Automatic Guidance Patents (Class 244/3.15)
  • Patent number: 9423497
    Abstract: A method for obstacle detection, the method may include receiving or generating, by a computerized system, detection information about input radio frequency (RF) signals detected by a RF receiver as a result of a transmission of RF output signals towards a space that comprises potential obstacles; and detecting, by the computerized system, obstacles by associating agent behaviors with clusters of input RF signals.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: August 23, 2016
    Assignee: RADAR OBSTACLE DETECTION LTD.
    Inventors: Alon Slapak, Nirom Cohen-Nov Slapak
  • Patent number: 9285196
    Abstract: A guidance unit system is configured to be used for a ground-launched projectile. The system includes a housing configured to be attached to a ground-launched projectile. The housing is coupled to an attachment region that attaches to the projectile, wherein the housing is configure to rotate relative to the attachment region. A motor is contained within the housing and a bearing surrounding the motor. The bearing is rigidly attached to the housing such that the motor rotates with the housing and shields the motor from inertial loads experienced by the housing.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 15, 2016
    Inventors: Gordon Harris, Stephen Harris
  • Patent number: 9170571
    Abstract: A position controller sets a variable friction compensation value which varies in accordance with a change in sliding characteristics by providing a variable friction compensation value calculation unit that includes a sliding torque normalization calculation unit that normalizes a sliding torque at a predefined speed; a compensation value amplifying ratio calculation unit that calculates a compensation value amplifying ratio based on the sliding torque at the normalized speed; and multipliers.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 27, 2015
    Assignee: OKUMA CORPORATION
    Inventors: Masahiro Maeda, Satoshi Eguchi
  • Patent number: 9140784
    Abstract: A method for identification of one or more launched objects obscured by debris objects within a debris field comprises: directing one or more sensor pulses at the debris field to obtain a plurality of sensor images; identifying objects within the debris field based on the sensor images; determining acceleration characteristics for each of the identified objects within the debris field based on the sensor images; identifying objects exhibiting free fall acceleration characteristics as debris objects; and identifying objects exhibiting centripetal acceleration characteristics as the one or more launched objects.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: September 22, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Mark A. Friesel, Paul Mountcastle
  • Patent number: 9127908
    Abstract: A system comprising an unmanned aerial vehicle (UAV) configured to transition from a terminal homing mode to a target search mode, responsive to an uplink signal and/or an autonomous determination of scene change.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 8, 2015
    Assignee: Aero Vironment, Inc.
    Inventor: Carlos Thomas Miralles
  • Patent number: 9111391
    Abstract: An image generating device includes: a gravity parameter changing section for changing a parameter relating to gravity of each of a plurality of rigid bodies which are constrained to one another and included in a first object based on a positional relationship between each of the plurality of rigid bodies and a second object; a physical calculation section for physically calculating a motion of each of the plurality of rigid bodies included in the first object based on the changed parameter; and an image rendering section for rendering an image representing a surface of the first object based on the motions of the plurality of rigid bodies included in the first object.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: August 18, 2015
    Assignees: SONY CORPORATION, SONY COMPUTER ENTERTAINMENT INC.
    Inventors: Fumito Ueda, Hitoshi Ishikawa, Rui Guerreiro, Atsuhiko Terada, Chihiro Kanno, Toshihiro Kamei
  • Patent number: 9098090
    Abstract: A flight control system and method for controlling full envelope banked turns of an aircraft, the flight control system including one or more of a control law architectures having one or more control laws adapted for controlling the flight of an aircraft for full envelope banked turns.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: August 4, 2015
    Assignee: Textron Innovations Inc.
    Inventors: Kevin Thomas Christensen, Shyhpyng Jack Shue, Troy Sheldon Caudill, Nicholas Dean Lappos
  • Patent number: 9035226
    Abstract: An exoatmospheric vehicle uses a control system that includes a thrust system to provide thrust to control flight of the vehicle. A regenerative heat system is used to preheat portions of the thrust system, prior to their use in control of the vehicle. The heat for preheating may be generated by consumption of a fuel of the vehicle, such as a monopropellant fuel. The fuel may be used to power a pump (among other possibilities), to pressurize the fuel for use by thrusters of the thrust system. The preheated portions of the thrust system may include one or more catalytic beds of the thrust system, which may be preheated using exhaust gasses from the pump. The preheating may reduce the response time of the thrusters that have their catalytic beds preheated. Other thrusters of the thrust system may not be preheated at all before operation.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 19, 2015
    Assignee: Raytheon Company
    Inventors: Wayne C Jouse, Mark S Muktoyuk
  • Patent number: 9018572
    Abstract: A rocket is provided and includes booster stages at a rear of the nose cone, the booster stages being configured for propelling the nose cone in a propulsion direction and a divert control system housed entirely in the nose cone for controlling an orientation of the propulsion direction.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: April 28, 2015
    Assignee: Raytheon Company
    Inventors: Andrew B. Facciano, Michael S. Alkema, Robert T. Moore
  • Patent number: 9012823
    Abstract: A vehicle, such as a missile, is disclosed. The vehicle includes an optically transparent dome, a vehicle body, and a brazed joint directly coupling the dome to the vehicle body. The dome is formed of a Nanocomposite Optical Ceramic (NCOC) material comprising two or more different types of nanograins dispersed in one another. Each nanograin type has a coefficient of thermal expansion (CTE), and an aggregate CTE of the NCOC material is based on the CTE of each nanograin type.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 21, 2015
    Assignee: Raytheon Company
    Inventors: Wayne L. Sunne, Christopher E. Pentland, Christopher D. Marr
  • Patent number: 9012822
    Abstract: Missile guidance involving projection of laser light to define a Laser Information Field (LIF) is augmented by interposition of information pulses, interleaved between laser emissions establishing the LIF. Information pulses encode further information for receipt by a missile, such as an angle of roll of a missile launch platform from which the LIF is emitted.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: April 21, 2015
    Assignee: Thales Holdings UK Plc
    Inventor: Wai Yu
  • Patent number: 8997654
    Abstract: A guided munition (10) includes a warhead (20) within the nose section (60) and processing electronics (30) arranged within the munition (10) behind the warhead (20). A plurality of sensors (50) are arranged within the nose section (60) for sensing a target. The sensors (50) are remote from but in communication with the processing electronics (30).
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 7, 2015
    Assignee: MBDA UK Limited
    Inventors: Lee Douglas Miller, George William Game
  • Patent number: 8975564
    Abstract: This invention advances the related state-of-the-art by eliminating the physical EO window used by electro-optical imaging infrared seekers for tactical missiles and high-altitude endo-atmospheric interceptors, widely employed in integrated defense systems. This invention increases the probability of intercepting exo-atmospheric ballistic warheads by exo-atmospheric interceptors, and eliminates the existing altitude “gap” of interception, as well as the geographical limitations posed by the mesospheric Noctilucent Clouds. The problem of protecting an imaging EO sensor from aeroheating is solved in this invention by a special purpose device which is enabled immediately after the nose cone ejection event.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: March 10, 2015
    Assignee: Sener Grupo De Ingenieria, S.A.
    Inventors: Jorge Sancho Ponce, Pedro Jose Herraiz Alijas, Rafael Rebolo Gomez, Carlos Miravet Fuster, Aitor Arce Aguinaga, Jose Maria Fernandez Ibarz, Daniel Ribas Nieto
  • Patent number: 8975565
    Abstract: An interceptor is provided with an integrated propulsion and attitude control system (ACS) in which propellant burn forms a common pressure vessel for high-pressure gas. An aft port in the rocket motor directs gas through one or more main nozzles that expel high-velocity gas in a generally axial direction to propel the interceptor. A forward port directs gas through one or more attitude control nozzles that expel high-velocity gas in a generally radial direction to control the attitude of the interceptor. The main nozzle(s) and stabilization fins are fixed, there is no servo control to the main nozzles or fins to affect attitude control. The use of a common pressure vessel enables an integrated propulsion and ACS that can be compact, lightweight and inexpensive.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: March 10, 2015
    Assignee: Raytheon Company
    Inventors: Doron Strassman, Mark E. Elkanick
  • Patent number: 8957355
    Abstract: Inertial measurement unit apparatus for use with guidance systems are disclosed herein. An example guidance system includes an inertial measurement unit removably coupled in a cavity of a guidance wafer via an access port of the guidance wafer defining a port axis that is non-parallel relative to a longitudinal axis of the guidance wafer.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 17, 2015
    Assignee: The Boeing Company
    Inventors: Angelo Truncale, James K. Gingrich, Stephen T. Butscher, Joseph E. Justin
  • Patent number: 8946606
    Abstract: Apparatus/method estimate LOS rotation, to track, approach, pursue, intercept or avoid objects. Vehicle-fixed imagers approach/recede-from objects, recording image series with background. Computations, from images exclusively, estimate rotation vs. the vehicle, applying the estimate. Preferably, recording/estimating provide proportional navigation; scan mirrors extend strapdown-sensor FOR; applying includes measuring “range rate over range”, exclusively from interimage optical flow, using results to optimize proportional-navigation loop gain; estimating includes evaluating interframe optical flow, preregistering roughly as first approximation, selecting sequence anchor points, and applying a second, finer technique developing output registration that's a coordinate translation, aligning inertial surroundings. The approximation operates optical flow with efficient embedded registration/mapping, applying a homography matrix to nearby imagery.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Arete Associates
    Inventors: John Charles Dennison, Clayton Houston Davis, Brian Edward Frazier
  • Patent number: 8933382
    Abstract: A missile guidance system is configured to estimate a time to go, the time to go comprising an amount of time until a missile would reach a closest point of approach to a target. The guidance system is also configured to estimate a zero-effort miss distance along a zero-effort miss vector, the zero-effort miss distance comprising a distance by which the missile would miss the target if the missile performs no future maneuvers. The guidance system is also configured to determine a tolerance for the zero-effort miss distance, the tolerance being a function of the time to go. The guidance system is further configured to modify a course of the missile by adjusting an expenditure of propellant such that the estimated zero-effort miss distance in excess of the tolerance is removed from future consideration.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 13, 2015
    Assignee: Raytheon Company
    Inventor: Andrew E. Dolphin
  • Patent number: 8933860
    Abstract: A thermal management system and method for active cooling of high speed seeker missile domes or radomes comprising bonding to an IR dome or RF radome a heat pipe system having effective thermal conductivity of 10-20,000 W/m*K and comprising one or more mechanically controlled oscillating heat pipes, employing supporting integrating structure including a surface bonded to the IR dome or RF radome that matches the coefficient of thermal expansion the dome or radome material and that of said one or more mechanically controlled oscillating heat pipes, and operating the heat pipe system to cool the IR dome or RF radome while the missile is in flight.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 13, 2015
    Assignees: Integral Laser Solutions, Inc., The Curators of the University of Missouri
    Inventors: LaVerne Arthur Schlie, Hongbin Ma
  • Patent number: 8927914
    Abstract: An optical device forms a beam path between an optical end element at a beam path end and an object scene into which the beam path is directed via a field of view of the end element. The optical device contains an alignment device for pivoting the field of view relative to a predetermined direction, an end optical unit and an optical articulation for guiding the beam path from the pivoted field of view into the end optical unit. In order to achieve good shielding against spurious radiation, the device has a shielding unit containing a shielding element led partly around the optical articulation, which shielding unit shields the optical articulation against incident radiation that is not incident through the entrance or exit aperture of the optical articulation.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: January 6, 2015
    Assignee: Diehl BGT Defense GmbH & Co. KG
    Inventors: Reiner Eckhardt, Joachim Barenz, Hubert Kuppel
  • Patent number: 8927915
    Abstract: Apparatus and a method for intercepting a rocket body during boost phase. A sensor is arranged to detect thermal emission in a range that is characteristic of a firing rocket body. The image detected by the sensor is applied to an analog-to-digital converter for digitization and application to a computer that includes a routine for separating the modulated photon energy of the detected image from the substantially unmodulated photon energy that characterizes rocket body emissions. The unmodulated photon energy, signature of the rocket body, may be utilized by a fire control system for tracking, targeting and aiming munitions at the firing rocket body.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 6, 2015
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Frank O. Clark
  • Patent number: 8921749
    Abstract: A perpendicular drive mechanism for a missile control actuation system employs an electric motor and power shaft operatively coupled to a first spur gear. A lead screw is coupled to a second spur gear. The lead screw is oriented parallel to the motor and perpendicular to a central longitudinal axis. The first and second spur gears meshingly engage such that the second spur gear rotates in the opposite direction as the first spur gear. A lead nut threadingly engages with and is configured to move linearly along the central axis of the lead screw. A crank arm is coupled on one end to the lead nut and on the other end to the canard shaft of a canard assembly. As the lead nut moves linearly along the central axis of the lead screw, the crank arm follows the lead nut and causes the canard assembly to actuate.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 30, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Aaron M. Scott
  • Patent number: 8921748
    Abstract: An optical window for a detection system and method of employing the same. In one embodiment, the detection system includes an optical window configured to internally channel external incident radiation to an exit surface for emission. The detection system also includes a detector oriented to receive emitted radiation from the exit surface.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Umang R. Patel, Kurt Schuder
  • Publication number: 20140374533
    Abstract: A dual-mode, semi-active, laser-based and passive image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array sensor to sense data in both the image-based and laser-based modes of operation. A shuttering technique allows the relatively low frame-rate of the digital imager to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Todd Ell, Robert Rutkiewicz
  • Patent number: 8916809
    Abstract: A method is provided for optically providing at least one of power and data to a projectile from an external optical source. The method including: outputting an optical signal from an external optical source into an interior of the projectile; receiving the optical signal in the interior of projectile and at least one of converting the optical signal to electrical energy and storing data provided in the optical signal. The electrical energy can be provided to the one or more electronic components and/or energy storage medium disposed on the interior of the projectile. The data provided in the optical signal can be provided to a data storage medium disposed on the interior of the projectile.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: December 23, 2014
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Patent number: 8884202
    Abstract: A system and methods are provided for combining systems of an upper stage space launch vehicle for enhancing the operation of the space vehicle. Hydrogen and oxygen already on board as propellant for the upper stage rockets is also used for other upper stage functions to include propellant tank pressurization, attitude control, vehicle settling, and electrical requirements. Specifically, gases from the propellant tanks, instead of being dumped overboard, are used as fuel and oxidizer to power an internal combustion engine that produces mechanical power for driving other elements including a starter/generator for generation of electrical current, mechanical power for fluid pumps, and other uses. The exhaust gas from the internal combustion engine is also used directly in one or more vehicle settling thrusters. Accumulators which store the waste ullage gases are pressurized and provide pressurization control for the propellant tanks.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 11, 2014
    Assignee: United Launch Alliance, LLC
    Inventor: Frank C. Zeglar
  • Patent number: 8872081
    Abstract: A relative navigation system projects a grid into space from a grid generator and an object, such as an unmanned aerial vehicle, may use the projected grid to aid in the landing of the object. Methods of adjusting the projected grid including stabilizing the projected grid and orienting the grid generator relative to the earth.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 28, 2014
    Assignee: GE Aviation Systems LLC
    Inventors: Michael Steven Feldmann, Frank Saggio, III, John Robert Washburn
  • Patent number: 8829401
    Abstract: A projectile and associated method are provided for seeking a target that has been laser designated even though the projectile does not include a laser receiver. A projectile includes an aerodynamic body and a GPS receiver configured to receive GPS signals indicative of a location of the aerodynamic body. The projectile also includes a radio receiver configured to receive radio signals from an offboard laser receiver that provide information relating to a location of the target based upon laser designation of the target. Further, the projectile includes a processor configured to direct flight of the aerodynamic body toward the target based upon the location of the aerodynamic body as determined from the GPS signals and the location of the target based upon the information provided by the offboard laser receiver.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 9, 2014
    Assignee: The Boeing Company
    Inventors: Kevin Lutke, Aaron J. Kutzmann
  • Patent number: 8825231
    Abstract: A method and system for piloting a craft with a rear propulsion unit are disclosed. The method can include a servo loop where the attitude (?M) of the craft (1) is measured in the vicinity of the rear end (1R) of the craft, then the orientation (?) of the propulsion means (2), which can be oriented relative to the rear end (1R), is adjusted as a function of the attitude measurement (?M) in such a way that the craft (1) is stabilized on its flight path.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: September 2, 2014
    Assignee: Astrium SAS
    Inventors: Paul Caye, James Caillaud, Guillaume Laporte
  • Patent number: 8816261
    Abstract: Control surfaces secured tangentially to a round projectile, such that the lift force generated by the control surfaces is generated through the projectiles centerline. This eliminates the need for an opposing fin to counter roll moment. Sizing the control surfaces to form an equilateral triangle gives each panel equal span, and enables the force generated by two panels to be equal and opposite to that of the opposing panel. The end effect is that each panel only has two active states (neutral and positive deflection). Thus, a solenoid and a return spring may be used to control the canards. Additionally, the control panels may fold along the surface of the projectile, which frees up internal volume and minimizes the length of the control section.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 26, 2014
    Assignee: Raytheon Company
    Inventors: Jesse H. Blake, Matthew G. Murphy
  • Patent number: 8803052
    Abstract: A method for controlling autopilot roll capture of a rocket comprising adapting the start time and the rate of roll capture such that regardless of the initial rocket spin rate, the roll capture process is completed at a predetermined time.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 12, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: David Schorr, James H. Steenson, Jr.
  • Patent number: 8766152
    Abstract: The present invention includes, in various aspects and embodiments, a method and apparatus for guiding a laser guided munition to an offset aim point relative to the laser spot. In one aspect, the laser guided munition comprises a propelled explosive ordnance; an optical sensor; means for indicating an offset from a laser designation; and a flight control system. The flight control system is responsive to an output from the optical sensor to: home on the laser designation during the descent of an arcing trajectory for the propelled explosive ordnance; determine that the propelled explosive ordnance traversed a predetermined point in the descending trajectory; and upon traversing the predetermined point, guide the propelled explosive ordnance to the position defined by the offset indicator. In a second aspect, the laser guided munition is deployed as part of a system that also includes a laser designator.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: July 1, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Edward Max Flowers, Chad Nathan Chegwidden, Christopher L. Gould
  • Publication number: 20140145024
    Abstract: An ejectable protective cap for controlled munition comprises a munition body of cylindrical form, having a front end comprising a central part directed toward a target. The cap comprises n portions distributed around a longitudinal axis, to cover the front end, n being an integer?2, a cap portion having an edge in contact with an edge of a contiguous cap portion with it in a respective plane of assembly of two contiguous cap portions passing through the longitudinal axis, a pyrotechnic initiator for each cap portion comprising a pyrotechnic initiator body securely attached to the respective cap portion, a piston plunger that can slide in a seal-tight manner by one of its ends, the free other end in contact with the contiguous cap portion to separate, upon simultaneous activation of n pyrotechnic initiators, edges of the contiguous cap portions and release the front end of the munition body.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 29, 2014
    Applicant: TDA ARMEMENTS SAS
    Inventors: Patrick Cohe, Fabien Moreau
  • Patent number: 8735788
    Abstract: Embodiments of a propulsion and maneuvering system that may be suitable for use during a terminal phase in an interceptor are generally described herein. The propulsion and maneuvering system may include one or more axial thrusters to provide thrust along axial thrust lines that run through a center-of-gravity of the interceptor and a plurality of divert thrusters to provide thrust in radial directions. The combination of divert and axial thrusters may allow the interceptor to respond to a maneuvering target and may allow the interceptor to increase its velocity along a line-of-sight (LOS) to a target to change target impact/engagement time.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 27, 2014
    Assignee: Raytheon Company
    Inventors: Kenneth G. Preston, Michael A. Leal, Rondell J. Wilson, Richard C. Hussey
  • Patent number: 8729443
    Abstract: Some embodiments pertain to a projectile and method that includes a flight vehicle and a propulsion system attached to the flight vehicle. The propulsion system includes a plurality of motors that propel the projectile. A guidance system is connected to the propulsion system. The guidance system ignites an appropriate number of the motors to adjust the speed of the projectile based on the location of the projectile relative to a desired destination for the flight vehicle. In some embodiments, the flight vehicle is a kinetic warhead. The projectile may be an interceptor that includes a first propulsion stage, a second propulsion stage and a third propulsion stage that includes the third propulsion system. The number of booster motors that will be ignited by the guidance system depends on the speed that the projectile needs to be adjusted to in order to maneuver the projectile to a desired location.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: May 20, 2014
    Assignee: Raytheon Company
    Inventors: Andrew B. Facciano, James A. Ebel, Michael Alkema, Robert D. Travis, Mike J. Saxton
  • Patent number: 8729442
    Abstract: Technology for predicting and correcting a trajectory is described. The technology can create a model to predict a position of the reusable launch vehicle at a time in the future; observe a wind condition during ascent of the reusable launch vehicle; store the observed wind condition in a wind map; predict during ascent a position and a terminal lateral velocity of the reusable launch vehicle at a terminal altitude; and correct a flight trajectory of the reusable launch vehicle based on the wind map.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 20, 2014
    Assignee: Blue Origin, LLC
    Inventors: Frederick W. Boelitz, Mark O. Hilstad
  • Patent number: 8723091
    Abstract: A mount for a seeker head includes a plane spanned by a holder frame in which the pitch motion of the device containing at least one detector can be performed with respect to the missile structure and within the holder frame, at right angles to the plane spanned by the holder frame, a rotating mechanism for the rotational yaw motion of the device containing at least one detector is arranged about a rotation axis lying in the plane spanned by the holder frame. The pitch and yaw motion of the device is possible in a range of much more than+/?90°.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 13, 2014
    Assignee: LFK-Lenkflugkoerpersystem GmbH
    Inventors: Roderich Rueger, Juergen Zoz
  • Patent number: 8710411
    Abstract: A method and system for determining an optimal missile intercept approach direction to maximize the probability of association between a remote sensor designated object and a corresponding missile seeker-observed object. The method and system calculates a distance metric between a remote sensor designated object and the corresponding missile seeker-observed object, and calculates the probability that the remote sensor designated object and the corresponding missile seeker-observed object have a smaller distance metric between them than between the remote sensor designated object and any other missile seeker-observed object.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 29, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Ronald H. LaPat
  • Patent number: 8698667
    Abstract: The invention concerns a device for countering and tracking a threat in the form of a homing-head missile, comprising a homing head adapted to receive an incident coherent light beam and to deflect same to produce a transmitted beam. The invention is characterized in that the homing head comprises a biprism including two prisms made of different materials and adapted to divide the transmitted beam into two sub-beams, the refractive index difference between the prisms being adapted to introduce an optical path difference between the two sub-beams which is greater than the coherence length of the incident beam.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: April 15, 2014
    Assignee: Sagem Defense Securite
    Inventors: Julien Aragones, François Dufresne De Virel, Jacques Robineau
  • Patent number: 8698058
    Abstract: A ranging seeker apparatus includes an RF antenna and a bistatic ranging detector operatively connected with the RF antenna. The RF antenna and bistatic ranging detector are operative for detecting one or more guidance objects in a RF band and providing angle and range data to the missile. Also, a missile including a missile body, a missile propulsion system disposed in or on the missile body, and the ranging bistatic RF seeker disposed in or on the missile body.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 15, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Ronald H. LaPat
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8692172
    Abstract: A shield for use with a detector includes a first opening adjacent the detector, a second opening opposite the first opening along an optical axis intersecting the detector, and a field of view defined by the detector and the second opening. A shield body includes alternating curved profile regions and linear profile regions coaxially aligned along the optical axis. The curved profile regions have respective curved interior surfaces concave facing toward the second opening, and the linear profile regions have respective interior surfaces facing toward the first opening. In this way, specular reflections associated with stray light may be greatly reduced.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: April 8, 2014
    Assignee: Raytheon Company
    Inventors: Kenneth G. Preston, Aron Traylor, David G. Jenkins
  • Patent number: 8692171
    Abstract: An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: April 8, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gerald F Miller, James Stewart
  • Patent number: 8686326
    Abstract: In certain aspects, this invention is a “control system” that detects and minimizes (or otherwise optimizes) an angle between vehicle centerline (or other reference axis) and vehicle velocity vector—as for JDAM penetration. Preferably detection is exclusively by optical flow (which herein encompasses sonic and other imaging), without data influence by navigation. In other aspects, the invention is a “guidance system”, with optical-flow subsystem to detect an angle between the vehicle velocity vector and line of sight to a destination—either a desired or an undesired destination. Here, vehicle trajectory is adjusted in response to detected angle, for optimum angle, e.g. to either home in on a desired destination or avoid an undesired destination (or rendezvous), and follow a path that's ideal for the particular mission—preferably by controlling an autopilot or applying information from navigation.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 1, 2014
    Assignee: Arete Associates
    Inventors: John C. Dennison, David C. Campion
  • Patent number: 8680450
    Abstract: A reflector 38 includes a mirrored surface 48 and a frequency selective surface 46. The frequency selective surface 46 is arranged to reflect radiation of a first frequency band 52 and allow radiation of a second frequency band 50 to pass. The mirrored surface 48 is arranged to reflect radiation of the second frequency band 50. In this manner, the focal power for radiation of the first frequency band 52 is independent to the focal power for radiation of the second frequency band 50. Accordingly, the design of optical components associated with the second frequency band 50 can be undertaken independently of those associated with the first frequency band 52 so as to achieve the optimised focusing for each frequency band.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: March 25, 2014
    Assignee: MBDA UK Limited
    Inventor: Timothy John Pritchard
  • Patent number: 8674276
    Abstract: An exo-atmospheric intercepting method for intercepting in space multiple objects, including acquiring and tracking multiple inflated objects which fly towards a protected territory. The method further includes launching an interceptor missile accommodating a plurality of kill vehicles each hosting a plurality of punching objects and classifying the multiple objects into clusters. In respect of each cluster of objects, determining an ejection condition responsive to meeting of which a kill vehicle is ejected from the interceptor missile towards the cluster of objects and thereafter releasing from the kill vehicle a plurality of punching objects such that every inflated object in the cluster is likely, with a high degree of certainty, to be punched by one or more punching objects.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: March 18, 2014
    Assignee: Israel Aerospace Industries Ltd.
    Inventor: Jacob Rovinsky
  • Patent number: 8674277
    Abstract: There is disclosed a collar (100) which may be attached to a munition in order to control the trajectory of the munition. The collar (100) has a collar body (10); a surface (12) for capturing the projectile as it leaves the barrel; a sill (14) for supporting the surface (12) at the muzzle of the barrel; and a guidance means (20a, 20b, 21a, 21b) for altering the flow of air around the collar (100). The collar (100) supports itself at the muzzle and may attach to the projectile at the surface (12) to integrate with the projectile as the projectile is fired. The collar (100) is particularly suited for attachment to mortar rounds. Such a collar (100) gives a weapon operator the option of increasing the precision of a munition without having to carry a plurality of munition types.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 18, 2014
    Assignee: BAE SYSTEMS plc
    Inventors: Richard Desmond Joseph Axford, Kevin William Beggs
  • Patent number: 8669504
    Abstract: An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 11, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gerald Miller, James Stewart
  • Patent number: 8669505
    Abstract: The invention relates to a guidance system comprising estimation means able to estimate, in the course of flight, the attitude and the aerodynamic speed of a projectile, as well as the variations in the speed of the wind, on the basis of guidance orders formulated by guidance means of the guidance system, of a reference trajectory and of measurements obtained by measurement means of the system, using a model of the dynamic behavior of the projectile and a model of the dynamics of the wind.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: March 11, 2014
    Assignee: MBDA France
    Inventors: Vincent Guibout, Eric Larcher
  • Patent number: 8664575
    Abstract: A miniature lightweight high-maneuverability missile (10) has a missile body (12) with three sets of at least two aerodynamic control surfaces (14, 16, 18) for independent control of roll, pitch and yaw of the missile. Each set of control surfaces (14, 16, 18) is independently controlled by a corresponding actuator (20) deployed within the missile body (12). Other preferred features include selection of an elevation angle of incidence at a target, and switching between explosive and kinetic modes of operation.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 4, 2014
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventors: Yariv Bril, Yakov Hetz, Oded Yehezkeli, Ehud Chishinsky
  • Patent number: 8658955
    Abstract: Some embodiments relate to an optical assembly that includes an energy collection system that collects energy and a heat shield that axially restrains the energy collection system. The optical assembly further includes a sensor and a structure which supports the energy collection system such that the energy collection system directs the energy to the sensor. Other embodiments relate to a projectile that includes a propulsion system, a guidance system and an optical assembly as described above. Other embodiments relate to a method of directing a projectile that includes collecting energy using an energy collection system; directing the energy to a sensor; axially restraining the energy collection system using a heat shield; using a guidance system to determine the position of the projectile based on data received from the sensor; and directing the projectile toward the destination using a propulsion system that is commanded by a guidance system.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 25, 2014
    Assignee: Raytheon Company
    Inventor: Erik T. Dale