Shaping Patents (Class 219/121.73)
  • Patent number: 10133079
    Abstract: Provided is a laser device including N semiconductor laser array stacks, a prismatic optical system that shifts optical axes of luminous fluxes respectively output from the N semiconductor laser array stacks so as to decrease intervals among the luminous fluxes, and an imaging optical system that causes the luminous fluxes to be condensed and deflected for each luminous flux. The imaging optical system causes the luminous fluxes to be deflected so that the luminous fluxes overlap each other at a predetermined position and generates a light-condensing point of the luminous fluxes between the imaging optical system and the predetermined position.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: November 20, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Yasuki Takeuchi, Yuma Hatano
  • Patent number: 10105063
    Abstract: A flash lamp 32 excites a laser rod 31. A Q switch 35 which changes the loss of the optical resonator according to the voltage applied is inserted on the optical path of a pair of mirrors 33 and 34 forming the optical resonator. An optical path shutter 39 is provided on the optical path of laser emission light. In a first operation mode in which laser emission is performed, the optical path shutter 39 is opened and the voltage applied to the Q switch 35 is changed from a high voltage to, for example, 0 V to emit pulsed laser light after the flash lamp 32 excites the laser rod 31. In a second operation mode in which the laser emission is interrupted and waited for, the optical path shutter 39 is closed and the voltage applied to the Q switch 35 is, for example, 0 V.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: October 23, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Kazuhiro Hirota, Tadashi Kasamatsu
  • Patent number: 10010975
    Abstract: When positioning operation control is carried out from a machining end point to the next machining start point in laser beam machining using gap control of a nozzle, if positioning extends over a plurality of consecutive blocks, instead of allowing a gap control axis to automatically retreat or return by positioning of each block, the movement of the nozzle is controlled such that the gap control axis is allowed to automatically retreat by positioning of the first block and allowed to automatically return by positioning of the last block.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: July 3, 2018
    Assignee: FANUC Corporation
    Inventor: Masaki Oka
  • Patent number: 9869734
    Abstract: The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: January 16, 2018
    Assignee: General Electric Company
    Inventors: Jean-Baptiste Mathieu, Saban Kurucay, Thomas Kwok-Fah Foo, Yanzhe Yang
  • Patent number: 9791624
    Abstract: Methods for stripping an optical fiber coating using blue or blue-violet radiation are disclosed. The method includes irradiating a portion of the coating with at least one radiation beam having a processing wavelength in the range of 400 nm to 460 nm for which the coating is substantially transparent. The intensity of the radiation beam exceeds the optical-damage threshold of the coating, and thereby a damaged coating portion that absorbs radiation at the processing wavelength is formed. The damaged coating portion is then irradiated with the radiation beam having an intensity below the optical-damage threshold to cause the damaged coating portion to absorb the radiation and to subsequently heat up and disintegrate to expose a section of the central glass portion of the optical fiber.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 17, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventor: Qi Wu
  • Patent number: 9653299
    Abstract: A first laser pulse emitted from a semiconductor laser oscillator and having a first pulse width is entered onto a second surface of a semiconductor substrate in which a semiconductor device is formed on a first surface and dopants are added to a surface layer portion on the second surface side. A second laser pulse having a second pulse width less than or equal to 1/10 of the first pulse width is entered on an incident area of the first laser pulse in an overlapping manner. The relative positional relationship on a time axis between falling time of the first laser pulse and rising time of the first laser pulse is set such that the temperature of the first surface, which rises due to the incidence of the first laser pulse and the second laser pulse, does not exceed an allowable upper limit value which is predetermined.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: May 16, 2017
    Assignee: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventor: Naoki Wakabayashi
  • Patent number: 9623513
    Abstract: Provided is a laser welding inspection apparatus capable of improving the accuracy for determining the welding defect. The laser welding inspection apparatus includes a head which irradiates a welded portion of a workpiece with a laser beam for inspection, an optical receiver which receives a return light of the laser beam for inspection from the welded portion, an optical system which adjusts at least a focal diameter of the laser beam for inspection applied to the welded portion and a region where the return light from the welded portion is recognized, and a controller which controls the optical system and determines, based on intensity of the return light, whether a welding defect exists in the welded portion. The controller controls the optical system so that a diameter of the region is not more than 1.5 times as large as the focal diameter.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: April 18, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuhei Ogura, Yuta Iwamoto, Atsushi Kawakita, Hiroaki Kishi
  • Patent number: 9610651
    Abstract: A laser lift-off method includes generating a plurality of solid state laser pulses, converting the plurality of solid state laser pulses to an ultraviolet frequency, adjusting the transverse spatial intensity profile of the plurality of laser pulses across perpendicular transverse axes to be rectangular in shape with the shape along each transverse axis corresponds to a super-Gaussian of order eight or higher, and scanning the plurality of laser pulses across the target along a direction parallel to one of the transverse axes in order to produce laser lift-off on the target. Systems for laser lift-off are also disclosed.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: April 4, 2017
    Assignee: nLIGHT, Inc.
    Inventor: Robert J. Martinsen
  • Patent number: 9601717
    Abstract: An organic light-emitting display (OLED) device includes: a pixel area defined by a plurality of pixels on a flexible substrate; a non-pixel area around the pixel area; a gate driver in the non-pixel area; a structure in the non-pixel area configured to surround the pixel area; a first encapsulation layer covering the plurality of pixels, the gate driver and the structure; and a particle cover layer covering the pixel area and suppressed from being excessively spread by the structure.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: March 21, 2017
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Myoungsoo Lee, Wonyeol Choi, Byoungchul Kim, Heesung Park
  • Patent number: 9475152
    Abstract: The present invention provides a laser processing method in which a modified layer is formed inside a workpiece by irradiating the workpiece with a laser beam having such a wavelength as to be transmitted through the workpiece with the focal point of the laser beam positioned inside the workpiece. In the laser processing method, the spectral line width of the laser beam is set equal to or smaller than 10 pm.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 25, 2016
    Assignee: Disco Corporation
    Inventors: Yukio Morishige, Kuniaki Iwashiro
  • Patent number: 9457424
    Abstract: A laser machining device which can suppress the aberration of a laser beam converged into an object to be machined is provided. The device includes a laser light source for emitting a laser beam and a reflective spatial light modulator for modulating the laser beam emitted from the laser light source (202), while first mirrors for reflecting the laser beam are disposed between the laser light source and reflective spatial light modulator in an optical path of the laser beam and configured such as to be able to adjust the direction of reflection of the laser beam. Therefore, by regulating the direction of reflection of the laser beam at each of the mirrors, the device can adjust the position and incident angle of the laser beam incident on the reflective spatial light modulator as desired. Hence, the laser beam can precisely be made incident on the reflective spatial light modulator.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: October 4, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Makoto Nakano, Takashi Inoue
  • Patent number: 9339919
    Abstract: A disassembling device for lens module which has a lens barrel and at least one optical component received in the lens barrel. The disassembling device includes a carrying platform, a cylindrical cutting tool, a cutting tool holder, and a driving device. The carrying platform includes a carrying surface for placement of the lens module. The cutting tool is arranged onto the cutting tool holder and is collinear with the lens barrel. A diameter of the cutting tool is greater than an inner diameter of the lens barrel and is less than an external diameter of the lens barrel. The driving device is connected to the cutting tool holder and moves the cutting tool holder along a central axis of the lens barrel, thereby the lens barrel can be cut and thinned by the cutting tool.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 17, 2016
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Chien-Chun Wang
  • Patent number: 9291839
    Abstract: According to embodiments of the present invention, there are disclosed a laser repairing apparatus and a laser repairing method for a substrate. The laser repairing apparatus comprises: a laser emitter; and a light transmission sheet with a light-shielding pattern, wherein a laser emitted by the laser emitter is used to cut a superfluous remainder of an electrode on the substrate, the light transmission sheet is located between the laser emitter and the substrate, and as compared with a pattern of the electrode on the substrate, the light-shielding pattern on the light transmission sheet has the same shape and a size at a predetermined ratio.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: March 22, 2016
    Assignee: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Haisheng Zhao, Guoxiao Bai, Weisong Yang
  • Patent number: 9223226
    Abstract: Optics, such as, for example, microlithographic projection exposure apparatus illumination optics, as well as related systems, methods, components and devices are disclosed.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 29, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Alexander Kohl
  • Patent number: 9198299
    Abstract: A method is provided for repairing defects in a contact printed circuit. The method provides a substrate with a contact printed circuit formed on a substrate top surface. After detecting a discontinuity in a printed circuit feature, a bias voltage is applied to at least one of a first region of the printed circuit feature or a second region of the printed circuit feature. The bias voltage may also be applied to both the first and second regions. An electric field is formed between the bias voltage and an ink delivery nozzle having a voltage potential less than the bias voltage. Conductive ink is attracted into the electric field from the ink delivery nozzle. Conductive ink is printed on the discontinuity, forming a conductive printed bridge. Typically, the ink delivery nozzle is an electrohydrodynamic (EHD) printing nozzle.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: November 24, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Kurt Ulmer, Kanan Puntambekar, Lisa Stecker
  • Patent number: 9156109
    Abstract: A laser processing apparatus including a workpiece holding unit for holding a workpiece and a laser beam applying unit for applying a laser beam to the workpiece held by the workpiece holding unit. The laser beam applying unit includes a laser oscillator for oscillating a laser beam, a focusing unit for focusing the laser beam oscillated by the laser oscillator onto the workpiece held by the workpiece holding unit, and an optical system provided between the laser oscillator and the focusing unit for transmitting the laser beam oscillated by the laser oscillator. The laser beam applying unit further includes a wavelength converting mechanism provided between the optical system and the focusing unit for converting the wavelength of the laser beam oscillated by the laser oscillator into a short wavelength.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: October 13, 2015
    Assignee: DISCO CORPORATION
    Inventors: Keiji Nomaru, Goro Watanabe, Hiroshi Morikazu
  • Publication number: 20150129565
    Abstract: A method is provided for processing a workpiece using laser radiation, particularly for the purpose of laser ablation. At least one laser beam is provided, which is affected using at least one changeable beam forming device. The laser beam subsequently impinges upon at least one processing area of the workpiece. Using the beam forming device, at least one specified adjustable beam profile is impressed upon the laser beam at the location of the processing areaconfigured.
    Type: Application
    Filed: March 18, 2013
    Publication date: May 14, 2015
    Inventors: Roland Gauch, Ulrich Graf
  • Publication number: 20150121961
    Abstract: The present invention provides a laser processing method in which a modified layer is formed inside a workpiece by irradiating the workpiece with a laser beam having such a wavelength as to be transmitted through the workpiece with the focal point of the laser beam positioned inside the workpiece. In the laser processing method, the spectral line width of the laser beam is set equal to or smaller than 10 pm.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 7, 2015
    Inventors: Yukio Morishige, Kuniaki Iwashiro
  • Patent number: 9024232
    Abstract: A thin-film scribing apparatus employing an optical device converts a low M2, Gaussian or pseudo-Gaussian beam into an inverted Gaussian beam. The all refractive optical device is such that it is not susceptible to either beam size or angular variations and exhibits very little loss of energy for the transformation process. The output can be configured for either single or dual-axis operation where the geometric shape of the beam is rectangular or square with steep edge intensity. The resulting rectangular beam requires less beam overlap and has very little shoulder in the intensity profile, providing high uniformity scribe features with greatly improved processing speeds.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 5, 2015
    Assignee: Vinyl Technologies, Inc.
    Inventor: Michael J. Scaggs
  • Publication number: 20150108102
    Abstract: Methods of circumscribing defects in optical devices are described. A perimeter is formed about a defect by laser ablation, where the perimeter electrically isolates the defect. The perimeter does not have damage due to excess energy from the laser and thus does not create new electrical shorts.
    Type: Application
    Filed: May 16, 2013
    Publication date: April 23, 2015
    Applicant: View, Inc.
    Inventor: Todd Martin
  • Patent number: 9000326
    Abstract: An apparatus for laser processing a board is provided. The apparatus for laser processing a board includes a chip, a laser, a modulating device and a focus device. The chip receives a first frequency signal to generate a second frequency signal. The laser receives the first frequency signal to emit a first laser beam. The modulating device receives the second frequency signal and the first laser beam, and adjusts the first laser beam to emit a second laser beam. The focus device focuses the second laser beam to emit a third laser beam onto the board for forming plural dots on the board.
    Type: Grant
    Filed: July 31, 2011
    Date of Patent: April 7, 2015
    Assignee: Hortek Crystal Co. Ltd.
    Inventors: Yu-Lin Lee, Yung-Hsiang Huang, Tai-Wei Wu, Shun-Han Yang, Gong-Qian Wang
  • Publication number: 20150076125
    Abstract: In order to provide a laser irradiation system, a method for removing a coating, and a laser irradiation apparatus capable of efficiently removing a coating on a surface of a structure and recovering the removed substance using suction, a laser head (3) is configured from an optical system (4) for irradiating laser beam (30), a suctioning means (33) for suctioning removed matter (60) produced at the point where the laser beam (30) is directed, and an attachment (5) configured to be capable of abutting a surface (20) of a structure, the optical system (4) being operated to scan the irradiation point of the laser beam so as to draw a trajectory of a circle having a radius r1 around the optical axis of the laser beam (30) on a surface substantially perpendicular to the optical axis.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 19, 2015
    Applicant: TOYOKOH, Co., Ltd.
    Inventors: Hiroyasu Toyosawa, Kazuaki Toyosawa, Kazuhisa Fujita, Shinichiro Okihara
  • Publication number: 20150069028
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: November 5, 2014
    Publication date: March 12, 2015
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron Muir HUNTER, Bruce E. ADAMS, Joseph Michael RANISH
  • Publication number: 20150053657
    Abstract: The invention relates to methods for processing glass objects, in particular, to methods of blunting sharp edges of glass objects. A method comprises treating a glass edge with a focused laser beam, while relatively moving the glass object and/or the beam, said treating of the glass edge being carried out with a laser beam having a ring-shaped section, during which the glass edge is heated with the laser beam to a temperature above glass transition temperature, T>Tg. The method provides the creation of tempered glass sections of desired shape and size in the near-edge area due to the provision of thermal stresses in these areas, which cause the formation of a chamfer with rounded or blunt ends on the glass at brittle fracture.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 26, 2015
    Inventors: Valentin Sergeevich Chadin, Timur Alexandrovich Aliev
  • Patent number: 8952290
    Abstract: In the thermal cutting of a workpiece by means of a laser beam, said beam is generated by means of a laser source and supplied to a movable laser head. In the laser head, an optical deflection element is provided for deflecting the laser beam such that, when viewed in working direction, it encloses a tilt angle (?) differing from 0 degrees with the longitudinal axis of the laser head. Starting therefrom, to produce the inclination of the collimated laser beam to the vertical with a very small number of optical components if possible, the invention suggests that the laser beam is supplied to the laser head by means of an optical fiber and the laser beam is collimated, passes through the deflection element laterally offset to the longitudinal axis of the laser head and is deflected by means of said element onto the workpiece surface and focused at the same time.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 10, 2015
    Assignee: Messer Cutting Systems GmbH
    Inventor: Karl Eck
  • Publication number: 20150038313
    Abstract: Systems and methods are described for forming continuous laser filaments in transparent materials. A burst of ultrafast laser pulses is focused such that a beam waist is formed external to the material being processed without forming an external plasma channel, while a sufficient energy density is formed within an extended region within the material to support the formation of a continuous filament, without causing optical breakdown within the material. Filaments formed according to this method may exhibit lengths exceeding 10 mm. In some embodiments, an aberrated optical focusing element is employed to produce an external beam waist while producing distributed focusing of the incident beam within the material. Various systems are described that facilitate the formation of filament arrays within transparent substrates for cleaving/singulation and/or marking. Optical monitoring of the filaments may be employed to provide feedback to facilitate active control of the process.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 5, 2015
    Applicant: ROFIN-SINAR TECHNOLOGIES INC.
    Inventor: S. ABBAS HOSSEINI
  • Publication number: 20150034617
    Abstract: A laser processing apparatus includes a beam splitting unit disposed between a pulsed laser beam oscillating unit and a condenser. The beam splitting unit includes a half-wave plate that rotates the plane of polarization of a pulsed laser beam, a birefringent lens that splits the pulsed laser beam that has passed through the half-wave plate into ordinary light and extraordinary light, the birefringent lens being formed by joining two kinds of crystalline bodies to each other across a curved plane of a concave surface and a convex surface, and a splitting angle adjusting unit that moves the birefringent lens in a direction orthogonal to the pulsed laser beam that has passed through the half-wave plate to change the angle of incidence with respect to the curved plane and adjust a beam splitting angle.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventor: Taiki Sawabe
  • Patent number: 8946586
    Abstract: A device for laser processing, in which the device includes: a laser including a resonator, the resonator being configured to generate a laser beam with a predetermined caustic during operation of the device; and an optical element to transform a laser beam generated by the resonator into a transformed laser beam having an annular intensity distribution in a plane perpendicular to a propagation direction of the transformed laser beam during operation of the device, in which the annular intensity distribution extends along the propagation direction of the transformed laser beam, and has, at a minimum diameter of a caustic of the transformed laser beam, a beam radius and a ring width corresponding to 50% of a maximum beam intensity in a radial direction of the transformed laser beam, and a ratio of the ring width to the beam radius is less than 0.6.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 3, 2015
    Assignee: TRUMPF Laser- und Systemtechnik GmbH
    Inventors: Martin Bea, Joachim Schulz, Hartmut Zefferer
  • Publication number: 20150028008
    Abstract: Systems and methods for improving the cutting efficiency and cut profile of stent strut is provided. A means for altering the energy distribution of a laser beam is provided, along with various ways of controlling a laser to provide for improved strut configurations are provided. A method for improved cutting speeds using a combination of laser sources is also provided.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 29, 2015
    Inventors: Li Chen, Travis Yribarren, Randolf Von Oepen, Yu-Chun Ku
  • Patent number: 8933374
    Abstract: A pulse laser machining apparatus and method generates a clock signal, emits a pulse laser beam in synchronization with the clock signal, scans the pulse laser beam in synchronization with the clock signal only in a one-dimensional direction, moves a stage in a direction perpendicular to the one-dimensional direction, passes or cuts off the pulse laser beam in synchronization with the clock signal, and controls the passing or cutting off of the pulse laser beam based on the number of light pulses of the pulse laser beam.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: January 13, 2015
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Makoto Hayashi
  • Patent number: 8927898
    Abstract: In a thin beam directional Crystallization System configured anneal a silicon layer on a glass substrate uses a special laser beam profile with an intensity peak at one edge. The system is configured to entirely melt a spatially controlled portion of a silicon layer causing lateral crystal growth. By advancing the substrate or laser a certain step size and subjecting the silicon layer to successive “shots” rom the laser, the entire silicon layer is crystallized. The lateral crystal growth creates a protrusion in the center of the melt area. This protrusion must be re-melted. Accordingly, the step size must be such that there is sufficient overlap between successive shots, i.e., melt zones, to ensure the protrusion is melted. This requires the step size to be less than half the beam width. A smaller step size reduces throughput and increases costs.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: January 6, 2015
    Assignee: TCZ, LLC
    Inventors: Brandon A. Turk, David S. Knowles
  • Publication number: 20150001195
    Abstract: An optical system head of the laser processing machine includes a focusing optical system configured to deflect and condense an incident laser beam so that a target object to be processed is irradiated and a deflecting direction adjusting unit configured to adjust the direction of deflection of the laser beams about at least two axes perpendicular or substantially perpendicular to each other. A nozzle holding head of the laser processing machine includes a cutting nozzle configured to blow a cutting gas at a site of the target object, at which the laser beam is irradiated, and a nozzle position adjusting unit configured to adjust the position of the cutting nozzle in a top plane parallel or substantially parallel to the target object. The optical system head and the nozzle holding head are separately supported by an optical system nozzle support member configured to selectively advance or retract in three axis directions relative to the target object.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 1, 2015
    Applicant: MURATA MACHINERY, LTD.
    Inventor: Takuya Okada
  • Patent number: 8921733
    Abstract: Removing material from the surface of a first circuit comprises generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; testing performance of the first circuit, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit comprises generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; and using this image to guide the first laser to the spot.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 30, 2014
    Assignee: Raydiance, Inc.
    Inventors: David Gaudiosi, Laurent Vaissie
  • Patent number: 8916797
    Abstract: A crystallization apparatus that performs crystallization on a substrate using sequential lateral solidification (SLS) includes a laser generating device for emitting a laser beam, a first telescope lens module and a second telescope lens module at one side of the laser generating device for minimizing a divergent angle of a laser beam emitted by the laser generating device; and a main optical system at one side of the second telescope lens module for uniformizing and amplifying a laser beam transmitted through the second telescope lens module. The main optical system is rotatably formed with respect to the laser generating device.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Cheol-Ho Park
  • Patent number: 8907247
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Publication number: 20140332510
    Abstract: Coating removal systems for optical fibers are disclosed. Related methods and optical fibers processed with these methods and coating removal systems are also disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating which does not contribute to the optical performance of the optical fiber. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured to enable reliable optical communications. A laser beam may be directed at the protective coating to remove the protective coating by one or more ablating, melting, vaporizing, and/or thermal decomposing processes. The optical fiber may also be optionally cleaved. In this manner, the coating may be efficiently removed while retaining at least fifty percent of the tensile strength of the optical fiber.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 13, 2014
    Applicant: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T. Toepper, Kipp David Yeakel
  • Patent number: 8884183
    Abstract: A welding arrangement and a welding process for forming a weld seam between two edge portions, wherein the edge portions form a Y joint having a root portion and a bevel portion, said root portion being welded by a hybrid laser electric arc welding process including directing a laser beam and an electric arc in a single interaction zone of plasma and molten metal. A hybrid laser electric arc welding head and welding submerged arc welding head are arranged on a common carrier structure for welding the Y joint.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 11, 2014
    Assignee: ESAB AB
    Inventors: Johan Tolling, Kari Erik Lahti
  • Patent number: 8866039
    Abstract: A laser system simulates heat flux levels of rocket motor output. A laser is mechanically associated with a platform. The laser is configured to emit an electromagnetic beam. A plurality of positions are associated with the platform. Optical elements are associated with the platform. Each optical element is positionable in a plurality of positions without changing a location of the corresponding positioner. The optical elements are arrangeable into a plurality of combinations corresponding to at least one optical path beginning at the laser and terminating at a sample. Each combination corresponds to one of a plurality of distinct permutations of operatively positioned optical elements that reducingly interact with an emitted electromagnetic beam, yielding one of many versions of the emitted electromagnetic beam that is incidented upon the sample. Each version of the emitted electromagnetic beam that is incidented upon the sample has a lower power than the emitted electromagnetic beam.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 21, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: James Joseph Haycraft, Kevin Paul Ford
  • Patent number: 8859934
    Abstract: A method of removing slag formed during laser cutting a hypotube may include flowing cooling gas into a laser nozzle, directing flow of the cooling gas onto an external surface of the hypotube, and injecting cooling fluid into an inner lumen of the hypotube at a velocity. Flowing the cooling gas and injecting the cooling fluid may at least partially remove slag from the external surface of the hypotube.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: October 14, 2014
    Assignee: Insera Therapeutics, Inc.
    Inventors: Vallabh Janardhan, Vikram Janardhan
  • Patent number: 8853062
    Abstract: A laser crystallization device includes a first light source providing a first light and a second light source providing a second light. The device further includes a first lens set receiving the first light to generate a first transmitted light, the first transmitted light having a first profile, the first profile having a first profile error portion and a first non-error portion. The device further includes a second lens set receiving the second light to generate a second transmitted light, the second transmitted light having a second profile, the second profile having a second profile error portion and a second non-error portion, the second profile error portion corresponding to the first non-error portion, the second non-error portion corresponding to the first profile error portion. The device further includes an optical system combining the first transmitted light with the second transmitted light.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Hiroshi Okumura
  • Publication number: 20140291308
    Abstract: The invention relates to a device (and a corresponding method) for the interference structuring of a planar sample, comprising a laser, a focusing element, which is arranged in the beam path of the laser and by means of which the laser radiation can be focused in a first spatial direction, a first prism, in particular a biprism, which is arranged in the beam path of the laser and by means of which the laser radiation can be directed at a sample volume in a second spatial direction preferably perpendicular to the first spatial direction by means of two beams, in such a way that the two beams interfere within the sample volume in an interference area, the sample volume, in which the planar sample is or can be placed in the interference area, and a moving unit, by means of which the beam(s) of the laser radiation can be moved in the first, the second, or the first and second spatial directions and/or by means of which a/the sample can be moved in the sample volume in the first, the second, or the first and secon
    Type: Application
    Filed: February 9, 2012
    Publication date: October 2, 2014
    Applicant: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V
    Inventors: Andrés Fabián Lasagni, Eckhard Bever, Teja Roch
  • Patent number: 8847113
    Abstract: A laser processing system includes a first positioning system for imparting first relative movement of a beam path along a beam trajectory with respect to a workpiece, a processor for determining a second relative movement of the beam path along a plurality of dither rows, a second positioning system for imparting the second relative movement, and a laser source for emitting laser beam pulses. The system may compensate for changes in processing velocity to maintain dither rows at a predetermined angle. For example, the dither rows may remain perpendicular to the beam trajectory regardless of processing velocity. The processing velocity may be adjusted to process for an integral number of dither rows to complete a trench. A number of dither points in each row may be selected based on a width of the trench. Fluence may be normalized by adjusting for changes to processing velocity and trench width.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 30, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Mark A. Unrath, Andrew Berwick, Alexander A. Myachin
  • Publication number: 20140272329
    Abstract: Optical elements with small increments in average density are formed in a substrate by laser micromachining using a variable aperture and a pattern mask set of pattern masks each having of shape-defining elements whose density differs among the pattern masks in first density increments. A laser light beam passes through a combined mask formed by the variable aperture and one pattern mask selected from the pattern mask set. The variable aperture controls beam size and the pattern mask spatially modulates its intensity. A focusing element focuses light from the combined mask on a small averaging region of the substrate. Different combinations of the size of the aperture mask and the selected pattern mask are used in combination at respective averaging regions of the substrate. The resulting average densities of the optical elements vary among the averaging regions in increments that are small compared to the first density increments.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 18, 2014
    Applicant: Rambus Delaware LLC
    Inventors: Timothy A. McCollum, Fumitomo Hide, Ian Hardcastle
  • Publication number: 20140263221
    Abstract: The laser decontamination device includes: a laser oscillator; a scanning device provided with an XY axis scanner and a Z axis scanner to condense the laser beam emitted from the laser oscillator onto the surface of the contaminated article without the intervention of any compound lens such as an f ? lens so as to optically scan the surface; and a surface shape measuring device to measure the surface shape of the contaminated article, the Z axis scanner being provided with a focus position controlling section to automatically adjust a focus position in accordance with an irradiation position such that a focus of the laser beam comes on the surface of the contaminated article based on a shape data obtained at the surface shape measuring device.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 18, 2014
    Inventor: Eisuke Minehara
  • Publication number: 20140263209
    Abstract: An apparatus for manufacturing includes: a build chamber including a build platform; a material dispenser configured to distribute a layer of powdered material over the build platform; a mirror arranged over the build platform and defining a mirrored planar surface; a first laser output optic configured to output a first energy beam toward the mirror; a second laser output optic adjacent the first laser output optic and configured to output a second energy beam toward the mirror; a first actuator configured to maneuver the first laser output optic and the second laser output optic relative to the build platform; a lens arranged between the mirror and the build platform; and a second actuator configured to maneuver the mirror to scan the first and second energy beams across the lens, the lens outputting the first energy beam and the second energy beam toward and substantially normal to the build platform.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Matterfab Corp.
    Inventors: Matthew Burris, Andrew Dolgner
  • Patent number: 8835805
    Abstract: The invention provides a simple and inexpensive method to assemble nanomaterials into millimeter lengths. The method can be used to generate optical, sensing, electronic, magnetic and or catalytic materials. Also provided is a substrate comprised of fused nanoparticles. The invention also provides a diode comprised of assembled nanoparticles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 16, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: John T. Bahns, Liaohai Chen, Stephen K. Gray, Subramanian Sankaranarayanan
  • Patent number: 8835800
    Abstract: The present invention provides a laser irradiation apparatus which can accurately control positions of beam spots of laser beams emitted from laser oscillators and the distance between the adjacent beam spots. A laser irradiation apparatus of the present invention includes a first movable stage with an irradiation body provided, two or more laser oscillators emitting laser beams, a plurality of second movable stages with the laser oscillators and optical systems provided, and a means for detecting at least one alignment maker. The first stage and the second stages may move not only in one direction but also in a plurality of directions. Further, the optical systems are to shape the laser beams emitted from the laser oscillators into linear beams on the irradiation surface.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Yoshiaki Yamamoto
  • Patent number: 8835804
    Abstract: A system for homogenizing the intensity profile of light includes a plurality of fiber coupled light sources for emitting fiber output beams from fiber output ends, and a light pipe optically coupled to the fiber output beams for producing a uniform light pipe output beam, an interleaver that transmits a first set of fiber output beams and reflects a second set of fiber output beams so that the principal rays of the fiber output beams propagate in a common plane, a first optical element for converging the principal rays, and a second optical element for telecentrically imaging the beams into the light pipe such that the principal rays of the beams propagate parallel to each other and the beams are focused in the light pipe in a focal plane transverse to the direction of propagation.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: September 16, 2014
    Assignee: nLIGHT Photonics Corporation
    Inventors: Jason Farmer, Scott Karlsen, Rob Martinsen
  • Publication number: 20140251963
    Abstract: Laser light L is converged at an object to be processed 1, so as to form a modified region 7 including a modified spot S in the object 1. At this time, the laser light L is converged at a front face 3 of the object 1 while an aberration of the laser light L is corrected such as to locate a converging point of the laser light L near the front face 3 serving as a laser light entrance surface, so as to form a second modified spot S2 exposed at the front face 3 in the object 1.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 11, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventor: Daisuke Kawaguchi
  • Patent number: 8822880
    Abstract: In accordance with said control method, the transmission of the laser beam is periodically interrupted with the aid of means for masking the laser beam placed between the reference point and a source of the laser beam. Moreover, the transmission power of the source of the laser beam is varied between the minimum and maximum values, such that the emission times of the source of the laser beam at the minimum power substantially coincide with the masking times of the laser beam via the masking means. Preferably, the minimum value is at least equal to 10% and the maximum value at most equal to 90% of a maximum emission power of the source of the laser beam.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 2, 2014
    Assignee: Valeo Etudes Electroniques
    Inventors: Jean-Michel Morelle, Laurent Vivet