Electrode Structure Patents (Class 219/121.52)
  • Patent number: 7728252
    Abstract: An etching method and an etching system are adapted to produce a high etch selectivity for a mask, an excellent anisotropic profile and a large etching depth. An etching system according to the invention comprises a floating electrode arranged vis-à-vis a substrate electrode in a vacuum chamber and held in a floating state in terms of electric potential, a material arranged at the side of the floating electrode facing the substrate electrode to form an anti-etching film and a control unit for intermittently applying high frequency power to the floating electrode.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: June 1, 2010
    Assignee: ULVAC, Inc.
    Inventors: Yasuhiro Morikawa, Toshio Hayashi, Koukou Suu
  • Patent number: 7727460
    Abstract: A plasma arc reactor and process for producing a powder from a solid feed material, for example aluminium, is provided. The reactor comprises: (a) a first electrode (5), (b) a second electrode (10) which is adapted to be spaced apart from the first electrode by a distance sufficient to achieve a plasma arc therebetween, (c) means for introducing a plasma gas into the space between the first and second electrodes, (d) means for generating a plasma arc in the space between the first and second electrodes, wherein the first electrode has a channel (7) running therethrough, an outlet of the channel exiting into the space between the first and second electrodes, and wherein means are provided for feeding solid material (20) through the channel to exit therefrom via the outlet into the space between the first and second electrodes.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: June 1, 2010
    Assignee: Tetronics Limited
    Inventors: David Edward Deegan, Chris David Chapman, Timothy Paul Johnson
  • Patent number: 7719200
    Abstract: A plasma generator, comprising a dielectric tube having a first end and a second end, wherein the first end is sealed, but for a gas inlet; at least one first dielectric disk located within the dielectric tube, wherein the first dielectric disk includes at least one first dielectric aperture formed therein; a first ring electrode that at least partially surrounds the at least one first dielectric aperture and is electrically coupled to a power supply; at least one second dielectric disk located proximate the second end of the dielectric tube, wherein the second dielectric disk includes at least one second dielectric aperture formed therein; and a second ring electrode that at least partially surrounds the at least one second dielectric aperture and is electrically coupled to the power supply. During use, the plasma generator produces at least one plasma plume that is launched into open air.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: May 18, 2010
    Assignee: Old Dominion University
    Inventor: Mounir Laroussi
  • Patent number: 7718919
    Abstract: Industrial plasma reactor for plasma assisted thermal debinding of power injection-molded parts is a reactor used for the plasma assisted debinding and sintering of metallic or ceramic parts produced by the powder injection molding process, comprising a vacuum chamber (1) containing a cathode-anode (7,8) system for plasma generation and a resistive heating system (6) in the same vacuum chamber (1) ambient.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 18, 2010
    Assignee: Lupatech S.A.
    Inventors: Ricardo Machado, Waldyr Ristow, Jr., Aloisio Nelmo Klein, Joel Louis Rene Muzart, Marcio Celso Fredel, Paulo Antonio Pereira Wendhausen, Davi Fusão, Paulo Roberto Alba, Nilton Francisco Oliveira da Silva, Luciano Antonio Mendes
  • Patent number: 7683342
    Abstract: A plasma source, particularly for disinfection of wounds, comprising: an ionization chamber having an inlet for introducing a gas into the ionization chamber and further having an outlet for dispensing the ionized gas onto an object; several ionization electrodes being disposed within the ionization chamber for ionizing the gas and a predetermined ratio of the electrode-electrode distance on the one hand and the electrode-wall distance on the other hand, wherein the ratio is in a range approximately between about 1.8 and about 2.2.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: March 23, 2010
    Assignees: Max-Planck Gesellschaft zur Forderung der Wissenschaften e. V., Adtec Europe Limited
    Inventors: Gregor Morfill, Tetsuji Shimizu, Bernd Steffes, Shuitsu Fujii
  • Publication number: 20100065535
    Abstract: A method and associated apparatus for generating a plasma field, including: arranging the points of discharge of a plurality of electrodes into a plane, applying voltage to each electrode, providing at least one grounded electrode, and controlling the path between the electrodes and corresponding temperature of the plasma formed between the electrodes by controlling the signal and phase to the high voltage generators.
    Type: Application
    Filed: July 18, 2008
    Publication date: March 18, 2010
    Applicant: AFL Telecommunications LLC
    Inventors: Wenxin Zheng, Douglas Duke, William R. Klimowych, Toshiki Kubo
  • Patent number: 7679026
    Abstract: Efficient static neutralization of an electrostatically charged object that has a varying distance from an ion generating source, a varying velocity, a large dimension or any these is achieved by using an ionizing cell or bar having a first electrode and a second electrode. The first electrode for receiving a multi-frequency voltage that has a waveform, and the second electrode separated from the first electrode by a first distance and for use as a reference electrode. The waveform is adjusted during neutralization of a moving object based on at least one attribute of the object.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: March 16, 2010
    Assignee: MKS Instruments, Inc.
    Inventors: Peter Gefter, Scott Gehlke
  • Patent number: 7679025
    Abstract: An apparatus for the formation of a dense plasma focus (DPF) has a center electrode formed about an axis, where the center electrode includes a cylindrical part and a tapered part. An outer electrode is formed about the center electrode, and may be either cylindrical, tapered, or formed from a plurality of individual conductors including a helical conductor arrangement surrounding the tapered region of the center conductor. The taper of the center electrode results in an enhanced azimuthal B field in the final region of the device, resulting in increased plasma velocity prior to the dense plasma focus. Using the outer electrode helical structure an auxiliary axial B field is generated during the final acceleration region of the plasma, which reduces axial modal tearing of the plasma in the final acceleration region.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: March 16, 2010
    Inventors: Mahadevan Krishnan, John R. Thompson
  • Publication number: 20100051592
    Abstract: An upper electrode for use in a plasma processing chamber is provided, which includes a center segment and a plurality of outer segments. The outer segments are attached to the center segment to adjust the area of the overall electrode. Gas distribution holes may be selectively formed on the center and outer segments, or both. By adding or removing the outer segments and stacking layers, the dimension of the electrode, the area of gas spurting region and the thickness of the provided upper electrode may be adjusted.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Inventors: Benson CHAO, Chi-Hua TSENG
  • Publication number: 20100044352
    Abstract: An atmospheric pressure plasma generation apparatus is provided for generating plasma at the atmospheric pressure with stable voltage supply. A plasma generation apparatus of the preset invention includes a first conductor arranged to face a workpiece and having a power plate through power is applied; a second conductor arranged oppositely to a surface facing the workpiece along the first conductor for define a discharge space; and a gas supply unit having a gas supply passage for guiding gas to the discharge space and supporting the first and second conductors. The atmospheric plasma generation apparatus of the present invention is advantageous since the plasma can be uniformly generated in stable manner at an atmospheric pressure on the basis of a stable voltage supply.
    Type: Application
    Filed: February 1, 2008
    Publication date: February 25, 2010
    Inventor: Bang Kwon Kang
  • Patent number: 7659489
    Abstract: Plasma ignition and cooling apparatus and methods for plasma systems are described. An apparatus can include a vessel and at least one ignition electrode adjacent to the vessel. A total length of a dimension of the at least one ignition electrode is greater than 10% of a length of the vessel's channel. The apparatus can include a dielectric toroidal vessel, a heat sink having multiple segments urged toward the vessel by a spring-loaded mechanism, and a thermal interface between the vessel and the heat sink. A method can include providing a gas having a flow rate and a pressure and directing a portion of the flow rate of the gas into a vessel channel. The gas is ignited in the channel while the remaining portion of the flow rate is directed away from the channel.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 9, 2010
    Assignee: MKS Instruments, Inc.
    Inventors: William M. Holber, Xing Chen, Andrew B. Cowe, Matthew M. Besen, Ronald W. Collins, Jr., Susan C. Trulli, Shouquian Shao
  • Patent number: 7659488
    Abstract: A plasma arc torch that includes a torch body having a nozzle mounted relative to a composite electrode in the body to define a plasma chamber. The torch body includes a plasma flow path for directing a plasma gas to the plasma chamber in which a plasma arc is formed. The nozzle includes a hollow, body portion and a substantially solid, head portion defining an exit orifice. The composite electrode can be made of a metallic material (e.g., silver) with high thermal conductivity in the forward portion electrode body adjacent the emitting surface, and the aft portion of the electrode body is made of a second low cost, metallic material with good thermal and electrical conductivity. This composite electrode configuration produces an electrode with reduced electrode wear or pitting comparable to a silver electrode, for a price comparable to that of a copper electrode.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: February 9, 2010
    Assignee: Hypertherm, Inc.
    Inventors: David J. Cook, Kirk H. Ferland, Charles M. Hackett, Yong Yang, Richard W. Couch, Jr., Zhipeng Lu
  • Patent number: 7645999
    Abstract: An apparatus is provided for producing a plasma for a work surface, for example to deposit material thereon. The apparatus comprises an enclosure which contains an ionizable gas, a plurality of plasma excitation devices each of which is arranged to enable microwaves to travel from a first end thereof to a second end and radiate therefrom into the gas, and means for generating a magnetic field in the gas. A source of microwaves feeds microwaves to the first ends of the excitation devices. In use, regions exist within the said gas where the direction of the electric vector of the microwaves is non-parallel to the lines of the magnetic field, and the magnetic field has value B, and the microwaves have a frequency f such as to substantially satisfy the relationship: B=?mf D e where m and e are the mass and charge respectively of an electron.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: January 12, 2010
    Assignee: Dow Corning Corporation
    Inventors: Pierre Descamps, Patrick Leempoel
  • Patent number: 7635824
    Abstract: A plasma generating electrode of the invention present includes at least a pair of electrodes 5, at least one electrode 5a of the pair of electrodes 5 including a plate-like ceramic body 2 as a dielectric and a conductive film 3 disposed inside the ceramic plate 2 and having a plurality of through-holes 4 formed through the conductive film 3 in its thickness direction, the through-holes having a cross-sectional shape including an arc shape along a plane perpendicular to the thickness direction. The plasma generating electrode can generate uniform and stable plasma at low power consumption.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: December 22, 2009
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Masanobu Miki, Kenji Dosaka, Yukio Miyairi, Yasumasa Fujioka, Masaaki Masuda, Takeshi Sakuma, Tatsuhiko Hatano
  • Patent number: 7626134
    Abstract: An ionized plasma based radiant electromagnetic energy steering or diverting apparatus wherein controlled differences in plasma density and resulting plasma electron density achieve phase shift, reflection or refraction of the controlled radiant electromagnetic energy. Plasma density determination through use of selected plasma control electrode electrical potentials and hence by the waveforms applied to plasma-adjacent electrodes is employed. Plasma controlled radiant electromagnetic energy is thereby usable for inertia free steering of a radar beam or for other applications of radiant electromagnetic energy. Radiant electromagnetic energy control by way of pass-through refraction of the energy and reflection of the energy directly from the plasma and also by reflection involving a reflector element are included. Radio frequency and optical electromagnetic energy wavelengths for the radiant electromagnetic energy are included.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: December 1, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Timothy R. Klein, Stanley Rogers
  • Patent number: 7626135
    Abstract: An electrode assembly comprises a coil of electrode material surrounded by a shield having one or more outlets and a supply of shielding gas directed along an axis X-X of said coil before exiting from said shield.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: December 1, 2009
    Assignee: Sub-One Technology, Inc.
    Inventors: William John Boardman, Andrew William Tudhope, Raul Donate Mercado, Thomas Bryan Casserly
  • Patent number: 7621985
    Abstract: An air purifier to improve air quality for breathing is disclosed. A magnetized torch module that passes a large air flow is designed. The emission spectroscopy of the torch indicates that the plasma effluent carries an abundance of reactive atomic oxygen (RAO), which can effectively kill all kinds of microbes. The invention employs two torch modules which run alternately to generate non-thermal plasma for air treatment via both thermal/non-thermal processes. The air flow through the on-torch module is mainly treated thermally. A controlling air valve is designed to direct the exiting airflow of the off-torch module to pass through the plasma torch of the on-torch module for non-thermal treatment. The controlling air valve also works to turn the torch modules on and off synchronizing with the closing and opening of the two air valves in the controlling air valve. This device purifies ambient air in a fast rate and kills microbes thoroughly.
    Type: Grant
    Filed: May 24, 2008
    Date of Patent: November 24, 2009
    Assignee: Adventix Technologies Inc.
    Inventor: Spencer P. Kuo
  • Patent number: 7622693
    Abstract: Apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: November 24, 2009
    Assignee: Foret Plasma Labs, LLC
    Inventor: Todd L. Foret
  • Patent number: 7619179
    Abstract: In an electrode for generating a plasma, disposed to face a surface of a substrate to perform a plasma processing on the surface of the substrate, the electrode includes a metal-based composite material formed by impregnating a metal into a base member made of a porous ceramic, and having a joint surface at least facing toward the entire surface of the substrate. The electrode also includes a conductive plate made of a plasma-resistant material melt-bonded by a metal to the joint surface of the metal-based composite material.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 17, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Daisuke Hayashi
  • Patent number: 7619178
    Abstract: An igniter for use in aircraft gas turbine and rocket engines that derives its energy from a directly connected magnetron. The igniter is intended to be mounted exterior of the engine, and to protrude into the engine's combustion chamber. The magnetron energy is conductively connected to one end of a coaxial transmission line. The other end of the transmission line is at a region of high potential, and there is a small gap between the inner and outer transmission line conductors in that region. A gas comprised of either an oxidizer or fuel is flowed past the gap, and into the combustion chamber of the engine. The high potential causes a plasma to be formed in the gas, which plumes into the combustion chamber and ignites the propellants flowing therein.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: November 17, 2009
    Inventor: William P. Peschel
  • Patent number: 7608796
    Abstract: A plasma generating electrode capable of generating plasma with a high energy level by using a small amount of electric power is provided. The plasma generating electrode includes at least a pair of unit electrodes including a unit electrode as an anode and a unit electrode as a cathode, and can generate plasma by applying voltage, the unit electrode as an anode and the unit electrode as a cathode being disposed facing each other, and at least the unit electrode as an anode having a plate-like ceramic dielectric and a conductive film disposed in the ceramic dielectric, wherein the unit electrode as a cathode can emit secondary electrons in a number five times or greater than the number of cations (primary particles) which it receives when the cations produced in the process of plasma generation collide therewith.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 27, 2009
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Yasumasa Fujioka, Atsuo Kondou, Takeshi Sakuma, Masaaki Masuda, Kenji Dosaka, Kazuhiro Kondo
  • Patent number: 7595462
    Abstract: A plasma processing is performed by using a plasma processing apparatus which includes a first electrode and a second electrode disposed relatively movable to the first electrode between which an object to be processed is disposed, and a solid dielectric material disposed to be continuously connected to at least processing starting and final end sides of the object. A process gas is introduced between the first and second electrodes under a state in which the first electrode abuts on entire surfaces of the object and the solid dielectric material, and a voltage is applied between the first and second electrodes to thereby process the object by plasma discharge generated between the first and second electrodes while moving the second electrode relatively to the first electrode and the object.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: September 29, 2009
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Yusuke Uno, Norikatsu Nakamura, Hiroki Sakata
  • Publication number: 20090230096
    Abstract: The invention relates to a vapor plasma burner (6) comprising a burner handle (6a) and a burner base (6b). Inside the burner base (6b), a liquid feed pipe (32), a heating device (26), a burner chamber (27), a cathode (22), connected to a cathode support (28), and an anode (24) which is configured as a nozzle (23) and has an exit opening (25) are arranged. The invention also relates to a cathode (22) and to a nozzle (23) for such a vapor plasma burner (6). The aim of the invention is to provide a vapor plasma burner (6) that can be optimally ignited and the wearing parts of which can be easily removed.
    Type: Application
    Filed: September 6, 2006
    Publication date: September 17, 2009
    Inventors: Wolfgang Haberler, Michal Heinrich, Langeder Harald, Heribert Pauser, Florian Silbermayr, Max Stöger
  • Patent number: 7589296
    Abstract: A plasma generating electrode according to the invention includes at least two opposing plate-shaped unit electrodes 2, each having a rectangular surface and four end faces, and a holding member 5 which holds at least one (fixed end 6) of a pair of parallel ends (pair of ends) of four ends of the unit electrode 2 corresponding to the four end faces, at least one of the opposing unit electrodes 2 being a conductive-film-containing electrode 8 including a ceramic body 3 and a conductive film 4, and a distance “a” (mm) from an edge of the conductive film 4 to an edge of the ceramic body 3 on the other pair of parallel ends (other pair of ends 9) of the four ends of the conductive-film-containing electrode 8 adjacent to the pair of ends and a thickness “c” (mm) of the ceramic body 3 satisfying a relationship “(c/2)?a?5c”. The plasma generating electrode 1 is effectively prevented from breaking due to thermal shock.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: September 15, 2009
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Yasumasa Fujioka, Masaaki Masuda, Atsuo Kondo
  • Patent number: 7582845
    Abstract: A microwave plasma processing device can form a uniform thin film on a substrate to be processed. The microwave plasma processing device includes a fixing device for fixing a substrate to be processed onto the center axis in a plasma processing chamber, an exhaust device for depressurizing the inside and outside of the substrate, a metal processing gas supply member present in the substrate and forming a reentrant cylindrical resonating system along with the plasma processing chamber, and a microwave introducing device for introducing a microwave into the plasma processing chamber to process it. A microwave sealing member is provided in a specified position of the substrate-holding portion of the fixing device, and the connection position of the microwave introducing device is set to a specified weak-field position out of a field intensity distribution formed in the interior of the plasma processing chamber.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: September 1, 2009
    Assignee: Toyo Seikan Kaisha Ltd.
    Inventors: Akira Kobayashi, Kouji Yamada, Hideo Kurashima, Tsunehisa Namiki, Takeshi Aihara, Yasunori Onozawa
  • Publication number: 20090206063
    Abstract: A DC plasma torch which includes a long lasting thermionic cathode and has a high thermal efficiency. The DC plasma torch employs a solid cathode made of graphite with highly ordered structure such as Pyrolitic Graphite or Carbon-Carbon composites. Furthermore, carbon containing gases will be used as plasma gas. The cathode will allow for theoretically an unlimited lifetime of the cathode.
    Type: Application
    Filed: May 16, 2007
    Publication date: August 20, 2009
    Inventors: Valerian Pershin, Javad Mostaghimi, Liming Chen
  • Patent number: 7572998
    Abstract: A microhollow cathode discharge assembly capable of generating a low temperature, atmospheric pressure plasma micro jet is disclosed. The microhollow assembly has at two electrodes: an anode and a cathode separated by a dielectric. A microhollow gas passage is disposed through the three layers, preferably in a taper such that the area at the anode is larger than the area at the cathode. When a potential is placed across the electrodes and a gas is directed through the gas passage into the anode and out the cathode, along the tapered direction, then a low temperature micro plasma jet can be created at atmospheric pressure.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 11, 2009
    Inventors: Abdel-Aleam H. Mohamed, Juergen Friedrich Kolb, Karl H. Schoenbach
  • Patent number: 7572999
    Abstract: To provide an inductively-coupled plasma torch capable of realizing a GC analysis or the like and a solution analysis by the same torch without removing a capillary tube, etc. The injector tube of the inductively-coupled plasma torch includes an outer injector tube 11 for introducing an atomized solution sample or the like into the inductively-coupled plasma, and an inner injector tube 12 for introducing gaseous molecules into the inductively-coupled plasma, housed in the outer injector tube as integrated and coaxially with it. The inner injector tube is able to convey make-up gas, and has a capillary tube 4 for conveying gaseous molecules and carrier gas together. For sample introduction in analyzing a gaseous sample, the inner injector tube 12 is used, and for sample introduction in analyzing an aerosol sample, the outer injector tube 11 is used.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: August 11, 2009
    Assignees: National Institute of Advanced Industrial Science and Technology, Agilent Technologies, Inc.
    Inventors: Hiroaki Tao, Tetsuya Nakazato, Kenichi Sakata
  • Publication number: 20090188898
    Abstract: Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Peter Chuen Sun Kong, Jon Drue Grandy, Brent Alan Detering, Larry Douglas Zuck
  • Patent number: 7554054
    Abstract: A high-frequency heating device including: a solid-state oscillator that generates a microwave; an amplifier that amplifies the microwave generated by the solid-state oscillator; an isolator that is connected to a stage subsequent to the amplifier and blocks a reflected wave directed from an object exposed with the microwave; an antenna that irradiates the microwave toward the object; and a metal cavity that traps therein the microwave irradiated to the object.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Yutaka Takada, Satoshi Fujii
  • Publication number: 20090134129
    Abstract: An ablative plasma gun subassembly is disclosed. The subassembly includes a body, a first pair and a second pair of gun electrodes having distal ends disposed within an interior of the body, and ablative material disposed proximate the distal ends of at least one of the first pair of gun electrodes and the second pair of gun electrodes.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dean Arthur Robarge, Thangavelu Asokan, Adnan Kuttubudin Bohori, John James Dougherty, George William Roscoe
  • Publication number: 20090127234
    Abstract: A plasma processing chamber, which includes an upper electrode assembly, a lower electrode assembly, and a plasma confinement assembly. The upper electrode assembly includes an upper electrode, a backing member, the backing member attachable to an upper surface of the upper electrode, and a guard ring surrounding an outer surface of the backing member and located above the upper surface of the upper electrode, wherein the guard ring is configured to provide an inner gap between the outer surface of the backing member and an inner periphery of the guard ring. The lower electrode assembly is adapted to receive a semiconductor substrate. The plasma confinement assembly is separated from an outer periphery of the upper electrode and the backing member by the guard ring.
    Type: Application
    Filed: January 22, 2009
    Publication date: May 21, 2009
    Applicant: Lam Research Corporation
    Inventors: Dean J. Larson, Daniel Brown, Saurabh J. Ullal
  • Patent number: 7518085
    Abstract: A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 14, 2009
    Assignee: Alameda Applied Sciences Corp.
    Inventor: Mahadevan Krishnan
  • Patent number: 7511246
    Abstract: A device for sustaining a plasma in a torch is provided. In certain examples, the device comprises a first electrode configured to couple to a power source and constructed and arranged to provide a loop current along a radial plane of the torch. In some examples, the radial plane of the torch is substantially perpendicular to a longitudinal axis of the torch.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: March 31, 2009
    Assignee: Perkinelmer Las Inc.
    Inventor: Peter J. Morrisroe
  • Patent number: 7507934
    Abstract: A plasma generation electrode capable of subjecting predetermined components contained in a fluid to be treated to their respective reaction treatments with plasmas having different intensities optimized on a reaction basis, by passing merely once the fluid to be treated, is provided. In the plasma generation electrode, a unit electrode is composed of a tabular ceramic material serving as a dielectric material and an electrically conductive film disposed in the inside of the ceramic material, a plurality of unit electrodes are layered at a constant spacing, the distance between the electrically conductive films disposed in the unit electrodes adjacent to each other is varied partly or the dielectric constant of the ceramic material constituting the unit electrode is varied partly, and plasmas having different intensities can be generated partly in the spaces.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: March 24, 2009
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Atsuo Kondou, Yasumasa Fujioka, Masaaki Masuda, Kenji Dosaka, Keizo Iwama
  • Publication number: 20090065485
    Abstract: In a process for plasma treating a surface, a non-equilibrium atmospheric pressure plasma is generated within a dielectric housing having an inlet and an outlet through which a process gas flows from the inlet to the outlet. A tube formed at least partly of dielectric material extends outwardly from the outlet of the housing, whereby the end of the tube forms the plasma outlet. The surface to be treated is positioned adjacent to the plasma outlet so that the surface is in contact with the plasma and is moved relative to the plasma outlet.
    Type: Application
    Filed: November 3, 2005
    Publication date: March 12, 2009
    Applicant: DOW CORNING IRELAND LTD.
    Inventors: Liam O'Neill, Peter Dobbyn, Walter Castagna
  • Patent number: 7501600
    Abstract: Plasma ignition and cooling apparatus and methods for plasma systems are described. An apparatus can include a vessel and at least one ignition electrode adjacent to the vessel. A total length of a dimension of the at least one ignition electrode is greater than 10% of a length of the vessel's channel. The apparatus can include a dielectric toroidal vessel, a heat sink having multiple segments urged toward the vessel by a spring-loaded mechanism, and a thermal interface between the vessel and the heat sink. A method can include providing a gas having a flow rate and a pressure and directing a portion of the flow rate of the gas into a vessel channel. The gas is ignited in the channel while the remaining portion of the flow rate is directed away from the channel.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: March 10, 2009
    Assignee: MKS Instruments, Inc.
    Inventors: William M. Holber, Xing Chen, Andrew B. Cowe, Matthew M. Besen, Ronald W. Collins, Jr., Susan C. Trulli, Shouqian Shao
  • Publication number: 20090045174
    Abstract: The invention relates to a device for exchanging a nozzle (21) of a vapor plasma burner (6), comprising a housing, a cathode (38) connected to a cathode support, and an anode, configured as a nozzle (31) and having an exit opening (22). The nozzle (21) can be connected to a base (69) of the vapor plasma burner (6). An insulating protective cap (23) is disposed in the area of the exit opening (22). The protective cap (23) can be detached via a spring element (66) and is rotationally secured to the base (69) of the vapor plasma burner (6). The protective cap (23), at its front, has a recess (24) which corresponds to the nozzle (21) and into which the nozzle (21) can be inserted. The nozzle (21) can be detached from or secured to the base (69) without the use of auxiliary means by displacing the protective cap (23).
    Type: Application
    Filed: September 5, 2006
    Publication date: February 19, 2009
    Inventors: Wolfgang Haberler, Harald Langeder, Heribert Pauser
  • Publication number: 20090044661
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 19, 2009
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Patent number: 7479615
    Abstract: Static neutralization of a charged object is provided by generating, in an ionizing cell or module, an ion cloud having a mix of positively and negatively charged ions, and reshaping the ion cloud by redistributing the ions into two regions of opposite polarity by using a second voltage. The second voltage creates an electrical field, which is preferably located in the vicinity of the ion cloud. The redistribution of the ions increases the effective range in which available ions may be displaced or directed towards the charged object. The electrical field redistributes ions that form the ion cloud. Ion redistribution within the ion cloud occurs because ions having a polarity corresponding to the polarity of the second voltage are repelled from the electrical field, and ions having a polarity opposite from that of the electrical field are attracted to electrical field.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: January 20, 2009
    Assignee: MKS Instruments, Inc.
    Inventors: Peter Gefter, Scott Gehlke, Alexandre Ignatenko
  • Publication number: 20090014423
    Abstract: The present invention provides a radiofrequency plasma apparatus for the production of nanoparticles and method for producing nanoparticles using the apparatus. The apparatus is designed to provide high throughput and makes the continuous production of bulk quantities of high-quality crystalline nanoparticles possible. The electrode assembly of the plasma apparatus includes an outer electrode and a central electrode arranged in a concentric relationship to define an annular flow channel between the electrodes.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Inventors: Xuegeng Li, Maxim Kelman, Mason Terry, Elena Rogojina, Eric Schiff, Karel Vanheusden
  • Publication number: 20080308535
    Abstract: A plasma jet apparatus for performing plasma processing of an article includes: an elongated central electrode (2,15), an elongated cylindrical outer electrode (1) or two outer electrodes (15,16) surrounding the central electrode and being coaxial with the central electrode, or two electrodes substantially parallel to the central electrode. an electrical insulator (3) or insulators (18,19) are disposed between the outer electrode(s) and the central electrode, wherein a discharge lumen having a distal end and a proximal end is defined between the central electrode and the electrical insulator(s). A supply opening (6) is disposed at the distal end of the discharge lumen for supplying a plasma producing gas to the discharge lumen, A power source (9) provides a voltage between the central electrode and said outer electrode. The electrical insulator has a radial or outward extension (40,20) at the proximal end beyond the outer surface of the outer electrode(s).
    Type: Application
    Filed: February 6, 2006
    Publication date: December 18, 2008
    Applicant: Vlaamse Instelling Voor Technologisch Onderzoek N.V. VITO)
    Inventors: Robby Jozef Martin Rego, Danny Havermans, Jan Jozef Cools
  • Patent number: 7435925
    Abstract: A plasma torch is provided having a movable member carrying an electrode and movable along a tubular member bore having a nozzle at one end. A piston member engaged with the movable member moves the electrode between inoperable and operable positions within the bore, the movable member being biased outwardly of the one end of the bore. A first sealing member engaged with the piston member allows a fluid flow into the bore to act on the piston member to move the electrode to the operable position when the nozzle/electrode is engaged with the tubular member. A second sealing member, engaged with the bore, engages the piston member when the nozzle/electrode is removed. The fluid flow enters the bore between the sealing members, the second sealing member thus preventing torch operation when the nozzle/electrode is removed by preventing the fluid flow from acting on the piston.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: October 14, 2008
    Assignee: The ESAB Group, Inc.
    Inventor: David C. Griffin
  • Publication number: 20080237202
    Abstract: An electrode for a plasma arc cutting torch which minimizes the deposition of high emissivity material on the nozzle, reduces electrode wear, and improves cut quality. The electrode has a body having a first end, a second end in a spaced relationship relative to the first end, and an outer surface extending from the first end to the second end. The body has an end face disposed at the second end. The electrode also includes at least one passage extending from a first opening in the body to a second opening in the end face. A controller can control the electrode gas flow through the passages as a function of a plasma arc torch parameter. Methods for operating the plasma arc cutting torch with the electrode are disclosed.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 2, 2008
    Applicant: Hypertherm, Inc.
    Inventors: Peter J. Twarog, Charles Marcou Hackett, David Jonathan Cook, Bruce Peter Altobelli, David L. Bouthillier
  • Publication number: 20080217305
    Abstract: A method and apparatus for a gas-cooled plasma arc torch. Components of the torch can include an electrode, nozzle and a shield, each of which can be gas-cooled. The nozzle can be disposed relative to the electrode and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the nozzle to the cooling gas flow channel during operation of the torch. The shield can be disposed relative to the nozzle and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the shield to the cooling gas flow channel during operation of the torch.
    Type: Application
    Filed: February 15, 2008
    Publication date: September 11, 2008
    Applicant: Hypertherm, Inc.
    Inventor: Nicholas A. Sanders
  • Patent number: 7423235
    Abstract: A threaded connection for an electrode holder and an electrode in a plasma arc torch is provided. The threaded connection has relatively low height, and the engaged portion of a male threaded portion of the electrode and a female threaded portion of the electrode holder are positioned at least partially within a nozzle chamber. In one inventive aspect, the nominal pitch diameter of the electrode is less than the minor diameter of the electrode. In another, the width of the root area of the electrode thread is wider than the width of the root area of the electrode holder thread by at least about 35%. The width of the root area of the electrode is at least about 15% wider than the width of the crest portion of the electrode. As such, the less consumable of the two parts, the electrode holder, is provided with a thread that is less likely to be worn and damaged. In one particular embodiment, the crest profile of the electrode is that of a Stub Acme thread separated by a larger root profile.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: September 9, 2008
    Assignee: The ESAB Group, Inc.
    Inventor: Wayne Stanley Severance, Jr.
  • Publication number: 20080173622
    Abstract: A component for a plasma arc torch includes a body portion, a tapered surface on the body portion, the tapered surface including a compressible member that provides a disengagement force relative to the body portion, and an axially disposed surface on the body portion for coupling a mating surface on an adjacent structure of the torch. The component can be a nozzle and/or an electrode.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Inventors: Jon W. Lindsay, Brent R. Bartlett, Aaron D. Brandt, Zheng Duan, Stephen M. Liebold
  • Patent number: 7399943
    Abstract: A plasma reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber. A process gas inlet is coupled to the chamber and a process gas source coupled to the process gas inlet. The reactor further includes a metal sputter target at the ceiling, a high voltage D.C. source coupled to the sputter target, an RF plasma source power generator coupled to the wafer support pedestal and having a frequency suitable for exciting kinetic electrons, and an RF plasma bias power generator coupled to the wafer support pedestal and having a frequency suitable for coupling energy to plasma ions.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: July 15, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta
  • Patent number: 7397013
    Abstract: A plasma spray device is provided. The plasma spray device includes a plasma chamber region for having a plasma formed and a throat region coupled to the plasma chamber region. The throat region has an end surface and an axial bore. The axial bore is formed substantially along a longitudinal axis of the throat region, and has a non-circular cross-sectional shape. The axial bore at the end surface is for ejecting a plasma stream. The axial bore may include a plurality of grooves formed substantially along the longitudinal axis of the throat region. The cross-sectional shape of the axial bore may alternatively be defined by a plurality of overlapping substantially circular lobes. The plasma stream has a flow that is lineated before the plasma stream is ejected from the axial bore. The plasma stream has an overall particle pattern angle of less than about 50° after the plasma stream exits the axial bore.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: July 8, 2008
    Assignee: Heraeus Inc.
    Inventors: Charles Raymond Jones, Jason James Schellin
  • Patent number: 7394041
    Abstract: Disclosed is a waste gas treatment apparatus having a waste gas inlet for flowing a waste gas into a main combustion chamber provided in empty space inside a body, and a plasma torch configured to propagate flames against the waste gas flowing through the waste gas inlet. The apparatus comprises a steam injection nozzle configured to eject high temperature steam against the flames emitted through a nozzle of the plasma torch, and a reaction tube, extended longitudinally toward the bottom of the main combustion chamber into a tube shape, configured to perform the chemical reaction between a reaction accelerating compound and the waste gas induced by pressure of the nozzle of the plasma torch.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: July 1, 2008
    Assignee: Global Standard Technology, Co., Ltd.
    Inventor: Woon Sun Choi