 29, 2018
    Assignee: Seiko Epson Corporation
    Inventor: Toru Nimura
  • Patent number: 9971069
    Abstract: A lens array includes a flat plate-shaped base part, a plurality of lenses, a plurality of columnar light guiding parts and a plurality of light shielding parts. The lenses are formed on one surface of the base part. The columnar light guiding parts are formed on another surface of the base part at points corresponding to the lenses. The light shielding parts are formed at least on lateral surfaces of the light guiding parts.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: May 15, 2018
    Assignee: KONICA MINOLTA, INC.
    Inventors: Tomohiko Tagawa, Akihiro Fujimoto
  • Patent number: 9865642
    Abstract: A front-side-interconnect (FSI) red-green-blue-infrared (RGB-IR) photosensor array has photosensors of a first type with a diffused N-type region in a P-type well, the P-type well diffused into a high resistivity semiconductor layer; photosensors of a second type, with a deeper diffused N-type region in a P-type well, the P-type well; and photosensors of a third type with a diffused N-type region diffused into the high resistivity semiconductor layer underlying all of the other types of photosensors. In embodiments, photosensors of a fourth type have a diffused N-type region in a P-type well, the N-type region deeper than the N-type region of photosensors of the first and second types.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 9, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Zhenhong Fu, Dajiang Yang, Xianmin Yi, Gang Chen, Sing-Chung Hu, Duli Mao
  • Patent number: 9837455
    Abstract: An image sensor includes a sensing layer, filter units, and a grid structure. The filter units are disposed on the sensing layer. The grid structure is disposed on the filter units, and includes grating portions. The grating portions form a number of grating groups, and each of the grating groups is separated from each other.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 5, 2017
    Assignee: Visera Technologies Company Limited
    Inventors: Chung-Hao Lin, Wu-Cheng Kuo, Kuo-Feng Lin, Yu-Kun Hsiao
  • Patent number: 9673242
    Abstract: An image sensor includes a color filter configured to pass a specific color of light; a micro lens formed under the color filter and configured with a plurality of layers in which an upper layer has a smaller area than a lower layer; and a photo device formed under the micro lens and configured to receive light passing through the micro lens and convert the received light into an electrical signal.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 6, 2017
    Assignees: SK Hynix Inc., Postech Academy-Industry Foundation
    Inventors: Hae Wook Han, Young Woong Do, Won Jun Lee, Sang Dong Yoo, Kyoung In Lee, Cha Young Lee
  • Patent number: 9649788
    Abstract: The present invention relates to a method of fabricating an array of optical lens elements, comprising: providing a first mold having a plurality of recesses; applying a first polymer liquid in said plurality of recesses; providing a first contact shaping substrate; contacting said first contact shaping substrate with said first polymer liquid in said plurality of recesses, wherein said contact between said first contact shaping substrate and said first polymer liquid results in a deformation of the contour configuration of said first polymer liquid facing away from said plurality of recesses; curing said first polymer liquid to form an array of optical lens elements.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: May 16, 2017
    Assignee: Anteryon Wafer Optics B.V.
    Inventors: Robertus Johannes Gerardus Coninx, Willem Matthijs Brouwer, Edwin Maria Wolterink
  • Patent number: 9500900
    Abstract: A micro lens array substrate includes a substrate having optical transparency and a lens layer having optical transparency and a different refractive index from that of the substrate, which is formed in such a manner as to fill in a concave portion arranged in one surface of the substrate in the X-direction, the Y-direction, and the W-direction. A through-hole is provided in the lens layer, between the adjacent concave portions in the W-direction in the lens layer, and the lens layer is continuous between the adjacent concave portions in the X-direction or in the Y-direction.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: November 22, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Toru Nimura
  • Patent number: 9383548
    Abstract: An apparatus for acquiring intensity and depth information images may comprise: an image sensing unit having first radiation-sensitive elements and groups of second radiation-sensitive elements in a flat or curved plane having at least two directions, the first radiation-sensitive elements and groups of second radiation-sensitive elements to receive, respectively, an intensity image and a depth information image, at least two groups of second elements extending in each of the two directions of the plane; first micro-lenses, each of which is arranged to convey radiation to a corresponding one of the first elements; and second micro-lenses, each of which is arranged to convey radiation to a corresponding group of the second elements.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 5, 2016
    Assignee: OLYMPUS CORPORATION
    Inventor: Steven Lansel
  • Patent number: 9346709
    Abstract: A glass article exhibiting improved resistance to fictive surface damage and a method for making it, the method comprising removing a layer of glass from at least a portion of a surface of the article that is of a layer thickness at least effective to reduce the number and/or depth of flaws on the surface of the article, and then applying a friction-reducing coating to the portion of the article from which the layer of surface glass has been removed.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 24, 2016
    Assignee: Corning Incorporated
    Inventor: Timothy Michael Gross
  • Patent number: 9182526
    Abstract: A tunable optical diffraction grating apparatus, such as but not limited to a tunable Fresnel zone lens apparatus, includes a plurality of symmetric repeating structures (i.e., typically concentric rings) located over a substrate and comprising a material susceptible to a transparent to opaque transition for a designated radiation wavelength. The tunable optical diffraction grating apparatus also includes a means for separately effecting the transparent to opaque transition for each of the plurality of symmetric repeating structures to provide a plurality of transparent zones each comprising a variable first sub-plurality of adjacent transparent symmetric repeating structures alternating and interposed between a plurality of opaque zones each comprising a variable second sub-plurality of adjacent opaque symmetric repeating structures. Also included are a method for fabricating the tunable optical diffraction grating apparatus and a method for operating the tunable optical diffraction grating apparatus.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: November 10, 2015
    Assignee: UNIVERSITY OF CENTRAL FLORIDA
    Inventors: Glenn Boreman, David Shelton
  • Patent number: 9136112
    Abstract: Provided is a method of post treating graphene including providing graphene on a metal thin film, providing a carrier on the graphene, hardening the carrier, and removing the metal thin film from the graphene.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: September 15, 2015
    Assignee: Hanwha Techwin Co., Ltd.
    Inventors: Dong-Kwan Won, Seung-Min Cho, Jong-Hyuk Yoon, Doc-Hwa Na
  • Publication number: 20150131034
    Abstract: As an apparatus for manufacturing a micro lens array includes a first substrate having a plurality of cavities formed at locations corresponding to locations of the plurality of micro lenses, and a second substrate having a lower softening point than the first substrate and bonded on the first substrate to close the plurality of cavities, wherein a portion of the second substrate located on the cavities swells convexly by air trapped in the cavities expanding its volume in response to a temperature above the softening point of the second substrate being applied, to form domes corresponding to a shape of the micro lenses, and the micro lens array is cast using the second substrate having the formed domes as a mold.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 14, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Il-Joo CHO, Eui Sung YOON, Hyunjoo Jenny LEE
  • Patent number: 9031684
    Abstract: A method and system for integrated circuit fabrication is disclosed. In an example, the method includes determining a first process parameter of a wafer and a second process parameter of the wafer, the first process parameter and the second process parameter corresponding to different wafer characteristics; determining a variation of a device parameter of the wafer based on the first process parameter and the second process parameter; constructing a model for the device parameter as a function of the first process parameter and the second process parameter based on the determined variation of the device parameter of the wafer; and performing a fabrication process based on the model.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chin-Hsiang Lin, Chi-Ming Yang, Chun-Lin Chang, Chih-Hong Hwang
  • Publication number: 20150109675
    Abstract: A diffuser stack may include a first film with a first index of refraction and a second film proximate the first film. The second film may have a second index of refraction that is higher than the first index of refraction. An interface between the first film and the second film may include an array of microlenses of substantially randomized sizes. The microlenses may include sections of features that are substantially spherical, polygonal, conical, etc. The first and second films may be disposed between an array of pixels and a substantially transparent substrate. An anti-reflective layer may be disposed between the first film and the second film.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Jyothi Karri, Ion Bita, Jian J. Ma, Sapna Patel, Lai Wang
  • Publication number: 20150092139
    Abstract: There is provided a method of manufacturing a microlens array substrate with improved manufacturing yield and high quality, the method including: forming a groove part along an outer edge of a first area on a surface of a substrate; forming a mask layer to cover a side of the surface, forming a plurality of openings in the first area, and forming openings along the outer edge of the first area; performing isotropic etching on the substrate through the mask layer, forming a plurality of recesses in the first area, and forming recesses across a boundary part between the first area and the groove part; removing the mask layer from the substrate; forming a light transmission material layer that has a refractive index, which is different from a refractive index of the substrate, to cover the side of the surface of the substrate and to bury the plurality of recesses; and planarizing an upper surface of the light transmission material layer.
    Type: Application
    Filed: September 9, 2014
    Publication date: April 2, 2015
    Inventor: Yoshikazu Eguchi
  • Publication number: 20150070598
    Abstract: There are provided a cover window including: a first glass panel; a printed portion formed in a concave part of one surface of the first glass panel; and a second glass panel bonded to one surface of the first glass panel, a manufacturing method thereof, and a touchscreen including the same.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 12, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hun KIM, Seong Ho Kim, Jin Uk Lee
  • Patent number: 8974679
    Abstract: A method of producing an optoelectronic component comprises the steps of: A) providing a radiation-emitting layer sequence (1) having an active zone (13), which emits electromagnetic primary radiation when in operation, B) providing a first wavelength conversion layer (2), which converts the primary radiation at least partially into electromagnetic secondary radiation, and C) arranging the first wavelength conversion layer (2) on the radiation-emitting layer sequence (1) in the beam path of the primary radiation.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: March 10, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Norwin Von Malm
  • Publication number: 20150049318
    Abstract: An optical element includes a surface on which a plurality of structures is provided. The plurality of structures is provided to be fluctuated in a random direction from a lattice point at an interval which is equal to or shorter than a wavelength of visible light.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 19, 2015
    Applicant: Sony Corporation
    Inventors: Kazuya Hayashibe, Masamitsu Kageyama, Tokihisa Kaneguchi
  • Publication number: 20150048048
    Abstract: Methods are disclosed by which two-dimensional and three-dimensional pattern layers may be formed on non-planar surfaces, including optical elements such as lenses with one or more cylindrical, spherical or aspheric surfaces. Patterns with features in the micro- and/or nano-size regime comprised of organic, inorganic or metallic materials may be formed by the methods described herein.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 19, 2015
    Inventor: W. Dennis Slafer
  • Publication number: 20150030298
    Abstract: Light guiding structures are provided to improve the light coupling between photonic active devices and the top of a metallization layer stack interconnecting these photonic active devices. Each light guiding structure comprises a hole extending between the near surface of the photonic active devices and the top surface of the metallization layer stack, said hole being filled with dielectrics or a combination of dielectrics and metals. Such a light guiding structure removes from the optical path of light rays, the interfaces between the metallization layers, thereby confining light laterally and enabling interconnects with increased thickness and more levels of metal. This results in the suppression of multiple reflections and optical crosstalk. The light guiding structures can have cross-section diagonals with sub-wavelength dimensions can be fabricated after all CMOS process steps, thus having minimal interference and maximal compatibility with CMOS processing.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventor: Carlos J.R.P. Augusto
  • Publication number: 20150002790
    Abstract: A manufacturing method of a microlens array substrate, which is a manufacturing method of electro-optic device substrate, includes a step of forming concave portions, each of which corresponds to each of a plurality of pixels, by etching a first surface of a light transmitting substrate, a step of forming a lens layer including microlenses formed by filling at least the concave portions with a lens material having a refractive index greater than that of the substrate, a step of flattening a second surface of the lens layer opposite to a surface in which the microlenses are formed, a step of forming a light shielding film that surrounds a display area, in which each of the plurality of pixels is arranged, on the flattened second surface, and a step of forming a light transmitting path layer that covers the second surface on which the light shielding film is formed.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 1, 2015
    Inventor: Satoshi Ito
  • Publication number: 20140347741
    Abstract: A method of fabricating a liquid lens array creates an array of through holes of axisymmetric cross-section through a central plate, forms conductive traces on the side walls of each of the through holes and on a portion of the top and bottom surfaces of the central plate contiguous with each through hole, and bonds the bottom surface of the central plate around each through hole to the top surface of a transparent base plate, forming an array of cavities. The method applies an insulating layer to the side walls of each cavity, portions of the top surface of the base plate lying within each cavity, and portions of the top surface of the transparent central plate surrounding each cavity, introduces a polar liquid and a non-polar liquid into each cavity; and bonds the top surface of the central plate to the bottom surface of a transparent top plate.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Inventors: Raymond Miller Karam, Georges Roussos
  • Publication number: 20140341516
    Abstract: A glass-silicon wafer stacked platform.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 20, 2014
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Wayne Victor Sorin, Paul Kessler Rosenberg, Georgios Panotopoulos, Susant K Patra
  • Patent number: 8883019
    Abstract: The present invention provides method steps for manufacturing an assembly of adjustable lenses on a wafer. The method steps provide an easy manufacturing of such lenses, minimizing the cost of assembly, and at the same time provide a solution for mass production of compact adjustable lenses for use in mobile phones, etc.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: November 11, 2014
    Assignee: Polight AS
    Inventors: Lars Henriksen, Morten Eliassen, Vladimir Kartashov, Jon Herman Ulvensøen, Ib-Rune Johansen, Karl Henrik Haugholt, Dag Torstein Wang, Frode Tyholdt, Wilfred Booij
  • Publication number: 20140285891
    Abstract: A method producing a refractive or diffractive optical device, including: production, in a first layer, of at least one inclined general profile approximated by a staircase profile including plural stairsteps; production of the profile including: forming buffer patterns on the first layer and at least one sequence including: forming masking patterns, so each masking pattern includes at least one edge situated above a buffer pattern and covers at least one area of the first layer not masked by the buffer patterns, the forming the masking patterns also defining, for the first layer, plural free areas not masked by the masking patterns or by the buffer patterns; etching the free areas to form trenches in the first layer. The production of the profile also includes: removing the masking patterns, removing the buffer patterns revealing walls previously covered by the buffer patterns, and then an isotropic etching to remove the walls.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 25, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventor: Michel Heitzmann
  • Publication number: 20140263982
    Abstract: The present disclosure is directed to electromagnetic radiation sensors including micro-lenses and to methods of constructing and utilizing such electromagnetic radiation sensors. In one embodiment there is provided an electromagnetic radiation sensor comprising a dielectric substrate including a front surface and a rear surface, an electromagnetic radiation detector element disposed on the rear surface of the substrate, and a lens comprising a three dimensional polaritonic metamaterial structure including a pattern of features formed in the front surface of the substrate, the lens configured to focus electromagnetic radiation incident on the front surface of the substrate onto the electromagnetic radiation detector element.
    Type: Application
    Filed: August 23, 2013
    Publication date: September 18, 2014
    Applicant: RAYTHEON COMPANY
    Inventors: Vladimir V. Shkunov, Robert W. Byren
  • Patent number: 8828250
    Abstract: A method of manufacturing an optical element module in which an optical element and a semiconductor circuit element are mounted on one surface of a silicon substrate, a mirror surface inclined at approximately 45 degrees is formed on the other surface, and an optical fiber facing the mirror surface is disposed in a V groove formed along the other surface, the method of manufacturing includes the steps of forming the mirror surface and V-shaped side surfaces of the V groove simultaneously by first crystal anisotropic etching on the other surface, and forming an attaching surface substantially perpendicular to the one surface and the other surface, which is formed at an end side of the V groove, and for attaching an end of the optical fiber, by second crystal anisotropic etching in a crystal plane orientation different from that of the first crystal anisotropic etching.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 9, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshihisa Warashina, Masayuki Ishida
  • Patent number: 8801947
    Abstract: Methods for forming microlenses on a semiconductor substrate are provided. An inductively coupled plasma etch process using a process gas that includes a mixture of CF4 and CHF3 can be used to modify the lens shape of a plurality of microlens objects located on a semiconductor substrate to meet microlens specifications in terms of curvature, height, length, shape, and/or distance between adjacent microlens objects on the substrate. The inductively coupled plasma process can be performed in an inductively coupled plasma processing apparatus that includes a grounded Faraday shield to prevent any capacitive coupling during the plasma etching process to reduce sputtering of the microlens surface.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 12, 2014
    Assignee: Mattson Technology, Inc.
    Inventors: Tinghao Frank Wang, Rao V. Annapragada, Cecilia Laura Quinteros, Linda Nancy Marquez, Steven M. Kennedy
  • Publication number: 20140211072
    Abstract: According to one embodiment, an optical device includes a substrate and a first optical layer. The substrate has a first surface and a second surface. The second surface is on an opposite side of the first surface. The first optical layer is provided on the first surface and includes a plurality of first refractive index setting units disposed along the first surface. Each of the first refractive index setting units has a plurality of metal patterns. The metal patterns provide different permeability to the each of the first refractive index setting units. The each of the first refractive index setting units has a refractive index in accordance with the permeability.
    Type: Application
    Filed: June 12, 2013
    Publication date: July 31, 2014
    Inventor: Koichi KOKUBUN
  • Publication number: 20140202253
    Abstract: An optical sensor is disclosed for measuring pressure and/or temperature. The optical sensor is adapted for use in high temperature environments, such as gas turbines and other engines. The optical sensor comprises an optical assembly having a sensor element, a spacer and a lens arranged along the optical axis. The sensor element is spaced from the lens by the spacer. An optical fibre is coupled to the optical assembly for illuminating the sensor element. The optical assembly is resiliently mounted in a housing such that the optical assembly is insulated from shock to the housing. There is also disclosed a method of assembling the optical sensor.
    Type: Application
    Filed: August 9, 2012
    Publication date: July 24, 2014
    Applicant: OXSENSIS LTD
    Inventors: Arnold Peter Roscoe Harpin, Stephen James Fasham, Stephen Geoffrey Tyler
  • Publication number: 20140169738
    Abstract: A method for manufacturing a waveguide lens is provided. A substrate is provided. The substrate includes a top surface and a side surface. A planar waveguide is formed in the top surface. A mask is formed on the planar waveguide. The substrate is subjected to a wet etching process to remove portions of a layer of the planar waveguide which are revealed by the mask to form a media grating identical to the mask in shape in the planar waveguide. Another wet etching process is further applied to remove the mask to form the waveguide lens.
    Type: Application
    Filed: January 9, 2013
    Publication date: June 19, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: HSIN-SHUN HUANG
  • Publication number: 20140116986
    Abstract: A microlens substrate will warp when an oxide film is formed and annealed before forming a mask in order to adjust the etching rate of wet etching. Accordingly, a film exerting a stress that cancels out this warping is formed upon a microlens. This film functions as an optical path length adjusting layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: May 1, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Koichiro Akasaka
  • Publication number: 20140118831
    Abstract: A light diffuser including a transparent substrate having a top surface and a bottom surface. The top surface having formed thereon a plurality of tilted plane portions including a first tilted plane portion and a second tilted plane portion. The first tilted plane portion being tilted in a first direction and the second tilted plane portion being tilted in a second direction. The first direction of the first tilted plane portion being different from the second direction of the second tilted plane portion.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: YOSUKE MIZUYAMA, RICCARDO LETO, NATHAN HARRISON
  • Patent number: 8691100
    Abstract: A method comprising providing a first substrate and forming a first sacrificial layer over the first substrate, the first sacrificial layer comprising a curved surface portion, and forming a curved micromirror by depositing a reflective material over at the curved surface portion.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Dah-Chuen Ho, Eugene Chu, Yuh-Haw Chang, Fei-Yun Chen, Michael Wu, Eric Chao
  • Publication number: 20140086527
    Abstract: An optical coupler includes a double-sided planar substrate having a lens manufactured on one side and a mode expander on the other side. The mode expander is coupled to a mirror that redirects light between the mode expander and the lens. The mirror is lithographically aligned with the lens. The substrate is optically transparent to a target wavelength to be used for optical signaling. The lens can be a lens array, in which case there can be a mirror for each lens in the array. The mode expander can couple an optical signal to a planar lightwave circuit (PLC) or other optical circuit. The lens on the optical coupler can interface with a single-mode optical fiber.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Ibrahim Ban, Peter L. Chang
  • Patent number: 8652338
    Abstract: A magnetic recording medium a magnetic recording medium includes a soft magnetic layer formed on a substrate, magnetic patterns made of a protruded ferromagnetic layer separated from each other on the soft magnetic layer, and a nonmagnetic layer formed between the magnetic patterns, a nitrogen concentration therein being higher on a surface side than on a substrate side.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yoshiyuki Kamata, Satoshi Shirotori, Tsuyoshi Onitsuka
  • Patent number: 8609542
    Abstract: Methods may operate to position a sample within a processing chamber and operate on a surface of the sample. Further activities may include creating a layer of reactive material in proximity with the surface, and exciting a portion of the layer of reactive material in proximity with the surface to form chemical radicals. Additional activities may include removing a portion of the material in proximity to the excited portion of the surface to a predetermined level, and continuing the creating, exciting and removing actions until at least one of a plurality of stop criteria occurs.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Mark J. Williamson, Gurtej S. Sandhu, Justin R. Arrington
  • Publication number: 20130295325
    Abstract: The present invention relates to a method of forming polymer substrate with variable refractive index sensitivity, the method comprising the steps of: (a) contacting a metal-coated patterned mold with a polymer substrate at a temperature sufficient to deform said polymer substrate to thereby deposit a patterned mask of a metal film on the polymer substrate; and (b) etching away portions of said polymer substrate not covered by said patterned mask under conditions to form a region of variable refractive index sensitivity on said polymer substrate.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 7, 2013
    Inventors: Kwok Wei SHAH, Xiaodi SU, Soo Jin CHUA, Hong Yee LOW
  • Patent number: 8541735
    Abstract: An optical material is inlaid into a supporting substrate, with the top surface of the optical material flush with the top surface of the substrate, wherein the optical element is used to shape a beam of light travelling substantially parallel to the top surface of the substrate, but with the central axis of the beam below the top surface of the substrate. The optical elements serve to shape the beam of light for delivery to or from a microfabricated structure within the device.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: September 24, 2013
    Assignee: Innovative Micro Technology
    Inventors: John S. Foster, John C. Harley, Ian R. Johnston, Jeffery F. Summers
  • Publication number: 20130235316
    Abstract: An exposure apparatus is provided and adapted for exposing a photoresist layer on a layer to form a plurality of strip exposed patterns. The exposure apparatus includes a light source, a lens group and a mask. The lens group is disposed between the photoresist layer and the light source and includes a plurality of strip lens parallel to each other, wherein an overlapping region between any two neighboring strip lens is defined as a lens connecting region, and the other regions excluding the lens connecting regions are defined as lens regions. The mask is disposed between the photoresist layer and the lens group and includes a plurality of shielding patterns, wherein an outline of the shielding patterns corresponds to the strip exposed patterns, each shielding pattern has a strip opening, and an extension direction of the strip openings is substantially parallel to an extension direction of the shielding patterns.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 12, 2013
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Hsiang-Chih Hsiao, Ta-Wen Liao, Tzu-Min Yang, Shan-Fang Chen, Ya-Ping Chang, Chi-Hung Yang, Chung-Yuan Liao
  • Publication number: 20130208254
    Abstract: A system for nano-photolithography, a superlens device, and a method for fabricating the superlens device. A system for three-dimensional nano-photolithography includes a light source having a predetermined light wavelength, a device to be patterned, a photoresist layer of photoresponsive material photoresponsive to the predetermined light wavelength formed on the device, and a superlens device in contact with the photoresist layer. The superlens device includes a superlens layer in contact with the photoresist layer, a light permissive mask layer transparent to the predetermined light wavelength and having a layer of nanopatterned opaque features formed thereon, and an intermediate layer separating the superlens layer and the light permissive mask layer by a predetermined distance. The light source is located to radiate light at the predetermined light wavelength on the light permissive mask layer. The layer of nanopatterned opaque features includes a layer of opaque features with varying height dimensions.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 15, 2013
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Hong Liu, Jinghua Teng, Lin Ke, Bing Wang
  • Patent number: 8491353
    Abstract: A method is provided for manufacturing a high-precision mold whereby a feature matching a desired feature design is carved into a hard mold material (41) using, for example, a diamond grinding wheel and/or a diamond turning point. Inherent imprecision and errors (49) introduced by the use of the grinding wheel/turning point are measured to determine deviations from the desired feature design. An ultrafast shortpulse laser is then activated to desirably ablate the deviations, thereby correcting the errors and conforming the feature to the desired shape. Furthermore, a thin film (1602) may be formed over the feature either prior to or after the laser ablation process, where the error measurement and laser ablation processes detects and ablates errors on the surface of the thin film, respectively. Additionally, the laser ablation process may be applied directly to, for example, an optical lens (1400) formed from an imprecise mold to remove any errors and imperfections thereon.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Hidenao Kataoka, Xinbing Liu, Christian F. Greig
  • Publication number: 20130180950
    Abstract: Methods may operate to position a sample within a processing chamber and operate on a surface of the sample. Further activities may include creating a layer of reactive material in proximity with the surface, and exciting a portion of the layer of reactive material in proximity with the surface to form chemical radicals. Additional activities may include removing a portion of the material in proximity to the excited portion of the surface to a predetermined level, and continuing the creating, exciting and removing actions until at least one of a plurality of stop criteria occurs.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 18, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Micron Technology, Inc.