Automatic Guidance Patents (Class 244/3.15)
  • Publication number: 20140042265
    Abstract: According to the invention, the projectile (1) is provided with a strapdown homing device (2), said device having a lock-on phase during which the latter attempts to detect a target (C), and including an viewing direction (3), said viewing direction (3) being fixed with respect to the projectile (1) and extending along the longitudinal axis (4) of the latter, said projectile (1) further comprising control means (8) for automatically controlling said projectile (1) so as to cause the longitudinal axis (4) thereof, in flight and during the lock-on phase of the homing device (2), to trace a circle, the radius of which increases in time, until the target (C) is detected.
    Type: Application
    Filed: April 16, 2012
    Publication date: February 13, 2014
    Applicant: MDBA FRANCE
    Inventor: Francois De Picciotto
  • Patent number: 8637798
    Abstract: A method for determining a position of a device in a reference coordinate system. The method including: receiving, at the device, less than all of GPS signals necessary to determine the position of the device in the reference coordinate system; transmitting a signal from a? illuminating source defined in the reference coordinate system; receiving the signal at a cavity waveguide disposed on the device; and determining the position of the device in the reference coordinate system based on the GPS signals and the signal received in the cavity waveguide. The signal received in the cavity waveguide can also be used to confirm a position determined by the GPS signals.
    Type: Grant
    Filed: December 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Omnitek Partners LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8630751
    Abstract: An aircraft monitoring system comprising a computer system and a receiver for receiving tracking data from a tracking device associated with an aircraft, the monitoring system having a passive tracking mode in which the computer system is configured to receive tracking data and an active tracking mode in which the computer system is configured to determine a condition indicative of an aircraft incident based on the absence of received tracking data. The monitoring system is automatically triggered into the active tracking mode when a signal is received from the aircraft indicating the aircraft has taken-off.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 14, 2014
    Assignee: Spider Tracks Limited
    Inventor: Bruce Howard Bartley
  • Patent number: 8624171
    Abstract: A system and method for guiding a projectile is presented. A nozzle system includes a boom assembly body that can be attached to a rear end of a projectile. A gas tank in the boom assembly contains pressurized gas. Fins are attached to the boom assembly body to guide the projectile. A valve lets a pulse of gas out of the gas tank. A nozzle expels the pulse of gas to control an angle of attack and lift of the projectile to guide the projectile to a target.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 7, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Robert D. Frey, Jr.
  • Patent number: 8618455
    Abstract: An adjustable range munition has at least one gas vent that is selectively variable to affect the amount of force that is directed onto the projectile upon actuation of the propellant section, thereby to control the range of the munition.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 31, 2013
    Assignee: Safariland, LLC
    Inventor: John A. Hultman
  • Patent number: 8610041
    Abstract: A system for engaging hostile air or space threats with a defensive missile, where the defensive missile comprises an antenna for receiving global positioning system (GPS) signals. A global positioning system receiver is coupled to said antenna, for receiving global positioning system signals directly from global positioning system satellites and global positioning system signals reflected from the threat. A processing arrangement processes the direct and reflected global positioning system signals for determining the position and velocity of the threat. Vectoring controls are coupled to the processing arrangement, and are responsive to the location of the threat for directing the defensive missile toward the threat. In a particular embodiment, the antenna of the defensive missile is directionally controllable, and the defensive missile includes an antenna direction controller responsive to the processor for directing at least a beam of the antenna toward the threat.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 17, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Jonathan A. Boardman
  • Patent number: 8606435
    Abstract: A hybrid simulation method uses a simulator tool feeding kinematics commands to a movement simulator on which a moving body is mounted and to a target representative of an objective to be reached by the moving body, and on detection of an event representative of overshooting or changing a first designated objective for this moving body, the method includes a positioning stage associated with a second designated objective for the moving body, including comparing positions executed by the movement simulator in response to transition kinematics commands with a first predetermined setpoint position and activating a first marker if a position substantially the same as the first setpoint position is detected; comparing positions executed by the target in response to transition kinematics commands with a second predetermined setpoint position and activating a second marker if a position substantially the same as the second setpoint position is detected; when the first and second markers are activated, a step of eval
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: December 10, 2013
    Assignee: MBDA France
    Inventor: Laurent Bourzier
  • Patent number: 8598501
    Abstract: A sensor system uses ground emitters to illuminate a projectile in flight with a polarized RF beam. By monitoring the polarization modulation of RF signals received from antenna elements mounted on the projectile, both angular orientation and angular rate signals can be derived and used in the inertial solution in place of the gyroscope. Depending on the spacing and positional accuracies of the RF ground emitters, position information of the projectile may also be derived, which eliminates the need for accelerometers. When RF signals of ground emitter/s are blocked from the guided projectile, the sensor deploys another plurality of RF antennas mounted on the projectile nose to determine position and velocity vectors and orientation of incoming targets.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 3, 2013
    Assignee: Northrop Grumman Guidance an Electronics Co., Inc.
    Inventors: A. Douglas Meyer, Mostafa A. Karam, Charles A. Lee, Charles H. Volk
  • Patent number: 8586901
    Abstract: Embodiments of a guidance section that compensates for boresight error (BSE) caused by effects of a composite radome. The guidance section includes a BSE compensation element to add high-pass filtered noise to compensated BSE data. The guidance section also includes and a Kalman filter to generate line-of-sight rate (LOSR) BSE noise from the compensated BSE data and the added high-pass filtered noise. In some embodiments, a method for generating a revised BSE correction matrix is provided. The revised BSE correction matrix may compensate for BSE caused by effects in the composite radome and may correct for relative target velocity error.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Raytheon Company
    Inventor: Robert L. Kesselring
  • Patent number: 8587473
    Abstract: A method for onboard determination of a roll angle of a projectile. The method including: transmitting a polarized RF signal from a reference source, with a predetermined polarization plane; receiving the signal at a pair of polarized RF sensor cavities positioned symmetrical on the projectile with respect to a reference roll position on the projectile; measuring a difference between an output of the pair of polarized RF sensor cavities resulting from the received signal to determine zero output roll positions of the projectile; and comparing an output of the pair of polarized RF sensor cavities at each of the zero output positions to determine when the projectile is parallel to the predetermined polarization plane. The method can also include analyzing an output of at least one third sensor positioned on the projectile to determine whether the roll angle position of the projectile is up as compared to the horizon.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 19, 2013
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Carlos M. Pereira
  • Patent number: 8581161
    Abstract: A molded dichroic mirror and a seeker comprising a molded dichroic mirror are provided. The dichroic mirror may be molded from polysiloxane or lithia potash borosilicate and may be coated to reflect an infrared signal and configured to transmit a radio frequency signal between 33 GHz and 37 GHz.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: November 12, 2013
    Assignee: Raytheon Company
    Inventors: Byron B. Taylor, W. Howard Poisl
  • Patent number: 8581771
    Abstract: A system is disclosed to identify authorized EO devices and unauthorized EO devices within a scene. The system hampers the operation of the unauthorized EO devices detected within the scene.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Timothy Bradley
  • Patent number: 8575527
    Abstract: A vehicle including electro-optic (EO) imaging has a vehicle body having an outer surface including a front portion and a side portion, wherein the side portion includes a plurality of portholes. A propulsion source is within the vehicle body for moving the vehicle. A fixed EO imaging system having a field-of-regard (FOR) includes a plurality of fixed EO imaging sub-systems arrayed within the vehicle body. The fixed EO imaging sub-systems each have a different field-of-view (FOV) for providing a portion of the FOR and include a camera affixed within the vehicle body and an optical window secured to one of the portholes for transmitting electromagnetic radiation received from one of the portions of the FOR to the camera, wherein the cameras each generate image data representing one of the portions of the FOR therefrom. A processor is coupled to receive the image data from the plurality of fixed EO imaging sub-systems for combining the image data to provide composite image data spanning the FOR.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: November 5, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: James A. Fry
  • Patent number: 8575526
    Abstract: An interceptor system and method for dispensing of multiple kill vehicles, including, a carrier vehicle having a central carrier vehicle axis and axial propulsion integrated into the carrier vehicle, a payload adapter associated with the carrier vehicle for connecting a payload to a boost vehicle, the payload adapter being located aft of the carrier vehicle, and multiple kill vehicles mounted to the carrier vehicle radially around a circumference of the carrier vehicle.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: November 5, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Randy D. Colvin, Adam M. Wuerl, Michael S. Mak
  • Patent number: 8569669
    Abstract: A SAR image recorded by a reconnaissance system is transferred as a reference edge image together with the data of the trajectory as a reference. The signal of the infrared seeker head of the missile is converted into a virtual SAR edge image and compared to the SAR reference image to calculate the precise position of the missile.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 29, 2013
    Assignee: LFK-Lenkflugkoerpersysteme GmbH
    Inventors: Michael Holicki, Nikolaus Schweyer, Juergen Zoz
  • Patent number: 8563908
    Abstract: Sensor(s) may be used to detect threat data. A processing system and/or a method may be used to fuse the detected threat data over time. Threat data may comprise information on a munition, missile, rocket, or nuclear/biological/chemical (NBC) projectile or delivery system. Detected threat data may be processed to create a target track-lethality list comprising the locations of any target(s) and a ranking of their lethality in comparison to decoys or chaff. The target track-lethality list may be used to create a target engagement-track list that matches available threat elimination resources (e.g. interceptors) to targets with a weapon-to-target assignment module.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 22, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Carissa E. Lew, Moses W. Chan, Paul-Andre Monney, Paul M. Romberg, Leo J. Laux
  • Patent number: 8563909
    Abstract: An apparatus and method improves the fault tolerance of a rocket or missile guidance system which includes a resonant sensor. When improper initialization is detected, the resonant sensor is reinitialized, repeatedly if necessary, until normal operation is achieved. Improper initialization is detected by comparing data from the guidance system with pre-specified physical limits to roll, pitch, yaw, and/or other features of the flight scenario. Embodiments can also detect a fault condition due to an error signal from a “Built-in-Test” (BIT) module. The initialization sequence initiated by the invention can be identical to the power-on sequence, or it can be a separate, reinitiating sequence. Subsequent resets are initiated as needed, for example until the burn of the rocket fuel and the associated vibrations have ceased and the resonant sensor has been successfully initialized.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 22, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Derek P. Janiak, James H. Steenson, Jr., David Schorr, Stephen W. Bartlett
  • Patent number: 8563910
    Abstract: A projectile's payload is oriented (independently or by orientation of the projectile itself) toward a target just prior to firing (e.g., detonation of the payload), e.g., for munitions providing an increased kill and casualty area and a fire “in defilade” (left, right, backwards or at any angle) capability.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 22, 2013
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: John M. Elwell, Jr.
  • Patent number: 8558152
    Abstract: A semi-active laser (SAL) sensing system is thus provided that uses a lens concentrator system to pass received reflected laser light from an aperture to a detector. The lens concentrator system facilitates the use of SAL systems with different laser designator wavelengths to improve the performance of the SAL system. In one embodiment, the lens concentrator system is formed from polymer having substantial optical clarity for radiation having wavelengths between approximately 1.5 and approximately 1.65 ?m. For example, the lens concentrator system may be formed from amorphous fluoropolymer. The lens concentrator system formed from amorphous fluoropolymer facilitates the use SAL designators using different wavelengths than those in past SAL sensing systems.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Raytheon Company
    Inventor: Ronald L. Roncone
  • Patent number: 8558151
    Abstract: A method for correcting a trajectory of a projectile is provided, in that a laser beam is guide or rotated around a center of the instantaneous target course of a projectile in such a way that the projectile itself detects a divergence thereof and subsequently carries our a selfcorrection. A first laser beam is emitted over a certain region around the target course of the projectile that can at about the same time initiate a start of a timing process. A further rotating laser beam having a fixed rotational frequency ? can be simultaneously positioned around the region. Via the second laser beam, the projectile recognizes a divergence thereof from the target course and initiates a correction based on the determined divergence, whereby a magnitude thereof is then used to effect the timed initiation of the correction. Thus, delays in the release are implemented in the projectile.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: October 15, 2013
    Assignee: Rheinmetall Air Defence AG
    Inventor: Jens Seidensticker
  • Patent number: 8558153
    Abstract: A guided projectile may include a projectile body, an inertial measurement unit disposed within the projectile body, one or more control surfaces extendable from the projectile body, and a controller which controls the one or more control surfaces in response, at least in part, to measurement data received from the inertial measurement unit. The inertial measurement unit may include sensors to measure motion parameters relative to first, second, and third mutually orthogonal axes, wherein each of the first, second and third mutually orthogonal axes is oblique to a longitudinal axis of the projectile body.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 15, 2013
    Assignee: Raytheon Company
    Inventor: Chris E. Geswender
  • Patent number: 8552349
    Abstract: Apparatus and methods provide a guidance kit that can be attached to a projectile, such as screwed into a fuze well of an artillery round or a mortar round. A portion of the guidance kit is configured to spin constantly during flight. In the context of an artillery round that is shot from a rifled barrel, the direction of the spin torque is counter to the direction of the spin induced by the rifled barrel. Control surfaces are present in the portion of the guidance kit that spins constantly during flight. While the portion spins, the control surfaces are actuated to steer the projectile towards an intended target via, for example, GPS.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 8, 2013
    Assignee: Interstate Electronics Corporation
    Inventor: Steven B. Alexander
  • Patent number: 8552350
    Abstract: The 6-axis position and attitude of an imaging vehicle's detector assembly is measured by mounting the detector assembly on a compliant isolator and separating the main 6-axis IMU on the vehicle from a secondary IMU comprising at least inertial rate sensors for pitch and yaw on the detector assembly. The compliant isolator couples low-frequency rigid body motion of the vehicle below a resonant frequency to the isolated detector assembly while isolating the detector assembly from high-frequency attitude noise above the resonant frequency. A computer processes measurements of the 6-axis rigid body motion and the angular rate of change in yaw and pitch of the isolated detector assembly to mitigate the drift and noise error effects of the secondary inertial rate sensors and estimate the 6-axis position and attitude of the detector assembly.
    Type: Grant
    Filed: January 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Raytheon Company
    Inventors: Michael S. Bielas, Edward C. Schlatter, Andrew B. Facciano, Philip C. Theriault, James A. Ebel, Robert J. LaPorte
  • Patent number: 8525088
    Abstract: A passive guidance system including a viewpoint capture system (VCS) including a first processor in communication with first memory and a first SWIR imager for creating a viewpoint image database having a plurality of images, at least one of the images having a target point. A weapon guidance module is in communication with the VCS and coupled to a weapon. The weapon guidance module includes a second processor in communication with second memory and a second SWIR imager for storing the viewpoint image database and correlating in-flight images from the second SWIR imager to provide guidance commands directing the weapon to the target point.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: September 3, 2013
    Assignee: Rosemont Aerospace, Inc.
    Inventors: Todd A. Ell, Robert D. Rutkiewicz
  • Patent number: 8519312
    Abstract: A missile includes a separable shroud that covers a nose portion of the fuselage of the missile. The shroud covers and protects a seeker window and a seeker at the nose of the missile. The shroud is configured to remain coupled to the missile during and immediately after launch of the missile, and to separate during flight under the action of aerodynamic forces. Toward that end parts of the shroud are initially coupled together by a retainer, which allows the parts to separate during flight. The retainer may include one or more tension bands that break at a certain tension, and/or one or more weakened parts of the shroud, which break during flight. Parts of the shroud may include inward protrusions that make contact with an ogive portion of the nose of the fuselage.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Raytheon Company
    Inventor: Paul A. Merems
  • Patent number: 8519313
    Abstract: A projectile, such as a missile, rolls during at least a portion of its flight, while retaining its roll reference to enable navigation during the rolling period of flight. The roll reference may be retained by using a sensor, such as magnetometer, to periodically check and correct the roll reference. Alternatively or in addition the missile may alternate roll directions, for example varying roll rate in a substantially sinusoidal function. By rolling the missile inaccuracies in an inertial measurement unit (IMU) of the missile may be ameliorated by being to a large extent canceled out by the changes in orientation of the missile as the missile rolls. This enables use of IMUs with lower accuracy than would otherwise be required to obtain accurate flight. Thus accurate flight may be accomplished with less costly IMUs, without sacrificing the ability to navigate.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 27, 2013
    Assignee: Raytheon Company
    Inventors: Chris E. Geswender, Paul Vesty, Charles Scarborough
  • Patent number: 8513580
    Abstract: A method is provided for guiding a mortar projectile fired longitudinally from a launcher along a ballistic trajectory. The method includes providing a first inertial navigation system (INS), a laser emitter and optical sensor on the launcher, providing a second INS and a laser reflector on the projectile, and presetting the second INS to an initial reference position prior to firing the projectile. Subsequent to launch, the method further includes emitting a longitudinally directed laser beam from the emitter to the reflector; receiving the reflected signal to the optical sensor; establishing a position and velocity of the projectile based on the reflected signal; transmitting a correction signal to the projectile from the launcher; resetting the second INS at a position prior to reaching maximum altitude; and guiding the projectile along the trajectory by adjusting control fin orientation.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 20, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Craig A. Phillips
  • Patent number: 8502126
    Abstract: One example embodiment relates to a navigation system for a guided projectile. The navigation system includes a detector within the guided projectile. The detector determines an actual amount of time it takes after launch for the guided projectile to accelerate through mach one. The navigation system further includes a guidance system within the object. The guidance system includes a projected flight plan for the guided projectile. The projected flight plan includes an estimated amount of time after launch it will take the object to accelerate through the speed of sound. The guidance system compares the actual amount of time and the estimated amount of time and adjusts the flight path of the guided projectile based on data received from the detector.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 6, 2013
    Assignee: Raytheon Company
    Inventor: Anthony K. Tyree
  • Patent number: 8502128
    Abstract: A dual-mode sensor uses the active guidance radiation as a “guide star” to generate a wavefront error estimate for the primary optical element in-situ without interfering with the generation of either the active guidance or passive imaging guidance signals. An array of optical focusing elements performs the normal function of spatially encoding an angle of incidence of the active guidance radiation at an entrance pupil onto an active imaging detector. The array also performs an additional function of spatially encoding wavefront tilt deviations emanating from sub-pupils of an exit pupil onto the active imaging detector. A processor processes the electrical signals from the imaging detector in accordance with the respective spatial encodings to generate an active guidance signal and the wavefront error estimate for the primary optical element.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: August 6, 2013
    Assignee: Raytheon Company
    Inventors: Casey T. Streuber, Kent P. Pflibsen, Michael P. Easton
  • Patent number: 8502127
    Abstract: An optical guidance system for guiding a projectile is disclosed. The optical guidance system includes a laser, a first and second cylindrical holographic lenses and a variable zoom lens. The laser generates a laser beam, and the first and second cylindrical holographic lenses transform the laser beam into a x-direction and y-direction scan patterns, respectively. The variable zoom lens projects the x-direction and y-direction scan patterns in the form of multiple scan fields, each within a scan corridor, in order to guide a projectile along a flight path towards a target.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: August 6, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Allister McNeish
  • Patent number: 8497456
    Abstract: Embodiments of a guided munition are provided, as are embodiments of a method for equipping a guided munition with an interlocking dome cover. In one embodiment, the guided munition includes a munition body, a seeker dome coupled to the munition body, and an interlocking dome cover. The interlocking dome cover includes a plurality of detachable dome cover sections collectively enclosing the seeker dome and a dome cover deployment device coupled to the plurality of detachable dome cover sections. When actuated, the dome cover deployment device initiates separation of the plurality of detachable dome cover sections to expose the seeker dome.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 30, 2013
    Assignee: Raytheon Company
    Inventor: Rudy A. Eisentraut
  • Patent number: 8497457
    Abstract: A pointing device is provided for directing electromagnetic radiation along a line of sight within a flight vehicle. The pointing device includes a beam deviation structure; a rotation assembly configured to support the beam deviation structure such that the beam deviation structure is pivotable about the rotation axis; and a nod gimbal configured to support the rotation assembly and the beam deviation structure such that the rotation assembly and the beam deviation structure are pivotable about a nod axis.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 30, 2013
    Assignee: Raytheon Company
    Inventors: Daniel W. Brunton, Michael P. Schaub, Brian S. Scott
  • Patent number: 8493261
    Abstract: A countermeasure device for directing a mobile tracking device away from an asset is provided. The countermeasure device includes a continuous wave laser source whose output is directed at a seeker head of the mobile tracking device. The countermeasure device causes the generation of localized sources within the mobile tracking device and confuses the mobile tracking device as to the true location of the asset.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: July 23, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Timothy Bradley
  • Patent number: 8492692
    Abstract: A sonar buoy includes a fuselage having a tube-like shape, one or more wings coupled to the fuselage, an engine coupled to the fuselage and operable to propel the sonar buoy through flight, and a guidance computer operable to direct the sonar buoy to a predetermined location. The sonar buoy further includes a sonar detachably coupled to the fuselage and forming at least a part of the fuselage, and a rocket motor detachably coupled to the fuselage. The one or more wings are operable to be folded into a position to allow the sonar buoy to be disposed within a launch tube coupled to a vehicle and to automatically deploy to an appropriate position for flight after the sonar buoy is launched from the launch tube. The rocket motor propels the sonar buoy from the launch tube and detaches from the fuselage after launch.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: July 23, 2013
    Assignee: Elbit Systems of America, LLC
    Inventor: Jeremy F. Fisher
  • Patent number: 8487226
    Abstract: Guided airborne weapons fired in a salvo against multiple targets are deconflicted by performing a scene correlation of multiple cued targets to TLOs acquired by the seeker's imaging sensor to track a target package. If the weapon is provided with a multimode seeker, target cues for a common designated target and a common SAL code are provided to each weapon. Each weapon uses its SAL sensor to detect and process a SAL return to verify the common SAL code and augment their scene correlations by fixing the TLO track file of the common designated target to the cued track file associated with the designated target. At terminal, each weapon commits to a particular target by referencing its assigned target to the tracked target package. Correlation to multiple targets in the target package makes the acquisition and tracking process more robust and reduces targeting ambiguity. Furthermore, a single SAL designation can improve the tracking of all the weapons to their respective targets.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 16, 2013
    Assignee: Raytheon Company
    Inventor: Brian L. Biswell
  • Patent number: 8471186
    Abstract: In a CLOS missile guidance system, target and missile tracking data e.g. video image data are acquired on a UAV and transmitted to the missile where they are processed to provide guidance control data to the missile. Alternatively the video image data may be transmitted to a command station where the guidance control data is generated and transmitted to the missile, preferably via the UAV.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: June 25, 2013
    Assignee: MBDA UK Limited
    Inventor: Graham Patrick Wallis
  • Publication number: 20130153707
    Abstract: A method of guiding a pursuer to a target is provided, and is of particular use when the possible target location is described by non-Gaussian statistics. Importantly, the method takes into account the fact that different potential target tracks in the future have significantly different times to go. That can give rise to emergent behaviour, in which the guidance method covers several possible outcomes at the same time in an optimal way. An example embodiment of the method combines Particle Filter ideas with Swarm Optimization techniques to form a method for generating guidance commands for systems with non-Gaussian statistics. That example method is then applied to a dynamic mission planning example, to guide an airborne pursuer to aground target travelling on a network of roads where the pursuer has no-go areas, to avoid collateral damage.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 20, 2013
    Applicant: MBDA UK LIMITED
    Inventor: Martin Simon Gate
  • Patent number: 8463461
    Abstract: According to an embodiment herein, a method of predicting a trajectory of an aerospace vehicle comprises accessing an observation of a state of the vehicle from sensor data; and using a computing system to predict different possible future positions and attitudes of the vehicle, including using the sensor data and associated latencies to determine a set of vehicle state transitions. Each state transition in the set is computed as a function of estimated latency. The method further comprises using the computing system to update a prior distribution of the vehicle state with the state transitions. Consequently, the predicted trajectory is compensated for latency.
    Type: Grant
    Filed: September 13, 2009
    Date of Patent: June 11, 2013
    Assignee: The Boeing Company
    Inventors: Regina I. Estkowski, Robert C. Wilson, Jr., Ted D. Whitley
  • Patent number: 8461501
    Abstract: Embodiments of a guided munition are provided, as are embodiments of a method for equipping a guided munition with a self-deploying dome cover. In one embodiment, the guided munition includes a munition body, a seeker dome coupled to the munition body, and a self-deploying dome cover disposed over the seeker dome. The self-deploying dome cover is configured to deploy and expose the seeker dome during munition flight in response to aerodynamic forces acting on the self-deploying dome cover.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 11, 2013
    Assignee: Raytheon Company
    Inventors: Darin S. Williams, Nicholas B. Saccketti, David B. Hatfield, Alexandra L. Blake, Richard J. Wright, Lawrence A. Westhoven, Jr.
  • Patent number: 8457872
    Abstract: The invention relates to a method for managing the flight of an aircraft flying along a trajectory and being subject to an absolute time constraint (on a downstream point) or relative time constraint (spacing with respect to a downstream aircraft), the said aircraft comprising a flight management system calculating a temporal discrepancy to the said time constraint, wherein the said method includes the following steps: the calculation of a distance on the basis of the temporal discrepancy, the modification of the trajectory: if the temporal discrepancy to the time constraint corresponds to an advance, the lengthening of the trajectory by the distance; if the temporal discrepancy to the time constraint corresponds to a delay, the shortening of the trajectory by the distance.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 4, 2013
    Assignee: Thales
    Inventor: Guy Deker
  • Patent number: 8450668
    Abstract: An optically guided munition and control system has a replacement fuse assembly mounted on the front of a munition body or shell casing. An optical seeker subsystem detects an illuminated target and supplies signals to a processor. The processor develops steering commands sent to a flight control subsystem having a plurality of guidance canards which are actuated by drive motors through gear assemblies. The roll of the munition is established and left/right and up/down steering commands are sent to the canard drive motors based upon the optical seeker subsystem detection of the target illuminator. Range adjustment is based upon bore sight lockdown angle and cross range control is based upon left/right centering error. A code is contained in the optical radiation received from the illuminated target which must be validated by a preset code in the system processor to arm the munition.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: May 28, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Maynard, Mark A. Carlson, Paul D. Zemany
  • Publication number: 20130126667
    Abstract: The invention relates to a method of guiding a salvo of guided projectiles to a target. The method comprises the steps of generating a beam defining a common reference coordinate system, determining the position of each projectile relative to the beam, and providing to each projectile: position information of other projectiles. Further, the method includes the step of associating dispersion parameters to the salvo of guided projectiles. In addition, the method comprises the step of determining numerical values of the dispersion parameters based on accuracy uncertainty. Also, the method includes the step of controlling the projectiles to an optimal dispersion by using a swarming technique based on the position information of the projectiles and on the numerical values of the dispersion parameters.
    Type: Application
    Filed: May 27, 2011
    Publication date: May 23, 2013
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Martin Weiss, Marcel Gregorius Anthonius Ruizenaar
  • Patent number: 8445822
    Abstract: A one-piece extended dome having a spanning angle greater than 180 degrees. The dome is integrally formed of a Nano/Nano class Nanocomposite Optical Ceramic (NNOC) material. The extended dome comprises seamless first and second non-complementary geometric shapes, such as a first spherical geometry and a second conical or ogive geometry. The Nano/Nano class NNOC material comprises two or more different chemical phases (nanograins) dispersed in one another, each type having a sub-micron grain dimension in at least the direction of light transmission. The material is a true NNOC material in that all of the constituent elements have sub-micron grain dimensions, there is no host matrix.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 21, 2013
    Assignee: Raytheon Company
    Inventor: Wayne L. Sunne
  • Patent number: 8445823
    Abstract: Embodiments of a guided munition system are provided, as are embodiments of a combustive dome cover and methods for equipping a guided munition with a combustive dome cover. In one embodiment, the guided munition system includes a guided munition, which has a munition body and a seeker dome coupled thereto, and a combustive dome cover disposed over the seeker dome. The combustive dome cover is configured to uncover the seeker dome at a predetermined time of deployment and to combust when so deployed to minimize the production of debris.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 21, 2013
    Assignee: Raytheon Company
    Inventors: Darin S. Williams, Richard J. Wright
  • Patent number: 8436283
    Abstract: Higher Order Sliding Mode (HOSM) control techniques are applied to the Guidance Control (G&C) of interceptor missile in which velocity may be steered by combination of main thrust, aerodynamic lift and lateral on-off divert thrusters, and attitude may be steered by continuous or on-off actuators. Methods include the pointing of the seeker, its associated estimation processes, a guidance law that uses concurrent divert mechanisms, and an attitude autopilot. The insensitivity of the controller to matched disturbances allows the concurrent usage of the divert mechanisms without adverse effect on the accuracy. The controller also allows the de-coupling of the control of roll, pitch and yaw channels, and usage quaternions to represent body attitude and it provides control perfect robustness. While it conceivable to design separately the components of the G&C method, it is widely accepted that designing them in an integrated fashion usually produces a better result.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Davidson Technologies Inc.
    Inventors: Christian Tournes, Yuri Shtessel
  • Patent number: 8415596
    Abstract: A method for determining a location of a flying target included identifying and measuring the target by at least two seeker systems disposed at a distance from one another. The position of the target relative to at least one of the two seeker systems is determined from measurement data derived therefrom. The position of the target is measured inconspicuously and without active radiation, in that the seeker systems are data-networked, passive target tracking systems for missiles, which autonomously track the target and align the missile with the target. The measurement data determined by the data-networked seeker systems are combined, and the location of the target is determined from the combined data.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 9, 2013
    Assignee: Diehl BGT Defence GmbH & Co. KG
    Inventors: Raimund Dold, Thomas Kuhn, Wilhelm Hinding
  • Patent number: 8410413
    Abstract: The present invention relates to a method and a shell (1) for achieving variable firing range and effect when firing from a launcher, which shell (1) contains a firing charge (10), a rocket motor charge (6) with gas outlet (8), a rocket motor nozzle (9) and an active part (5). According to the invention, this is achieved by virtue of the fact that the shell (1) also contains a release mechanism (15) for releasing the rocket motor nozzle (9) from the rocket motor charge (6) after a time delay determined with regard to firing range and effect, and that the rocket motor charge (6) comprises a propellant which is detonable.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 2, 2013
    Assignee: BAE Systems Bofors AB
    Inventor: Nils Johansson
  • Patent number: 8405011
    Abstract: A target tracking device incorporating a Position Sensitive Detector (PSD) 1 is described. A target is illuminated by a laser of a suitable wavelength. The target reflects the laser radiation and the reflected radiation is incident on a flying vehicle carrying a target tracking device. The PSD in the device outputs a signal representative of the position of the incident laser spot. The output signal is input into control electronics, the control electronics incorporating a resistive transimpedance amplifier. A higher than usual bias voltage is applied to the PSD yielding improved pulse response of the target tracking device. Therefore, the tracking device is particularly suited for use with a target marking laser having a short pulse duration.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: March 26, 2013
    Assignee: Selex Galileo Ltd.
    Inventor: Michael Charles Sharpe
  • Patent number: 8399817
    Abstract: A micro designator dart engages a target to allow for designation and tracking of the target by transmitting a radio-frequency identification code. The housing of the micro designator dart is configured to enclose its components and deform upon impact with a target to allow a target-engaging member to physically attach the micro designator dart to the target. Also upon impact with the target, an impact-sensitive triggering mechanism in the micro designator dart activates a power source, causing a transmitter to send a predetermined coded infrared signal to the seeker unit of a precision guided munitions system. The micro designator dart may also include a self-destruct device.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 19, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alfredo N. Rayms-Keller, Francisco Santiago, Victor H. Gehman, Jr., Karen J. Long, Kevin A. Boulais, Peter L. Wick, Alexander Strugatsky
  • Patent number: 8378277
    Abstract: An optical impact system controls munitions termination through sensing proximity to a target and preventing effects of countermeasures on false munitions termination. Embodiments can be implemented on in a variety of munitions such as small and mid caliber that can be applicable in non-lethal weapons and in weapons of high lethality with airburst capability for example and in guided air-to-ground and cruise missiles. Embodiments can improve accuracy, reliability and lethality of munitions depending on its designation without modification in a weapon itself and make the weapon resistant to optical countermeasures.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Physical Optics Corporation
    Inventors: Sergey Sandomirsky, Vladimir Esterkin, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Alexander Naumov, Naibing Ma, Sookwang Ro, Paul I. Shnitser