Mask Resist Contains Inorganic Material Patents (Class 216/51)
  • Patent number: 8764996
    Abstract: A method of patterning a first material on a polymeric substrate is described. The method includes providing a polymeric film substrate having a major surface with a relief pattern including a recessed region and an adjacent raised region, depositing a first material onto the major surface of the polymeric film substrate to form a coated polymeric film substrate, forming a layer of a functionalizing material selectively on the raised region of the coated polymeric film substrate to form a functionalized raised region and an unfunctionalized recessed region, and etching the first material from the polymeric substrate selectively from the unfunctionalized recessed region.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: July 1, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Khanh P. Nguyen
  • Patent number: 8741781
    Abstract: Some embodiments include a semiconductor construction having a pair of lines extending primarily along a first direction, and having a pair of contacts between the lines. The contacts are spaced from one another by a lithographic dimension, and are spaced from the lines by sub-lithographic dimensions. Some embodiments include a method of forming a semiconductor construction. Features are formed over a base. Each feature has a first type sidewall and a second type sidewall. The features are spaced from one another by gaps. Some of the gaps are first type gaps between first type sidewalls, and others of the gaps are second type gaps between second type sidewalls. Masking material is formed to selectively fill the first type gaps relative to the second type gaps. Excess masking material is removed to leave a patterned mask. A pattern is transferred from the patterned mask into the base.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Ranjan Khurana, David Swindler, Jianming Zhou
  • Publication number: 20140144876
    Abstract: A plasma etching method using a plasma etching apparatus including a lower electrode and an upper electrode is provided. The plasma etching method includes a first etching step of performing plasma etching using a first process gas and a second etching step of performing the plasma etching using a second process gas. The adhesion of a radical of the second process gas to an object of processing is less than the adhesion of a radical of the first process gas to the object of processing. While alternately repeating a first condition of turning on high-frequency electric power for plasma generation and a second condition of turning off the high-frequency electric power, the second etching step applies a negative direct-current voltage to the upper electrode so that the absolute value of the applied voltage is greater in a period of the second condition than in a period of the first condition.
    Type: Application
    Filed: July 30, 2012
    Publication date: May 29, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Akira Nakagawa, Fumio Yamazaki, Hiromi Mochizuki
  • Publication number: 20140131312
    Abstract: A method includes forming a patterned hard mask layer, with a trench formed in the patterned hard mask layer. A Bulk Co-Polymer (BCP) coating is dispensed in the trench, wherein the BCP coating includes Poly-Styrele (PS) and Poly Methyl Metha Crylate (PMMA). An annealing is performed on the BCP coating to form a plurality of PS strips and a plurality of PMMA strips allocated in an alternating layout. The PMMA strips are selectively etched, with the PS strips left in the trench.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Sheng Chang, Tsung-Jung Tsai, Chung-Ju Lee, Tien-I Bao
  • Patent number: 8709267
    Abstract: Methods for patterning material layers, which may be implemented in forming integrated circuit device features, are disclosed. In an example, a method includes forming a first resist layer over a material layer; forming a second resist layer over the first resist layer; forming an opening that extends through the second resist layer and the first resist layer to expose the material layer, wherein the opening has a substantially constant width in the second resist layer and a tapered width in the first resist layer; and performing a tilt-angle deposition process to form a feature over the exposed material layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chwen Yu, Fei-Gwo Tsai, Kai-Wen Cheng
  • Patent number: 8710150
    Abstract: A block copolymer composition containing a diblock copolymer blend including a first poly(methyl methacrylate)-b-poly((trimethylsilyl)methyl methacrylate) diblock copolymer; and, a second poly(methyl methacrylate)-b-poly((trimethylsilyl)methyl methacrylate) diblock copolymer. Also provided are substrates treated with the block copolymer composition.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 29, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Shih-Wei Chang, Valeriy V. Ginzburg, Erin B. Vogel, Daniel J. Murray, Peter Trefonas, Phillip D. Hustad
  • Patent number: 8696919
    Abstract: A method for manufacturing a nozzle and an associated funnel in a single plate comprises providing the single plate, the plate being etchable; providing an etch resistant mask on the plate, the mask having a pattern, wherein the pattern comprises a first pattern part for etching the nozzle and a second pattern part for etching the funnel; covering one of the first pattern part and the second pattern part using a first cover; etching one of the nozzle and funnel corresponding to the pattern part not covered in step (c); removing the first cover; etching the other one of the nozzle and funnel; and removing the etch resistant mask.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 15, 2014
    Assignee: Oce-Technologies B.V.
    Inventors: René J. Van Der Meer, Hubertus M. J. M. Boesten, Maarten J. Bakker, David D. L. Wijngaards
  • Patent number: 8697810
    Abstract: A copolymer composition including a block copolymer having a poly(methyl methacrylate) block and a poly((trimethylsilyl)methyl methacrylate) block is provided; wherein the block copolymer exhibits a number average molecular weight, MN, of 1 to 1,000 kg/mol; and, wherein the block copolymer exhibits a polydispersity, PD, of 1 to 2. Also provided are substrates treated with the copolymer composition.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 15, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erin B. Vogel, Valeriy V. Ginzburg, Shih-Wei Chang, Daniel J. Murray, Phillip D. Hustad, Peter Trefonas
  • Publication number: 20140097153
    Abstract: a method of plasma etching a silicon carbide workpiece includes forming a mask on a surface of the silicon carbide workpiece, performing an initial plasma etch on the masked surface using a first set of process conditions, wherein the plasma is produced using an etchant gas mixture which includes i) oxygen and ii) at least one fluorine rich gas which is present in the etchant gas mixture at a volume ratio of less than 50%, and subsequently performing a bulk plasma etch process using a second set of process conditions which differ from the first set of process conditions.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 10, 2014
    Applicant: SPTS TECHNOLOGIES LIMITED
    Inventors: Huma ASHRAF, Anthony BARKER
  • Patent number: 8685263
    Abstract: Disclosed herein is a method of fabricating a cliché capable of preventing a printing roller from touching a bottom surface of the cliché. The method of fabricating the cliché includes forming a mask thin film pattern having a multilayer structure and a photoresist pattern on a base substrate, forming a resistant reinforcement inducing layer to cover the photoresist pattern, thereby transforming the photoresist pattern into a resistant reinforced photoresist pattern, and forming groove patterns having different depths from each other by etching the base substrate using the resistant reinforced photoresist pattern and the mask thin film pattern having the multilayer structure as masks.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 1, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Jun-Hee Lee, Jeong-Hoon Lee
  • Publication number: 20140087016
    Abstract: A method for making a nanoimprinting master template uses a metallic etch stop layer for two etching steps. A layer of silicon dioxide is deposited on the etch stop layer and a first resist pattern of either concentric rings or radial spokes is formed on the silicon dioxide layer. The exposed silicon dioxide layer is etched down to the etch stop layer and the resist removed to expose a pattern of silicon dioxide rings or spokes on the etch stop layer. A second resist pattern of rings (if spokes were the first pattern) or spokes (if rings were the first pattern) is formed over the silicon dioxide rings or spokes and the etch stop layer. The exposed silicon dioxide is etched down to the etch stop layer and the resist removed to expose a pattern of silicon dioxide pillars on the etch stop layer.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: He Gao, Jeffrey S. Lille
  • Publication number: 20140079921
    Abstract: Disclosed are methods for fabricating pyrolysed carbon nanostructures. An example method includes providing a substrate, depositing a polymeric material, subjecting the polymeric material to a plasma etching process to form polymeric nanostructures, and pyrolysing the polymeric nanostructures to form carbon nanostructures. The polymeric material comprises either compounds with different plasma etch rates or compounds that can mask a plasma etching process. The plasma etching process may be an oxygen plasma etching process.
    Type: Application
    Filed: May 3, 2012
    Publication date: March 20, 2014
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D, IMEC
    Inventor: Michael De Volder
  • Publication number: 20140076848
    Abstract: A plasma etching method deposits a silicon-containing deposit by a plasma processing using a Si-containing gas on an object to be processed that includes a film to be processed, an organic film formed in a plurality of narrow linear portions on the film to be processed, and a rigid film that covers both the film to be processed which is exposed between the linear portions and the linear portions. In the plasma etching method, each of the plurality of narrow linear portions of the organic film and the film to be processed between the linear portions are exposed by etching the silicon-containing deposit by plasma of CF-based gas and CHF-based gas after the silicon-containing deposit is deposited.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Yoichi NAKAHARA
  • Publication number: 20140065362
    Abstract: The present invention relates to a method of tunning wettability of titanium dioxide layers against water by nanostructuring the titanium dioxide layers to increase a hydrophilicity of the titanium dioxide layers, and also coating the nanostructured titanium dioxide layers with silane layers to increase a hydrophobicity of the titanium dioxide layers. The method of tunning wettability of titanium dioxide layers against water according to the present invention comprises: (a) step of forming titanium dioxide layer on a substrate; (b) step of forming silica particle layers on the upper part of the titanium dioxide layer; (c) step of etching a surface of the laminate prepared in step (b); and (d) step of removing the silica particle layer etched and remained in the step (c).
    Type: Application
    Filed: December 14, 2012
    Publication date: March 6, 2014
    Applicant: KAIST (Korea Advanced Institute of Science and Technology)
    Inventor: KAIST (Korea Advanced Institute of Science and Technology)
  • Patent number: 8658050
    Abstract: Techniques for minimizing or eliminating pattern deformation during lithographic pattern transfer to inorganic substrates are provided. In one aspect, a method for pattern transfer into an inorganic substrate is provided. The method includes the following steps. The inorganic substrate is provided. An organic planarizing layer is spin-coated on the inorganic substrate. The organic planarizing layer is baked. A hardmask is deposited onto the organic planarizing layer. A photoresist layer is spin-coated onto the hardmask. The photoresist layer is patterned. The hardmask is etched through the patterned photoresist layer using reactive ion etching (RIE). The organic planarizing layer is etched through the etched hardmask using RIE. A high-temperature anneal is performed in the absence of oxygen. The inorganic substrate is etched through the etched organic planarizing layer using reactive ion etching.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sebastian Ulrich Engelmann, Martin Glodde, Michael A. Guillorn
  • Patent number: 8652343
    Abstract: A method for the selective removal of material from a substrate surface for forming a deepening includes the steps of applying a mask onto the substrate surface in accordance with the desired selective removal and dry-etching the substrate, a metal, preferably aluminum, being used as the masking material. Power may be coupled inductively to a plasma.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: February 18, 2014
    Assignee: Excelitas Technologies Singapore Pte. Ltd.
    Inventor: Martin Hausner
  • Patent number: 8641914
    Abstract: Methods for fabricating arrays of nanoscaled alternating lamellae or cylinders in a polymer matrix having improved long range order utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jennifer Kahl Regner
  • Patent number: 8641913
    Abstract: A method includes applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step. A microelectronic unit includes a substrate, and a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 4, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Yoichi Kubota, Teck-Gyu Kang, Jae M. Park
  • Publication number: 20140030660
    Abstract: A multilayer resist process pattern-forming method includes providing an inorganic film over a substrate. A protective film is provided on the inorganic film. A resist pattern is provided on the protective film. A pattern is provided on the substrate by etching that utilizes the resist pattern as a mask. A multilayer resist process inorganic film-forming composition includes a compound, an organic solvent, and a crosslinking accelerator. The compound includes a metal compound that includes a hydrolyzable group, a hydrolysate of a metal compound that includes a hydrolyzable group, a hydrolysis-condensation product of a metal compound that includes a hydrolyzable group, or a combination thereof. The compound includes at least one metal element belonging to Group 6, Group 12, or Group 13 of the Periodic Table of the Elements.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: JSR CORPORATION
    Inventors: Kazunori TAKANASHI, Yoshio TAKIMOTO, Takashi MORI, Kazuo NAKAHARA, Masayuki MOTONARI
  • Publication number: 20140023876
    Abstract: The process of forming a partial gold-plating pattern on a stainless substrate includes a first plating step, a second plating step, and a stripping step. In the first plating step, pretreatment is applied to a stainless substrate including opposite main planes and a processing site formed of a plane different from the main planes, after which a first gold-plating layer is formed all over the surface of the stainless substrate using a hydrochloric acid plating solution. In the second plating step, mask plating is used to form a second gold-plating layer on the first gold-plating layer that covers the processing site in a desired pattern, and in the stripping step, a portion of the first gold-plating layer in an area where there is none of the second gold-plating layer is stripped off using an alkaline stripping solution.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 23, 2014
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventor: Masahiro Nagata
  • Publication number: 20130344300
    Abstract: The present invention relates to a cliché for offset printing and a method of manufacturing the same, and the cliché for offset printing according to the present invention comprises: a groove pattern, wherein a depth of at least a partial region of the groove pattern is different from a depth of a residual region. The present invention may comprise a double etching process when a cliché for offset printing is manufactured to control a bottom touch phenomenon that is a problem exhibited when a known wide line width is implemented, thus manufacturing the cliché for offset printing having various line widths and etching depths.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Ji Young HWANG, Beom Mo KOO
  • Publication number: 20130334170
    Abstract: Techniques for fabricating thin single crystal diamond films from a diamond structure having a top surface including implanting a dose of ions at a predetermined depth below the top surface to form a damage layer, selectively masking the top surface to expose one or more portions of the diamond structure, vertically etching one or more of the exposed portions to the predetermined depth, and exfoliating the unexposed portion to form at least one thin single crystal diamond film.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 19, 2013
    Inventors: Dirk R. Englund, Richard Osgood, Ophir Gaathon
  • Publication number: 20130306596
    Abstract: A hard mask film 2 provided on substrate 1 is formed by tin-containing chromium-containing material. In the chromium-containing material including tin, which forms the hard mask film 2, the etching resistance to fluorine-containing dry etching is equal to or higher than the etching resistance of the tin-free chromium-containing material, and it shows a significantly high etching rate as compared with a chromium-containing material free of tin under conditions for chlorine-containing dry etching. As a result, the time for chlorine-containing dry etching is shortened, and damage to a resist pattern is reduced. Thus, high-precision pattern transfer can be performed. The present invention provides a novel technique for increasing etching process-ability by increasing a dry-etching rate of a hard mask film made of a chromium-containing material while assuring a hard mask function of the hard mask film.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 21, 2013
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Souichi FUKAYA, Hideo Nakagawa, Kouhei Sasamoto
  • Publication number: 20130270227
    Abstract: A method for etching a metal layer dispose below a mask is provided. The metal layer is placed in an etch chamber. A precursor gas is flowed into the etch chamber. The precursor gas is adsorbed into the metal layer to form a precursor metal complex. The precursor metal complex is heated to a temperature above a vaporization temperature of the precursor metal complex, while the metal layer is exposed to the precursor gas. The vaporized precursor metal complex is exhausted from the etch chamber.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Applicant: Lam Research Corporation
    Inventors: Joydeep GUHA, Jeffrey MARKS, Butsurin JINNAI
  • Patent number: 8551349
    Abstract: A method for producing a magnetic recording medium having a magnetically partitioned magnetic recording pattern on at least one surface of a nonmagnetic substrate, characterized by comprising a step of reacting portions of a magnetic layer, formed on the non-magnetic substrate, with ozone to modify magnetic properties of said portions of the magnetic layer for forming the magnetically partitioned magnetic recording pattern. The magnetic layer can be a two-layer structure comprising a magnetic layer having a granular structure and formed thereon a magnetic layer having a non-granular structure. The produced magnetic recording medium exhibits a greatly enhanced recording density while recording/reproducing characteristics equal to or better than those of the heretofore proposed magnetic recording mediums are maintained, and it can be produced with an enhanced efficiency.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 8, 2013
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki, Akira Yamane
  • Publication number: 20130256265
    Abstract: Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Applicant: UChicago Argonne LLC
    Inventors: Seth B. Darling, Jeffrey W. Elam, Yu-Chih Tseng
  • Patent number: 8541313
    Abstract: A method of etching a sacrificial layer for a micro-machined structure, the sacrificial layer positioned between a layer of a first material and a layer of a second material, the etching being carried out by an etching agent. The method includes: providing at least one species having an affinity for the etching agent greater than that of the layers of first material and second material and less than or equal to that of the sacrificial layer; and then etching the sacrificial layer by the etching agent, the etching being carried out to eliminate at least partially the sacrificial layer and then to eliminate at least partially the species.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 24, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Stéphan Borel, Jeremy Bilde
  • Publication number: 20130240481
    Abstract: The present invention relates to a composition including: a component (A) being a block copolymer including a block PA bonded to one, or two or more blocks incompatible with the block PA and whose etching selectivity to the block PA is greater than one; and a component (B) being at least one polymer selected from the group consisting of a random copolymer and a homopolymer, wherein the polymer of the component (B) is compatible with at least one block other than the block PA within the blocks constituting the block copolymer of the component (A), and is incompatible with the block PA.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 19, 2013
    Applicant: TOKYO OHKA KOGYO CO., LTD.
    Inventors: Takahiro Senzaki, Ken Miyagi, Kenichiro Miyashita
  • Patent number: 8529778
    Abstract: Methods for creating nano-shaped patterns are described. This approach may be used to directly pattern substrates and/or create imprint lithography molds that may be subsequently used to directly replicate nano-shaped patterns into other substrates in a high throughput process.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 10, 2013
    Assignees: Molecular Imprints, Inc., Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Dwayne L. LaBrake
  • Patent number: 8529779
    Abstract: A method for producing surface features and an etch masking method. A combination is provided of a block copolymer and additional material. The block copolymer includes a first block of a first polymer covalently bonded to a second block of a second polymer. The additional material is miscible with the first polymer. A film is formed of the combination directly onto a surface of a first layer. Nanostructures of the additional material self-assemble within the first polymer block. The film of the combination and the first layer are etched. The nanostructures have an etch rate lower than an etch rate of the block copolymer and lower than an etch rate of the first layer. The film is removed and features remain on the surface of the first layer. Also included is an etch masking method where the nanostructures mask portions of the first layer from said etchant.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Mark W. Hart, Hiroshi Ito, Ho-Cheol Kim, Robert Miller
  • Patent number: 8524093
    Abstract: A method for forming a deep trench includes providing a substrate with a bottom layer and a top layer; performing a first etching process to etch the top layer, the bottom layer and the substrate so as to form a recess; selectively depositing a liner covering the top layer, the bottom layer and part of the substrate in the recess; using the liner as an etching mask to perform a second dry etching to etch the recess unmasked by the liner so as to form a deep trench; performing a selective wet etching to remove the top layer; and performing a post wet etching to enlarge the deep trench.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: September 3, 2013
    Assignee: Nanya Technology Corp.
    Inventor: Chung-Chiang Min
  • Publication number: 20130216784
    Abstract: Superhydrophobic films (200, 400) are disclosed. More particularly, durable superhydrophobic films (200, 400) having discrete flat faces (206, 406) spaced apart by valleys (208, 408) where the valleys and faces are covered by nanostructures or nanoparticles (424) are disclosed. Various methods of making such films are also disclosed.
    Type: Application
    Filed: October 20, 2011
    Publication date: August 22, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jun-Ying Zhang, Terry L. Smith, Katherine A. Brown, Vivian W. Jones, David K. Sayler, Timothy J. Hebrink, Qingbing Wang, Karan Jindal, Encai Hao
  • Patent number: 8513125
    Abstract: A method for manufacturing a device comprising a structure with nanowires based on a semiconducting material such as Si and another structure with nanowires based on another semiconducting material such as SiGe, and is notably applied to the manufacturing of transistors.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: August 20, 2013
    Assignee: Commissariat a l'energie atomique et aux alternatives
    Inventors: Emeline Saracco, Jean-Francois Damlencourt, Michel Heitzmann
  • Patent number: 8506834
    Abstract: The invention provides a dry etching method for processing a wafer having an Ru film formed on a thick Al2O3 film to be used for a magnetic head, capable of realizing high selectivity. In the etching of a wafer having disposed on an NiCr film 15 an Al2O3 film 14, an Ru film 13, an SiO2 film 12 and a resist mask 11, the Ru film 13 is etched via plasma using a processing gas containing Cl2 and O2 (FIG. 1(c)), and thereafter, the Ru film 13 is used as a mask to etch the Al2O3 film 14 via plasma using a gas mixture mainly containing BCl3 and also containing Cl2 and Ar (FIG. 1(d)).
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 13, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kentaro Yamada, Takeshi Shimada, Kotaro Fujimoto
  • Patent number: 8501626
    Abstract: Methods for etching high-k material at high temperatures are provided. In one embodiment, a method etching high-k material on a substrate may include providing a substrate having a high-k material layer disposed thereon into an etch chamber, forming a plasma from an etching gas mixture including at least a halogen containing gas into the etch chamber, maintaining a temperature of an interior surface of the etch chamber in excess of about 100 degree Celsius while etching the high-k material layer in the presence of the plasma, and maintaining a substrate temperature between about 100 degree Celsius and about 250 degrees Celsius while etching the high-k material layer in the presence of the plasma.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Wei Liu, Eiichi Matsusue, Meihua Shen, Shashank Deshmukh, Anh-Kiet Quang Phan, David Palagashvili, Michael D. Willwerth, Jong I. Shin, Barrett Finch, Yohei Kawase
  • Patent number: 8501020
    Abstract: A method for making a three-dimensional nano-structure array includes following steps. First, a substrate is provided. Next, a mask is formed on the substrate. The mask is a monolayer nanosphere array or a film defining a number of holes arranged in an array. The mask is then tailored and simultaneously the substrate is etched by the mask. Lastly, the mask is removed.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 6, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20130171413
    Abstract: Methods for altering the wetting property of the surface of a substrate are disclosed. The methods can include the step of providing an array of nanostructures on the substrate, each nanostructure having a proximal end adjacent to the substrate and a distal end opposite to the proximal end. The methods can also include the step of moving the distal ends of at least one subset of the array of nanostructures towards each other to form at least one nanostructure cluster. The nanostructures of each cluster have distal ends that are spaced closer to each other relative to the respective proximal ends of the adjacent nanostructures, the nanostructure cluster altering the wetting property of the substrate.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 4, 2013
    Inventors: Saif A. Khan, Mohammed Khalid Bin Dawood, Raj Rajagopalan, Wee Kiong Choi, Han Zheng
  • Publication number: 20130062307
    Abstract: The present invention relates to a method of making a mask for patterning a thin film The method includes a step of forming an inorganic material, which is resolvable into alkali solution, on a substrate; a step of forming the inorganic material in a predetermined pattern; and a step of narrowing the inorganic material with the alkali solution to form the mask.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: TDK Corporation
    Inventors: Hisayoshi WATANABE, Hideyuki Yatsu, Takayuki Nishizawa, Masashi Sano, Hiromichi Umehara, Takayasu Kanaya, Tetsuji Hori
  • Publication number: 20130048605
    Abstract: A method of etching a substrate comprises forming on the substrate, a plurality of double patterning features composed of silicon oxide, silicon nitride, or silicon oxynitride. The substrate having the double patterning features is provided to a process zone. An etching gas comprising nitrogen tri-fluoride, ammonia and hydrogen is energized in a remote chamber. The energized etching gas is introduced into the process zone to etch the double patterning features to form a solid residue on the substrate. The solid residue is sublimated by heating the substrate to a temperature of at least about 100° C.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Kedar SAPRE, Jing Tang, Ajay Bhatnagar, Nitin Ingle, Shankar Venkataraman
  • Publication number: 20130045601
    Abstract: A composition for forming a silicon-containing resist underlayer film that contains: a component (A) including at least one or more compounds selected from the group consisting of a polymer having repeating units shown by the following general formulae (1-1a) and (1-1b) and being capable of generating a phenolic hydroxyl group, a hydrolysate of the polymer, and a hydrolysis-condensate of the polymer, and a component (B) which is a silicon-containing compound obtained by hydrolysis-condensation of a mixture containing, at least, one or more hydrolysable silicon compounds represented by the following general formula (2) and one or more hydrolysable silicon compounds represented by the following general formula (3).
    Type: Application
    Filed: August 9, 2012
    Publication date: February 21, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tsutomu OGIHARA, Takafumi UEDA, Toshiharu YANO, Yoshinori TANEDA
  • Patent number: 8377316
    Abstract: This is structure and method for providing a textured surfaced that can be used in a plurality of systems including ink jet printing. In ink jet printing, the textured surface of this invention controls ink drawback and significantly improves image quality. The textured surface has an average roughness, Ra, of about 0.2 to 1.5 microns, a texture density of about 104-107 pits per cm2, a texture size of about 0.5-5 microns, and a texture depth of about 0.5-10 microns.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: February 19, 2013
    Assignee: Xerox Corporation
    Inventors: David H. Pan, T. Edwin Freeman
  • Publication number: 20130008697
    Abstract: A method is provided forming a predetermined irregular-surface pattern on a substrate. The method includes carrying out a plasma-etching process using a partly oxidized metal salt film having fine irregular-surface as a resist. In a first step, a metal salt film is formed on the substrate by coating a liquid material containing a metal salt. In a second step, a fine irregular-surface is formed on the metal salt film, and the metal salt film was converted into the resist by the partial oxidization. In a third step, a predetermined irregular-surface is formed on the substrate by carrying out the plasma-etching process to the substrate with the resist.
    Type: Application
    Filed: January 5, 2011
    Publication date: January 10, 2013
    Applicant: LINTEC CORPORATION
    Inventors: Satoshi Naganawa, Takeshi Kondo
  • Patent number: 8343364
    Abstract: A method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. A structure comprising an NFT metal layer and a first hardmask layer over the NFT metal layer is provided A first patterned hardmask is formed from the first hardmask layer, the first patterned hardmask disposed over a disk section and a pin section of the NFT to be formed. An etch process is performed on the NFT metal layer via the first patterned hardmask, the etch process forming the NFT having the disk section and the pin section.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 1, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Gao, Guanxiong Li, Zhongyan Wang, Yufeng Hu, Ge Yi
  • Patent number: 8337712
    Abstract: A method for forming an etching mask comprises irradiating a focused ion beam onto a surface of a substrate and forming an etching mask used for oblique etching including an ion containing portion in the irradiated region. A method for fabricating a three-dimensional structure comprises preparing a substrate, irradiating a focused ion beam onto a surface of the substrate and forming an etching mask including an ion-containing portion in the irradiated region, and dry-etching the substrate from a diagonal direction using the etching mask and forming a plurality of holes.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: December 25, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Tamamori, Masahiko Okunuki, Shinan Wang, Taiko Motoi, Haruhito Ono, Toshiaki Aiba
  • Patent number: 8329053
    Abstract: In accordance with an illustrative embodiment, a method of fabricating a transducer is described. The method comprises providing a transducer over a first surface of a substrate, wherein the substrate comprises a thickness. The method further comprises patterning a mask over a second surface. The mask comprises an opening for forming a scribe etch. The method comprises etching through the opening in the mask and into but not through the thickness of the substrate to provide the scribe etch.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: David Martin, Joel Philliber
  • Patent number: 8298430
    Abstract: This etching method comprises the steps of forming first and second hard masks made of materials different from each other successively on a magnetoresistive film; forming a resist having a lower face opposing a front face of the second hard mask, a space being interposed between the front face and lower face; dry-etching the second hard mask by using the resist as a mask; etching the first hard mask by using the etched second hard mask; and etching the magnetoresistive film by using the first hard mask.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 30, 2012
    Assignee: TDK Corporation
    Inventor: Kosuke Tanaka
  • Publication number: 20120268823
    Abstract: The invention relates to conical structures on substrate surfaces, in particular optical elements, to methods for the production thereof and to the use thereof, in particular in optical devices, solar cells and sensors. The conical nanostructures according to the invention are suitable in particular for providing substrate surfaces having very low light reflection.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Christoph Morhard, Claudia Pacholski, Joachim P. Spatz
  • Patent number: 8294034
    Abstract: A circuit board including a circuit substrate, a first dielectric layer, an antagonistic activation layer, a first conductive layer, a second conductive layer and a second dielectric layer is provided. The circuit substrate has a first surface and a first circuit layer. The first dielectric layer is disposed on the circuit substrate and covers the first surface and the first circuit layer. The first dielectric layer has a second surface, at least a blind via extending from the second surface to the first circuit layer and an intaglio pattern. The antagonistic activation layer is disposed on the second surface of the dielectric layer. The first conductive layer is disposed in the blind via. The second conductive layer is disposed in the intaglio pattern and the blind via and covers the first conductive layer. The second conductive layer is electrically connected with the first circuit layer via the first conductive layer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 23, 2012
    Assignee: Unimicron Technology Corp.
    Inventors: Tzyy-Jang Tseng, Shu-Sheng Chiang, Tsung-Yuan Chen
  • Patent number: 8246845
    Abstract: A pit is formed from a stack comprising at least one first layer formed by a material able to change physical state and a second layer made of the same material as that forming the first layer, but in a different physical state. An area of the first layer is treated to make said area go from its initial physical state to the physical state corresponding to that of the second layer. A selective etching step is then performed to eliminate said area of the first layer and the area of the second layer initially covered by the treated area of the first layer. Advantageously, said material is a phase transition material.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 21, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Christophe Martinez, Alain Fargeix
  • Patent number: 8222122
    Abstract: Provided is a method of forming a nonvolatile memory device. The method may include alternatingly stacking n number of dielectric layers and n number of conductive layers on a substrate, forming a non-photosensitive pattern on the alternatingly stacked dielectric layers and conductive layers, etching the i-th conductive layer and i-th dielectric (2?i?n, i is a natural number indicating a stacking order of the conductive layers and the dielectric layers) by using the non-photosensitive pattern as an etch mask, laterally etching a sidewall of the non-photosensitive pattern and etching the i-th conductive layer, (i?1)-th conductive layer, i-th dielectric layer and (i?1)-th dielectric layer by using the etched non-photosensitive pattern as an etch mask.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: July 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seungmok Shin, Soodoo Chae, JinGyun Kim