Particular Detection Structure (e.g., Mos, Pin) Patents (Class 250/370.14)
  • Patent number: 8912499
    Abstract: According to one embodiment, a radioactive ray detecting apparatus includes: a scintillator that produces visible light from a radioactive ray; a light detecting portion including a light receiving element that generates an electrical signal on a basis of intensity of visible light; a first board; a first electrical connection unit that electrically connects the light detecting portion and a first surface of the first board to each other; a second board disposed to face the first board; a second electrical connection that electrically connects a first surface of the second board and a second surface of the first board being opposite from the first surface of the first board to each other; and a data acquisition device that processes an electrical signal transmitted from the light detecting portion through the first electrical connection unit, the first board, the second electrical connection unit, and the second board.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 16, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Satoru Asagiri, Takayuki Yamazaki, Michito Nakayama
  • Patent number: 8890081
    Abstract: A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: November 18, 2014
    Assignee: Los Alamos National Security, LLC.
    Inventors: Scott A. Watson, Howard A. Bender, III
  • Patent number: 8884241
    Abstract: A capacitive sensor device for measuring radiation. The device includes two sensor regions and top plate structure. The sensor regions are of a material that generates electron-hole pairs when radiation strikes the material. A separation region is located between the two sensor regions. The capacitance between a sensor region and top plate is dependent upon radiation striking the sensor region. A blocking structure selectively and differentially blocks radiation having a parameter value in a range from the sensor region so as to differentially impact electron-hole pair generation of one sensor region with respect to electron-hole pair generation of the other sensor region at selected angles of incidence of the radiation.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Mehul D. Shroff
  • Patent number: 8884240
    Abstract: An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2×2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: November 11, 2014
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Kanai S. Shah, James Christian, Christopher Stapels, Purushottam Dokhale, Mickel McClish
  • Patent number: 8872120
    Abstract: An imaging device capable of obtaining image data with a small amount of X-ray irradiation is provided. The imaging device obtains an image using X-rays and includes a scintillator and a plurality of pixel circuits arranged in a matrix and overlapping with the scintillator. The use of a transistor with an extremely small off-state current in the pixel circuits enables leakage of electrical charges from a charge accumulation portion to be reduced as much as possible, and an accumulation operation to be performed substantially at the same time in all of the pixel circuits. The accumulation operation is synchronized with X-ray irradiation, so that the amount of X-ray irradiation can be reduced.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki Kurokawa, Takayuki Ikeda
  • Patent number: 8866095
    Abstract: Provided is a radiographic imaging apparatus capable of obtaining more suitable radiological images by reducing the influence of noise generated at a current detecting section which detects current carried by applying radiation.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 21, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Kumiko Oguma
  • Patent number: 8859979
    Abstract: A matrix microelectronic device includes elementary cells laid out according to a matrix. Each cell has a current source formed by a current source transistor. A source electrode of the transistor is connected to a source biasing conductor line of a plurality of source biasing conductor lines. A gate electrode of the transistor is connected to a gate biasing conductor line of a plurality of gate biasing conductor lines. A biasing device biases the gate biasing conductor lines and includes at least one first connection line that is connected to at least several of the gate biasing conductor lines. The biasing device includes a voltage generator or a current generator that causes a variation of potentials along the first connection line, thereby compensating a corresponding variation of potentials along the source biasing conductor lines. The device can include an addressing circuit for addressing horizontal lines or rows of the matrix.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 14, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Arnaud Peizerat, Marc Arques, Jean-Luc Martin
  • Publication number: 20140264049
    Abstract: A small anode germanium well (SAGe well) radiation detector system/method providing for low capacitance, short signal leads, small area bottom-oriented signal contacts, enhanced performance independent of well diameter, and ability to determine radiation directionality is disclosed. The system incorporates a P-type bulk germanium volume (PGEV) having an internal well cavity void (IWCV). The external PGEV and IWCV surfaces incorporate an N+ electrode except for the PGEV external base region (EBR) in which a P+ contact electrode is fabricated within an isolation region. The PGEV structure is further encapsulated to permit operation at cryogenic temperatures. Electrical connection to the SAGe well is accomplished by bonding or mechanical contacting to the P+ contact electrode and the N+ electrode. The EBR of the PGEV may incorporate an integrated preamplifier inside the vacuum housing to minimize the noise and gain change due to ambient temperature variation.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Canberra Industries, Inc.
  • Patent number: 8822936
    Abstract: Detector for detection of particle radiation, particularly particle radiation having an energy in the range of 150 eV to 300 keV, comprising at least one detector element, said detector element comprising a semiconductor detector material, at least a set of line-shaped electrodes conductively connected to at least one surface of said semiconductor detector material, each set comprising a plurality of line-shaped electrodes extending in parallel, and signal processor communicating with said line-shaped electrodes, wherein, in each set, said line-shaped electrodes are distributed with a strip pitch of less than 3 ?m, and that the thickness of said semiconductor detector material is of less than two times the strip pitch of said line-shaped electrodes.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: September 2, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Ulrik Lund Olsen, Henning Friis Poulsen, Soren Schmidt
  • Patent number: 8816294
    Abstract: An x-ray detection photo diode is disclosed. The disclosed x-ray detection photo diode includes: a substrate; a first electrode formed on the substrate; a photoconductor layer formed on the first electrode in a narrower area than that of the first electrode; and a second electrode formed on the photoconductor layer. In this manner, the x-ray detection photo diode enables the electrode structure to be changed. As such, a leakage current generated in edges of the x-ray detection photo diode can be minimized.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: August 26, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Jong Moon Lee, Young Sik Kim, Ju Han Kim, Jae Hyung Jo
  • Publication number: 20140217297
    Abstract: A radiation detector system is disclosed that effectively solves the electron trapping problem by optimizing shielding of the individual virtual Frisch-grid detectors in an array configuration.
    Type: Application
    Filed: October 29, 2013
    Publication date: August 7, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Aleksey Bolotnikov, Ralph B. James, Gianluigi De Geronimo, Emerson Vernon
  • Patent number: 8798229
    Abstract: Detector modules and methods of manufacturing are provided. One detector module includes a detector having a silicon wafer structure formed from a first layer having a first resistivity and a second layer having a second resistivity, wherein the first resistivity is greater than the second resistivity. The detector further includes a photosensor device provided with the first layer on a first side of the silicon wafer and one or more readout electronics provided with the second layer on a second side of the silicon wafer, with the first side being a different side than the second side.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 5, 2014
    Assignee: General Electric Company
    Inventors: Wen Li, Naresh Kesavan Rao, Abdelaziz Ikhlef, Jeffrey Kautzer
  • Publication number: 20140209809
    Abstract: The present disclosure provides a radiation detector, comprising: a semiconductor crystal for detecting radiation, the semiconductor crystal comprising a top surface, a bottom surface, and at least one side surface; at least one anode arranged on at least one of the top surface, the bottom surface, and the at least one side surface; and at least one cathode arranged on at least another one of the top surface, the bottom surface, and the at least one side surface, wherein the at least one anode each has a stripe shape, the at least one cathode each has a planar or curved shape, and the at least one cathode and the at least one anode extend in parallel with respect to each other to a length substantially equal to that of the anode. Such an electrode structure can improve energy resolution and detection efficiency of the radiation detector effectively.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 31, 2014
    Inventors: Lan Zhang, Yulan Li, Yuangjing Li, Yinong Liu, Jianqiang Fu, Hao Jiang, Wei Zhang, Yanqing Liu, Jun Liu
  • Patent number: 8792618
    Abstract: Embodiments of radiographic imaging systems; digital radiography detectors and methods for using the same can include radiographic imaging pixel unit cells that can include a plurality of N pixel elements that each include a photoelectric thin-film conversion element connected in-series to a conversion thin-film switching element, a conductor connected to the plurality of N pixel elements and an output switching element connected between the conductor and an imaging array output. Scan lines or row lines can extend in a first direction coupled to more than one pixel unit cell and data lines or column lines can extend in a second direction coupled to more than one pixel unit cell.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: July 29, 2014
    Assignee: Carestream Health, Inc.
    Inventors: Ravi K. Mruthyunjaya, Timothy J. Tredwell, Jeff Hsin Chang
  • Patent number: 8785867
    Abstract: The present invention discloses a radiation detector, an imaging device and an electrode structure thereof, and a method for acquiring an image. The radiation detector comprises: a radiation sensitive film, a top electrode on the radiation sensitive film, and an array of pixel units electrically coupled to the radiation sensitive film. Each pixel unit comprises: a pixel electrode (which is configured to collect a charge signal in a pixel area of the radiation sensitive film), a storage capacitor, a reset transistor, a buffer transistor, a column strobe transistor, and a row strobe transistor. The column strobe transistor and the row strobe transistor are connected in series between the buffer transistor and the signal line, and transfer the voltage signal of the corresponding pixel unit in response to a column strobe signal and a row strobe signal. The radiation detector may be used for, for example, X-ray digital imaging.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 22, 2014
    Assignee: Nuctech Company Limited
    Inventors: Lan Zhang, Zhiqiang Chen, Ziran Zhao, Wanlong Wu, Yuanjing Li, Zhi Deng, Xiaocui Zheng
  • Patent number: 8785873
    Abstract: A detection apparatus comprising a substrate; a switching element arranged over the substrate and including a plurality of electrodes; a conductive line arranged over the substrate and electrically connected to a first electrode of the plurality of electrodes of the switching element; and a conversion element including a semiconductor layer arranged over the switching element and the conductive line and arranged between two electrodes, one electrode of the two electrodes being electrically connected to a second electrode of the plurality of electrodes of the switching element, is provided. The one electrode of the conversion element is arranged over the switching element and the conductive line through a space formed between the one electrode and the first electrode of the switching element or between the one electrode and the conductive line.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 22, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Chiori Mochizuki, Minoru Watanabe, Takamasa Ishii, Jun Kawanabe, Kentaro Fujiyoshi
  • Patent number: 8785862
    Abstract: An X-ray detector having an active array comprising pixel elements for detecting X-ray radiation is provided to enable high-quality X-ray imaging, wherein each pixel element has a scintillator layer for converting X-ray radiation into light and a photodiode produced by means of CMOS technology for converting light into a measurable electrical signal, and wherein the pixel elements are arranged on a silicon substrate and a BOX (buried oxide) layer is sandwiched between the silicon substrate and the photodiode.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: July 22, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Stark
  • Patent number: 8766202
    Abstract: An X-ray detector includes a photoconductor, a first diffusion barrier film on a first surface of the photoconductor, at least one pixel electrode on the first diffusion barrier film, a signal transmitting unit to process an electrical signal output from the at least one pixel electrode, and a common electrode on a second surface of the photoconductor opposite to the first surface of the photoconductor.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-il Kim, Jae-chul Park, Chang-jung Kim, Sang-wook Kim
  • Patent number: 8759785
    Abstract: A stacked-type detection apparatus including a plurality of pixels arranged at small intervals is configured to have low capacitance associated with signal lines and/or driving lines. With this novel configuration, small time constant and high-speed driving capability can be achieved in the signal lines and/or driving lines. The plurality of pixels in the detection apparatus are arranged in a row direction and a column direction on an insulating substrate. Each pixel includes a conversion element and a switch element, the conversion element is disposed above the switch element. A driving line disposed below the conversion elements is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. The signal line includes a conductive layer embedded in an insulating member, the insulating member is disposed in a layer lower than an uppermost surface portion of the driving line.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takamasa Ishii, Chiori Mochizuki, Minoru Watanabe, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 8755486
    Abstract: A front-lit detector includes a collimator, an X-ray to visible light converter configured to convert X-rays to visible light after the X-rays pass through the collimator to irradiate the X-ray to visible light converter, a visible light to analog signal converter configured to cover the visible light into analog signals, a substrate on which the visible light to analog signal converter is placed, and an A/D converter configured to convert the analog signals into digital signals.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 17, 2014
    Assignee: GE Medical Systems Global Technology, LLC
    Inventors: Zhiqiang Liu, Qinglei Li, Yu Zhou
  • Patent number: 8754378
    Abstract: A photon-counting Geiger-mode avalanche photodiode intensity imaging array includes an array of pixels (200), each having an avalanche photodiode (250). A pixel senses an avalanche event and stores, in response to the sensed avalanche event, a single bit digital value therein. An array of accumulators (320) are provided such that each accumulator is associated with a pixel. A row decoder circuit (310) addresses a pixel row within the array of pixels. A bit sensing circuit (300) converts a precharged capacitance into a digital value during read operations.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: June 17, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Gordian Prescher, Thomas Frach
  • Publication number: 20140138550
    Abstract: An “intelligent” UV curing assembly is disclosed. The “intelligent” assembly permits automated monitoring of performance parameters, part lifetime, and inventory control of internal parts. The “intelligent” assembly includes an on lamp microprocessor. The on lamp microprocessor may be configured to recognize the internal parts, record accumulated working time of each part, and sample and process data from the plurality of “intelligent” sensors.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: FUSION UV SYSTEMS
    Inventors: Yixin Yang, William E. Johnson, III, Pradyumna Kumar Swain, Michael Kenneth West, Charles Hudson Wood, David Xu, Darrin Leonhardt, Mahmood Gharagozloo
  • Patent number: 8698263
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Publication number: 20140070109
    Abstract: A detector array (110) includes a detector (112) configured to detect ionizing radiation and output a signal indicative of the detected radiation, wherein the detector at least includes a semiconductor element (118) and an illumination subsystem (120) configured to generate and transfer sub-band-gap illuminating radiation to selectively illuminate only a sub-portion of the semiconductor element in order to produce a spatially patterned illumination distribution inside the element.
    Type: Application
    Filed: April 6, 2012
    Publication date: March 13, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexander Schwarzman, Naor Wainer, Amir Livne
  • Patent number: 8669530
    Abstract: The present invention provides a radiation detection element and a radiographic imaging device that may provide optimal resolution that corresponds to the purpose of imaging and to imaging speed, and that may suppress increase in device size. Namely, TFTs of plural pixels in a column direction are connected to the same signal lines. When a moving image is imaged, a control signal is output via a control line, the TFTs of the pixels are turned on, and the charges are read-out from sensor sections. Since the two pixels×two pixels are operated as one pixel and the charges are extracted, resolution may be lowered when compared with a still image and a frame rate may be improved.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: March 11, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Yoshihiro Okada
  • Publication number: 20140054453
    Abstract: A radiation beam analyzer for measuring the distribution and intensity of radiation produced by a Cyberknife®. The analyzer employs a relative small tank of water into which a sensor is placed to maintain a constant SAD (source to axis distance). A first method maintains a fixed position of detector, and raises or lowers the small tank of water. A second method moves the detector up, down or rotationally synchronously in opposite directions with respect to the small tank of water to keep the SAD constant. These methods position the detector relative to the radiation source to simulate the location of a malady within a patient's body. An embodiment of the present invention enables measurements of substantially larger fields. This is accomplished by rotating a tank of water 90 degrees from a first position to a second position.
    Type: Application
    Filed: November 4, 2013
    Publication date: February 27, 2014
    Inventor: Daniel Navarro
  • Patent number: 8653444
    Abstract: A method and a calibration system for calibrating a measurement tool for measuring the radiation in a radiation system, such as a radiation therapy system, are provided. The measurement tool, including a holder and at least one photodiode element, is adapted to be mounted in a positioning unit of the radiation system. The radiation sensitive volume of the photodiode element is embedded in a light transparent coating transparent for, for instance, light in the visible spectrum. Thereby, the position of the sensitive volume can easily be determined or calculated with high accuracy relative to the holder on which the photodiode element is arranged, from which the position of the sensitive volume can be determined or calculated in relation to the positioning unit of the radiation system.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: February 18, 2014
    Assignee: Elekta AB (Publ)
    Inventors: Alain Minoz, Gunnar Backman
  • Patent number: 8648951
    Abstract: A back-illuminated type MOS (metal-oxide semiconductor) solid-state image pickup device in which micro pads are formed on the wiring layer side and a signal processing chip having micro pads formed on the wiring layer at the positions corresponding to the micro pads of the MOS solid-state image pickup device are connected by micro bumps. In a semiconductor module including the MOS type solid-state image pickup device, at the same time an image processing speed can be increased, simultaneity within the picture can be realized and image quality can be improved, a manufacturing process can be facilitated, and a yield can be improved. Also, it becomes possible to decrease a power consumption required when all pixels or a large number of pixels is driven at the same time.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: February 11, 2014
    Assignee: Sony Corporation
    Inventors: Keiji Mabuchi, Shunichi Urasaki
  • Publication number: 20130341522
    Abstract: This disclosure is directed to devices, integrated circuits, and methods for sensing radiation. In one example, a device includes an oscillator, configured to deliver a signal via an output at intervals defined by an oscillation frequency, and a counter, connected to the output of the oscillator and configured to count a number of times the comparator delivers the output signal. The oscillator includes a radiation-sensitive cell that applies a resistance. The resistance of the radiation-sensitive cell is configured to vary in response to incident radiation, wherein the oscillation frequency varies based at least in part on the resistance of the radiation-sensitive cell.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul S. Fechner
  • Publication number: 20130341520
    Abstract: A radiation detector comprises a piece of semiconducting material. On its surface, a number of consecutive electrode strips are configured to assume electric potentials of sequentially increasing absolute value. A field plate covers the most of a separation between a pair of adjacent electrode strips and is isolated from the most of said separation by an electric insulation layer. A bias potential is coupled to said field plate so that attracts surface-generated charge carriers.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Inventor: Pasi KOSTAMO
  • Publication number: 20130341521
    Abstract: This disclosure is directed to devices, integrated circuits, and methods for sensing radiation. In one example, a device includes a radiation sensitive oscillator, configured to deliver a first output signal at intervals defined by a first oscillation frequency that alters in resistance in response to radiation. The device includes a reference oscillator, configured to deliver a reference output signal at a constant reference oscillation frequency. A controller records a first instance of the count from the radiation sensitive oscillator for a duration of time defined by the count from the reference counter; compares a second instance of the count from the radiation sensitive oscillator with the first instance of the count from the radiation sensitive oscillator; and performs a selected action in response to the second instance of the count from the radiation sensitive oscillator varying from the first instance of the count from the radiation sensitive oscillator.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Paul S. Fechner
  • Patent number: 8592881
    Abstract: An organic light emitting element includes an organic light emitting diode formed on a substrate, coupled to a transistor including a gate, a source and a drain and including a first electrode, an organic thin film layer and a second electrode; a photo diode formed on the substrate and having a semiconductor layer including a high-concentration P doping region, a low-concentration P doping region, an intrinsic region and a high-concentration N doping region; and a controller that controls luminance of light emitted from the organic light emitting diode, to a constant level by controlling a voltage applied to the first electrode and the second electrode according to the voltage outputted from the photo diode.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: November 26, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-gyu Lee, Byoung-deog Choi, Hye-hyang Park, Ki-ju Im
  • Patent number: 8586937
    Abstract: Systems and methods for providing a shared charge in pixelated image detectors are provided. One method includes providing a plurality of pixels for a pixelated solid state photon detector in a configuration such that a charge distribution is detected by at least two pixels and obtaining charge information from the at least two pixels. The method further includes determining a position of an interaction of the charge distribution with the plurality of pixels based on the obtained charge information.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: Jean-Paul Bouhnik, James William Hugg, Ira Blevis, Yaron Hefetz
  • Publication number: 20130299711
    Abstract: A detection device includes conversion elements, each including a first electrode disposed on a substrate, a semiconductor layer disposed on the first electrode, an impurity semiconductor layer disposed on the semiconductor layer and including at least a first region and a second region, and a second electrode disposed on the first region of the impurity semiconductor layer in contact with the impurity semiconductor layer. Sheet resistance in the second region disposed at a position where the impurity semiconductor layer is not contacted with the second electrode is less than sheet resistance in the first region.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 14, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi, Hiroshi Wayama
  • Patent number: 8575560
    Abstract: This disclosure is directed to devices, integrated circuits, and methods for sensing cumulative radiation doses. In one example, a device includes a cell configured to be set to an initial resistance and to vary in resistance cumulatively in response to incident radiation. The device also includes an output terminal connected to the cell and configured to vary in voltage in response to the resistance of the cell. The device also includes a comparator configured to deliver an output signal in response to the voltage of the output terminal reaching a threshold voltage. The device also includes a cell charging circuit configured to reset the cell to the initial resistance in response to the output signal from the comparator. The device also includes a counter configured to count a number of times the comparator delivers the output signal.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: November 5, 2013
    Assignee: Honeywell International Inc.
    Inventor: Paul S. Fechner
  • Patent number: 8575557
    Abstract: The present invention provides a radiation detection element and a radiographic imaging device that may provide optimal resolution that corresponds to the purpose of imaging and to imaging speed, and that may suppress increase in device size. Namely, TFTs of plural pixels in a column direction are connected to the same signal lines. When a moving image is imaged, a control signal is output via a control line, the TFTs of the pixels are turned on, and the charges are read-out from sensor sections. Since the two pixels×two pixels are operated as one pixel and the charges are extracted, resolution may be lowered when compared with a still image and a frame rate may be improved.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 5, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Yoshihiro Okada
  • Patent number: 8569709
    Abstract: Embodiments of radiographic imaging systems; radiography detectors and methods for using the same can include radiographic imaging array that can include a plurality of pixels that each include a photoelectric thin-film conversion element coupled to a conversion thin-film switching element. In certain exemplary embodiments, a radiographic imaging array can include a bias control circuit to provide a bias voltage to the photosensors for a portion of the imaging array, an address control circuit to control scan lines, where each of the scan lines is coupled to a plurality of pixels in the portion of the imaging array; and a signal sensing circuit connected to data lines, where each of the data lines is coupled to at least two pixels in the portion of the imaging array, where power of the bias control circuit, the address control circuit, and the signal sensing circuit is not removed simultaneously.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 29, 2013
    Assignee: Carestream Health, Inc.
    Inventors: Jeff Hsin Chang, Gordon Geisbuesch
  • Publication number: 20130270439
    Abstract: A secondary charged particle detection device for detection of a signal beam is described. The device includes a detector arrangement having at least two detection elements with active detection areas, wherein the active detection areas are separated by a gap, a particle optics configured for separating the signal beam in a first portion of the signal beam and in at least one second portion of the signal beam, configured for focusing the first portion of the signal beam, and configured for deflecting and focusing the at least one second portion of the signal beam, wherein the particle optics includes a first electrode and at least one second electrode. Therein, the first electrode is an inner electrode and the at least one second electrode is provided radially outward of the first electrode.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 17, 2013
    Applicant: ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik GmbH
    Inventor: Pavel Adamec
  • Publication number: 20130270438
    Abstract: A secondary charged particle detection device for detection of a signal beam is described. The device includes a detector arrangement having at least two detection elements with active detection areas, wherein the active detection areas are separated by a gap (G), a particle optics configured for separating the signal beam into a first portion of the signal beam and into at least one second portion of the signal beam, and configured for focusing the first portion of the signal beam and the at least one second portion of the signal beam. The particle optics includes an aperture plate and at least a first inner aperture openings in the aperture plate, and at least one second radially outer aperture opening in the aperture plate, wherein the aperture plate is configured to be biased to one potential surrounding the first inner aperture opening and the at least one outer aperture opening.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 17, 2013
    Applicant: ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik GmbH
    Inventors: Stefan LANIO, Gerald Schönecker, Dieter Winkler
  • Publication number: 20130256546
    Abstract: A demodulation sensor (30) is described for detecting and demodulating a modulated radiation field impinging on a substrate (31). The sensor comprises the means (1,7,15) for generating, in the substrate, a static majority current assisted drift (Edrift) field, at least one gate structure (33) for collecting and accumulating minority carriers (21), the minority carriers generated in the substrate by the impinging radiation (28) field. The at least one gate structure comprises at least two regions (4,9,18) for the collection and accumulation of the minority carriers (21) and at least one gate (5,6,8) adapted for inducing a lateral electric drift field under the gate structure, the system thus being adapted for directing the minority carriers (21) towards one of the at least two regions (4,9) under influence of the static majority current assisted drift field and the lateral electric drift field induced by the at least one gate, and a means for reading out the accumulated minority carriers in that region.
    Type: Application
    Filed: December 6, 2011
    Publication date: October 3, 2013
    Applicant: MELEXIS TECHNOLOGIES NV
    Inventors: Volodymyr Seliuchenko, Maarten Kuijk
  • Patent number: 8541750
    Abstract: A structure of X-ray detector includes a Si-rich dielectric material for serving as a photo-sensing layer to increase light sensitivity. The fabrication method of the X-ray detector including the Si-rich dielectric material needs less photolithography-etching processes, so as to reduce the total thickness of thin film layers and decrease process steps and cost.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: September 24, 2013
    Assignee: AU Optronics Corp.
    Inventors: Yu-Cheng Chen, An-Thung Cho, Ching-Sang Chuang, Chia-Tien Peng
  • Publication number: 20130240746
    Abstract: The present invention provides an ion sensor and a display device which are capable of detecting positive ions and negative ions with high precision, at low cost. The ion sensor includes: a field effect transistor; an ion sensor antenna; and a capacitor, the ion sensor antenna and one terminal of the capacitor connected to a gate electrode of the field effect transistor, the other terminal of the capacitor receiving voltage.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 19, 2013
    Inventors: Atsuhito Murai, Yoshiharu Kataoka, Takuya Watanabe, Yuhko Hisada, Satoshi Horiuchi
  • Publication number: 20130223593
    Abstract: An X-ray sensor according to the present invention includes: a light-transmissive substrate (17); a light-transmissive electrode (21) formed on one surface of the light-transmissive substrate (17); and a photoconductive film (18) including a hole injection blocking layer (22), a field buffer layer (23), a hole trap layer (24), a photoconductive sensitive layer (25) having a charge-multiplying function, and an electron injection blocking layer (26), the layers being sequentially provided on the one surface of the light-transmissive substrate (17) having the light-transmissive electrode (21). The field buffer layer (23) is larger in thickness than a layer composed of the light-transmissive electrode (21) and the hole injection blocking layer (22).
    Type: Application
    Filed: November 16, 2011
    Publication date: August 29, 2013
    Applicants: NIPPON HOSO KYOKAI, PANASONIC CORPORATION
    Inventors: Masahiro Jouno, Keisuke Koga, Yuji Ohkawa, Misao Kubota, Kazunori Miyakawa, Kenkichi Tanioka
  • Patent number: 8519344
    Abstract: A radiation imaging apparatus has a pixel region arranged on a substrate. Arranged in a matrix pattern in the pixel region are pixels, each pixel including a conversion element which converts radiation to electrical charges, and a switching element which is connected to the conversion element therein. The radiation imaging apparatus has, in a region outside the pixel region of the substrate, an intersection at which a signal line connected to the switching element and a bias line connected to the conversion element intersects. At the intersection, a semiconductor layer is arranged between the signal line and the bias line, and a carrier blocking portion is arranged between the semiconductor layer and the signal line.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 27, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takamasa Ishii, Chiori Mochizuki, Minoru Watanabe
  • Patent number: 8508639
    Abstract: A back-illuminated type MOS (metal-oxide semiconductor) solid-state image pickup device 32 in which micro pads 34, 37 are formed on the wiring layer side and a signal processing chip 33 having micro pads 35, 38 formed on the wiring layer at the positions corresponding to the micro pads 34, 37 of the MOS solid-state image pickup device 32 are connected by micro bumps 36, 39. In a semiconductor module including the MOS type solid-state image pickup device, at the same time an image processing speed can be increased, simultaneity within the picture can be realized and image quality can be improved, a manufacturing process can be facilitated, and a yield can be improved. Also, it becomes possible to decrease a power consumption required when all pixels or a large number of pixels is driven at the same time.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventors: Keiji Mabuchi, Shunichi Urasaki
  • Publication number: 20130193337
    Abstract: Systems and methods for providing a shared charge in pixelated image detectors are provided. One method includes providing a plurality of pixels for a pixelated solid state photon detector in a configuration such that a charge distribution is detected by at least two pixels and obtaining charge information from the at least two pixels. The method further includes determining a position of an interaction of the charge distribution with the plurality of pixels based on the obtained charge information.
    Type: Application
    Filed: March 11, 2013
    Publication date: August 1, 2013
    Applicant: General Electric Company
    Inventor: General Electric Company
  • Patent number: 8497562
    Abstract: A solid-state image pickup device is provided which includes a substrate; a transistor formed on the substrate; a photoelectric conversion element including a first electrode connected to a drain or a source of the transistor, a semiconductor layer stacked on the first electrode, and a second electrode stacked on the semiconductor layer; an insulating layer disposed on the second electrode; and a bias line formed on the insulating layer to be connected to the second electrode, in which the insulating layer contains at least an inorganic insulating film, and the bias line is connected to the second electrode via a contact hole formed in the insulating layer, and a side surface of the semiconductor layer is in contact with the inorganic insulating film.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 30, 2013
    Assignee: Epson Imaging Devices Corporation
    Inventors: Yukimasa Ishida, Takashi Sato, Yasushi Yamazaki
  • Patent number: 8476591
    Abstract: A radiation sensor device including an integrated circuit chip including a radiation sensor on a surface of the integrated chip, one or more electrical connections configured to connect between an active surface of the integrated circuit chip and a lead frame, a cap attached to said integrated circuit chip spaced from and covering said radiation sensor, the cap having a transparent portion defining a primary lens transparent to the radiation to be sensed, a secondary lens disposed in a recess proximate and spaced from said primary lens transparent to the radiation to be sensed, and an air gap between said primary lens and said secondary lens.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 2, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Oliver Kierse, Eamon Hynes
  • Patent number: 8466423
    Abstract: An X-ray radiation detector is disclosed for detecting ionizing radiation, in particular for use in a CT system, with a multiplicity of detector elements. In at least one embodiment, each detector element includes a semiconductor used as detector material with an upper side facing the radiation and a lower side facing away from the radiation, at least two electrodes, wherein one electrode is formed on the upper side of the semiconductor by a metallization layer, and the sum of all detector elements forms a base, which has a base normal at each point. In at least one embodiment, the invention is distinguished by the fact that the upper side of the semiconductor has a surface structure with a surface normal at each point, wherein the surface normal at least in part subtends an angle to the base normal.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 18, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Hackenschmied, Christian Schröter, Matthias Strassburg
  • Publication number: 20130146778
    Abstract: A system for detecting electromagnetic radiation or an ion flow, including an input device for receiving the electronic radiation or the ion flow and emitting primary electrons in response, a multiplier of electrons in transmission, for receiving the primary electrons and emitting secondary electrons in response, and an output device for receiving the secondary electrons and emitting an output signal in response. The electron multiplier includes at least one nanocrystalline diamond layer doped with boron in a concentration of higher than 5·1019 cm?3.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 13, 2013
    Applicant: PHOTONIS FRANCE
    Inventors: Gert Nuetzel, Pascal Lavoute, Richard B. Jackman