With Object Moving Or Positioning Means Patents (Class 250/442.11)
  • Patent number: 8134131
    Abstract: An object of the invention is to provide a method and apparatus for observing inside structures and a specimen holder, wherein aging degradation of a good sample to a bad sample can be tracked in the same field of view, using the same specimen in order to determine the mechanism of failure. The present invention is a method for observing inside structures. The method comprises irradiating a specimen with a corpuscular beam generated from a corpuscular beam source, detecting transmitted particles transmitted by the specimen, applying a voltage to a portion of the specimen, and observing of a detection status of the transmitted particles in the voltage-applied portion as needed.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Shohei Terada, Kazutoshi Kaji, Shigeto Isakozawa
  • Patent number: 8115180
    Abstract: A processing system includes a particle beam column for generating a particle beam directed to a first processing location; a laser system for generating a laser beam directed to a second processing location located at a distance from the first processing location; and a protector including an actuator and a plate connected to the actuator. The actuator is configured to move the plate between a first position in which it protects a component of the particle beam column from particles released from the object by the laser beam and a second position in which the component of the particle beam column is not protected from particles released from the object by the laser beam.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: February 14, 2012
    Assignee: Carl Zeiss NTS GmbH
    Inventors: Holger Doemer, Stefan Martens, Walter Mack
  • Patent number: 8101924
    Abstract: An object-positioning device comprises a rod-like object holder inserted in the chamber of a charged-particle beam system for moving the object outside the chamber, a support for slideably supporting at least a part of the side surface of the object holder, thus making the rear end of the holder outside the chamber a free end, and a vibration-absorbing portion mounted on the rear end of the object holder. The vibration-absorbing portion has an operating range in which vibrational frequencies in a translational direction perpendicular to the longitudinal direction of the object holder are absorbed. The natural vibrational frequency of the object holder in the bending mode is included within the operating range of the vibration-absorbing portion.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: January 24, 2012
    Assignee: JEOL Ltd.
    Inventor: Mitsuru Hamochi
  • Patent number: 8089053
    Abstract: The present invention relates to double-tilt specimen holders of the side-entry type for transmission electron microscopy (TEM). The invention uses Micro Electro Mechanical Systems (MEMS) and Piezoelectric Transducer (PZT) technology to create a digitally programmable dynamically tilting specimen holder integrated into a standard transmission electron microscope stage. In this invention, specimens can be tilted using a MEMS/PZT-actuated specimen holder to between 10 and 25° for stereo pairs and at higher angles (up to 90°) for tomography applications. In one embodiment, the specimen cradle may be effectively rotated 360° about the Y axis, enabling virtually the complete three-dimensional mapping of a specimen.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 3, 2012
    Inventor: Dudley Sean Finch
  • Publication number: 20110309245
    Abstract: Separation and the like of an excised specimen from a specimen are automatically performed. Marks for improving image recognition accuracy are provided in a region that becomes an excised specimen in a specimen and a region other than said region, or in a transfer means for transferring the excised specimen and a specimen holder capable of holding the excised specimen, and the relative movement of the excised specimen and the specimen, and the like are recognized with high accuracy by image recognition. In the sampling of a minute specimen using a focused ion beam, the detection of an end point of processing for separation of the excised specimen from the specimen, and the like are automatically performed. Thus, for example, unmanned specimen excision becomes possible, and preparation of a lot of specimens becomes possible.
    Type: Application
    Filed: October 23, 2009
    Publication date: December 22, 2011
    Inventors: Yuichi Madokoro, Tsuyoshi Onishi, Megumi Aizawa, Yukio Yoshizawa
  • Publication number: 20110303844
    Abstract: It is an object of the present invention to provide an electron microscope for properly applying a retarding voltage to a sample which is brought into electrical conduction.
    Type: Application
    Filed: October 15, 2009
    Publication date: December 15, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Seiichiro Kanno, Hiroyuki Kitsunai, Masaru Matsushima, Toru Shuto, Kazuyuki Ikenaga
  • Patent number: 8076651
    Abstract: A specimen stage apparatus has a braking structure which can generate a braking force enough to stop a specimen stage while keeping a movable table from increasing in its weight. The specimen stage apparatus has an X guide fixed on an X base and representing a guide structure in X direction, an X table constrained by the X guide to be movable in X direction, an X actuator having its movable part fixed to the X table and an X brake fixed to the X base and representing a braking structure for the X table. A controller carries out positioning control in which it generates a braking force by pushing the X brake against the bottom surface of the X table to stop a specimen stage and turning off the servo-control of the X actuator after stoppage of the specimen stage.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 13, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masahiro Koyama, Hironori Ogawa, Nobuo Shibata, Masaru Matsushima, Toshinori Kobayashi, Shuichi Nakagawa
  • Patent number: 8074293
    Abstract: For adjusting a positional relationship between a specimen and a probe to measure an electric characteristic of the specimen through a contact therebetween, a base table holding a specimen table holding the specimen and a probe holder holding the probe is positioned at a first position to measure the positional relationship between the probe and the specimen at the first position, and subsequently positioned at a second position to measure the positional relationship therebetween at the second position so that the probe and the specimen are contact each other at the second position, the specimen table and the probe holder are movable with respect to each other on the base table at each of the first and second positions to adjust the positional relationship between the probe and the specimen, and a measuring accuracy at the second position is superior to a measuring accuracy at the first position.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: December 6, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Eiichi Hazaki, Yasuhiro Mitsui, Takashi Furukawa, Hiroshi Yanagita, Susumu Kato, Osamu Satou, Osamu Yamada, Yoshikazu Inada
  • Patent number: 8063383
    Abstract: We disclose a precision positioner based on an inertial actuator, an optical instrument for accurate positional readout and control, and an electrostatically clamped assembly for holding any instrument or device. All aspects of the present invention present a significant improvement over the prior art: a positioner is robust and compact; an optical instrument for positional control is a profoundly simple and compact module; a clamping assembly is self-aligning and suitable for robotic hot-swapping of objects being positioned.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 22, 2011
    Inventors: Sergiy Pryadkin, Dmitri Simonian
  • Patent number: 8058613
    Abstract: The present disclosure describes micromechanical devices and methods for using such devices for characterizing a material's strength. The micromechanical devices include an anchor pad, a top shuttle platform, a nanoindenter in movable contact with the top shuttle platform and at least two sample stage shuttles. The nanoindenter applies a compression force to the top shuttle platform, and the at least two sample stage shuttles move apart in response to the compression force. Each of the at least two sample stage shuttles is connected to the top shuttle platform and to the anchor pad by at least one inclined beam. Methods for using the devices include connecting a sample between the at least two sample stage shuttles and applying a compression force to the top shuttle platform. Application of the compression force to the top shuttle platform results in a tensile force being applied to the sample. Measuring a tip displacement of the nanoindenter is correlated with the sample's strength.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: November 15, 2011
    Assignee: William Marsh Rice University
    Inventors: Jun Lou, Yogeeswaran Ganesan, Yang Lu, Cheng Peng
  • Patent number: 8058628
    Abstract: Substrate processing methods and apparatus are disclosed. In some embodiments a substrate processing apparatus may comprise a support structure and a moveable stage including first and second stages. The moveable stage has one or more maglev units attached to the first stage and/or second stage proximate an edge of the first stage. The first stage retains one or more substrates and moves with respect to a first axis that is substantially fixed with respect to the second stage. The second stage translates along a second axis with respect to the support structure. In other embodiments, a primary motor may maintain a rotary stage at an angular speed and/or accelerate or decelerate the stage from a first angular speed to a second angular speed. A secondary motor may accelerate the stage from rest to the first angular speed and/or decelerate the stage from a non-zero angular speed.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: November 15, 2011
    Assignee: KLA-Tencor Corporation
    Inventors: Marek Zywno, Noah Bareket
  • Patent number: 8050802
    Abstract: A levitated XY stage with a mechanism to disable the bearing element to allow the physical elements of the stage to come into contact with one another and “Coulomb weld” together, thereby eliminating drift. Preferably, the XY position shift of the stage that results from disabling the bearing is measured, and feed-forward communication to, for example, the AFM scanner is used to enable an offset and remove the error.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: November 1, 2011
    Assignee: Bruker Nano, Inc.
    Inventor: James M. Young
  • Patent number: 8044373
    Abstract: A lithographic apparatus is disclosed having a projection system housing supporting internally one or more lens elements, and a movement damper connected to the projection system housing, the movement damper configured to damp movement of the projection system housing at an eigenfrequency of at least one of the one or more lens elements and/or of the projection system housing.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: October 25, 2011
    Assignee: ASML Netherlands B.V.
    Inventor: Hans Butler
  • Publication number: 20110253905
    Abstract: A specimen holder assembly (500) suitable for tomographic inspection of a specimen in a transmission electron microscope comprising: a body portion (501) in the form of an elongate member arranged to be removably insertable into the column of the microscope; and a manipulator portion having a first axis, the manipulator portion comprising: a specimen mount portion (510) configured to support the specimen; a specimen translation assembly operable to translate the specimen mount portion with respect to the body portion; and a specimen rotation assembly (540) coupled to the body portion and to the specimen translation assembly (530), the specimen rotation assembly being operable to rotate the specimen translation assembly relative to the body portion about the first axis.
    Type: Application
    Filed: March 16, 2009
    Publication date: October 20, 2011
    Inventors: Guenter Moebus, Guan Wei, Xiaojing Xu, Jing Jing Wang, Ralph Gay, Alden James Lockwood, Beverley Inkson
  • Publication number: 20110248165
    Abstract: A novel specimen holder for specimen support specimen support devices for insertion in electron microscopes. The novel specimen holder of the invention provides mechanical support for specimen support devices and as well as electrical contacts to the specimens or specimen support devices.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 13, 2011
    Applicant: PROTOCHIPS, INC.
    Inventors: John Damiano, JR., Stephen E. Mick, David P. Nackashi, Montie Roland, Paul A. Hakenewerth
  • Patent number: 8035089
    Abstract: In a scanning probe apparatus capable of always effectively canceling an inertial force to suppress vibration even in repetitive use while replacing a sample holding table or a probe, a stage for a sample or the probe includes a drive element for moving the sample holding table and movable portions movable in a direction in which an inertial force generated during movement of the sample holding table. The stage is configured so that the drive element, the movable portions, and the sample holding table or the probe are integrally detachably mountable to a main assembly of the scanning probe apparatus.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: October 11, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takao Kusaka, Nobuki Yoshimatsu, Susumu Yasuda, Junichi Seki
  • Publication number: 20110240881
    Abstract: The present disclosure significantly reduces the waiting time from inserting a specimen holder into an electron microscope until high quality data acquisition is possible. Characterizing the present disclosure, it is a specimen holder partly made of low thermal expansion material. The low thermal expansion material can be any of group 4, 5 or 6 in the periodic table of the elements.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 6, 2011
    Inventor: Hiroya Miyazaki
  • Patent number: 8030622
    Abstract: A specimen holder is offered which can reduce the amount of chemical sprayed over a specimen consisting of cultured cells. The specimen holder has an open specimen-holding surface. At least a part of the specimen-holding surface is formed by a film and a tapering portion formed around the film. The specimen can be cultured on the specimen-holding surface of the film. The presence of the tapering portion can reduce the amount of used reagent. The specimen can be irradiated via the film with a primary beam for observation or inspection of the specimen. Consequently, the specimen, such as cells, can be well observed or inspected in vivo while the specimen is being cultured. Especially, if an electron beam is used as the primary beam, the specimen can be well observed or inspected in vivo by SEM (scanning electron microscopy).
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: October 4, 2011
    Assignee: JEOL Ltd.
    Inventors: Hidetoshi Nishiyama, Mitsuru Koizumi, Mitsuo Suga
  • Patent number: 8008637
    Abstract: A semiconductor device fabrication apparatus includes a load lock chamber, a loading assembly in the load lock chamber, and an ion implantation target chamber that is hermetically connected to the load lock chamber. The load lock chamber is configured to store a plurality of wafer plates. Each wafer plate respectively includes at least one semiconductor wafer thereon. The ion implantation target chamber is configured to implant an ion species into a semiconductor wafer on a currently loaded wafer plate. The loading assembly is also configured to load a next one of the plurality of wafer plates from the load lock chamber into the ion implantation target chamber. The loading assembly may be configured to load the next wafer plate from the load lock chamber into the ion implantation target chamber while substantially maintaining a current temperature within the ion implantation target chamber and/or without depressurizing the ion implantation target chamber. Related methods and devices are also discussed.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: August 30, 2011
    Assignee: Cree, Inc.
    Inventor: Alexander Suvorov
  • Patent number: 8003955
    Abstract: A sample manipulation device comprises an observation unit, which is used to observe a sample and to select a target position at which a portion to be removed from the sample is located, and a specimen stage which receives the sample. The sample manipulation device may include a manipulation tool, which is spatially shiftable relative to the observation unit and comprises a manipulation tip by which portions are removed from the sample, a control unit, which controls the shifting of the manipulation tool, as well as an optical position measurement unit, which is connected to the control unit and is used to determine the actual position of the manipulation tip, so that specific shifting of the manipulation tip to the target position can be carried out.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: August 23, 2011
    Inventor: Roland Kilper
  • Publication number: 20110198326
    Abstract: A processing system includes a common base, an object mount configured to hold an object for inspection or processing, and at least one aperture plate provided on the object mount. The aperture plate has at least one aperture The processing system also includes a laser device mounted on the common base and configured to scan a laser beam across a scan region, and a transport device configured to displace the object mount relative to the common base from a first position to a second position. When the object mount is in the first position, the object and the at least one aperture are positioned within the scan region of the laser device. The processing system also includes at least one light guide provided on the object mount. The light guide has an input port provided by the at least one aperture, and an output port.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 18, 2011
    Applicant: CARL ZEISS NTS GMBH
    Inventor: Holger Doemer
  • Publication number: 20110198512
    Abstract: An object of the invention is to provide a charged corpuscular beam apparatus which is equipped with a static elimination mechanism suitable for eliminating electric charges deposited on front and back surfaces of a specimen. To achieve the foregoing object, there is proposed a static elimination mechanism which includes a first ionizer for eliminating electric charges from the front surface of the specimen, and a second ionizer for eliminating electric charges from the back surface of the specimen. The first and second ionizers are disposed in a mini-environment, and are arranged along a downflow in the mini-environment. A specimen carrying mechanism is disposed so that the specimen can pass between the two ionizers.
    Type: Application
    Filed: October 15, 2009
    Publication date: August 18, 2011
    Inventors: Koki Miyahara, Katsuya Kawakami, Masahiro Tsunoda, Takashi Gunji
  • Publication number: 20110196223
    Abstract: The invention relates to a method and apparatus for charged particle tomographic imaging using a tomography system. The tomography imaging system is optionally simultaneously operational with a charged particle cancer therapy system using common elements, allows tomographic imaging with rotation of the patient, is operational on a patient in an upright, semi-upright, and/or horizontal position, is simultaneously operational with X-ray imaging, and/or allows use of adaptive charged particle cancer therapy. The common tomography and cancer therapy apparatus elements are operational in a multi-axis and/or multi-field raster beam mode.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 11, 2011
    Inventor: Vladimir Balakin
  • Patent number: 7989784
    Abstract: A hydrogen ion implanter for the exfoliation of silicon from silicon wafers uses a large scan wheel carrying 50+ wafers around its periphery and rotating about an axis. In one embodiment, the axis of rotation of the wheel is fixed and a ribbon beam of hydrogen ions is directed down on a peripheral edge of the wheel. The ribbon beam extends over the full radial width of wafers on the wheel. The beam is generated by an ion source providing an extracted ribbon beam having at least 100 mm major cross-sectional diameter. The ribbon beam may be passed through a 90° bending magnet which bends the beam in the plane of the ribbon. The magnet provides intensity correction across the ribbon to compensate for the dependency on the radial distance from the wheel axis of the speed at which parts of the wafers pass through the ribbon beam.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 2, 2011
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Hilton Glavish, Geoffrey Ryding, Theodore H. Smick, Kenneth Harry Purser
  • Patent number: 7989778
    Abstract: A charged-particle optical system (100) such as an electron microscope has a vacuum chamber (102) with a space (104) for accommodating a specific one (114) of multiple specimens in operational use. The charged-particle optical system has a loader (106) with a part (108) that is moveable into and out of the space. The part is configured for attaching a specimen carrier (110), brought from outside the system, to a first holder (112) or to detach the carrier from the first holder and to remove the carrier from inside the system. The carrier accommodates a first specimen. The system has an interface (116) in a wall of the chamber for removably accommodating the first holder (112) or a second holder (118) with a second specimen (120) mounted thereon.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 2, 2011
    Assignee: FEI Company
    Inventors: Johannes Antonius Maria Van Den Oetelaar, Jorn Hermkens, Pleun Dona, Frank Nederlof, Wim Wondergem
  • Publication number: 20110180724
    Abstract: A sample transfer device is provided which can insert to a charged particle beam apparatus a sample to be observed and analyzed under irradiation of a charged particle beam while suppressing to a minimum the time to expose the sample to the atmospheric environment. The sample transfer device for transferring the sample to be observed and analyzed by irradiating the charged particle beam comprises an expansible hollow member capable of accommodating a sample holder mounting the sample, a fixing member for fixing the sample holder within the expansible hollow member, and a sealing member communicating with the interior of the expansible hollow member to open/close an opening through which the sample holder passes.
    Type: Application
    Filed: January 27, 2011
    Publication date: July 28, 2011
    Inventors: Shohei TERADA, Tatsumi Hirano, Koichi Watanabe, Yasuichiro Watanabe, Hiromitsu Seino
  • Patent number: 7957501
    Abstract: The present invention provides a system and method for a system for accommodating a solid target in an accelerator. The system and method includes a target changer having at least one port for accommodating the solid target, an insert for receiving the solid target in the target changer, a piston for providing a vacuum and a cooling system for the solid target, a cylinder for displacing the piston in one of three positions; and a bracket for securing the insert, piston and cylinder to the target changer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 7, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Andrew C. Williamson
  • Patent number: 7956333
    Abstract: A moving module of a wafer ion-implanting machine includes a wafer carrier, a moving shaft, a base, a pair of first magnets, a fixture body, and a plurality of second magnets. One end of the wafer carrier is pivotally connected to a wafer tray; and the other end is fixed onto one end of the moving shaft. The base is fixed to the other end of the moving shaft. The moving shaft drives the wafer carrier and the base to move lengthwise. The pair of first magnets is fixed to the base. The fixture body is located between the pair of first magnets. The second magnets are fixed onto the fixture body and one of them forms compelling magnetic force between one of the first magnets. Thereby, the friction generated by contacting any of the first magnets with the fixture body can be prevented, thus increasing the production yield.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 7, 2011
    Assignee: Inotera Memories, Inc.
    Inventor: Ting-Wei Lin
  • Publication number: 20110127427
    Abstract: A novel specimen holder for specimen support devices for insertion in electron microscopes. The novel specimen holder of the invention provides mechanical support for specimen support devices and as well as electrical contacts to the specimens or specimen support devices.
    Type: Application
    Filed: March 17, 2009
    Publication date: June 2, 2011
    Applicant: PROTOCHIPS, INC.
    Inventors: David P. Nackashi, John Damiano, JR., Stephen E. Mick, Thomas G. Schmelzer, Michael Zapata, III
  • Patent number: 7935937
    Abstract: A TEM sample holder is formed from at least one nano-manipulator probe tip and a TEM sample holder pre-form. The probe tip is permanently attached to the TEM sample-holder pre-form to create a TEM sample holder before attachment of a sample to the point of the probe tip inside a FIB. In the preferred embodiment the probe tip is attached to the TEM sample holder pre-form by applying pressure to the pre-form and the probe tip, so as to cause plastic flow of the pre-form material about the probe tip. The TEM sample holder may have smaller dimensions than the TEM sample holder pre-form; in this case the TEM sample holder is cut from the larger TEM sample holder pre-form, preferably in the same operation as attaching the probe tip.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 3, 2011
    Assignee: Omniprobe, In.c
    Inventors: Thomas M. Moore, Gonzalo Amador, Lyudmila Zaykova-Feldman
  • Patent number: 7932494
    Abstract: A method of characterizing the vibrational performance of a charged particle beam microscope system having at least one encoder is disclosed. The encoder is part of a control system for controlling the speed of a stage whereupon a sample is secured for imaging. A plurality of images each corresponding to a specific encoder working frequency are analyzed to generate imaged pattern vibration amplitude information over an imaging time period. The generated imaged pattern vibration amplitude information is then transformed to generate an imaged pattern vibration amplitude information over a range of encoder working frequencies. Information of system vibrational performance is then derived from the encoder working frequency-based vibration amplitude information. As a result, the vibrational performance of the system is characterized to describe the system vibrational behavior in terms of imaged pattern vibration amplitudes at varying working frequencies of the encoder.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 26, 2011
    Assignee: Hermes Microvision, Inc.
    Inventor: Nan Zhang
  • Patent number: 7919760
    Abstract: The present invention relates to an operation stage of a charged particle beam apparatus which is employed in a scanning electron microscope for substrate (wafer) edge and backside defect inspection or defect review. However, it would be recognized that the invention has a much broader range of applicability. A system and method in accordance with the present invention provides an operation stage for substrate edge inspection or review. The inspection region includes top near edge, to bevel, apex, and bottom bevel. The operation stage includes a supporting stand, a z-stage, an X-Y stage, an electrostatic chuck, a pendulum stage and a rotation track. The pendulum stage mount with the electrostatic chuck has the ability to swing from 0° to 180° while performing substrate top bevel, apex and bottom bevel inspection or review.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 5, 2011
    Assignee: Hermes-Microvision, Inc.
    Inventors: Jack Jau, Hong Xiao, Joe Wang, Zhongwei Chen, Yi Xiang Wang, Edward Tseng
  • Patent number: 7906760
    Abstract: An electron microscope method for inspecting a liquid specimen and a reagent solution therefor. A culture medium and biological cells are put in the sample holder. A plugging agent is mixed into the liquid sample. The cells can be irradiated with a primary beam via a film. An image of the cells or information about the cells is obtained by detecting a resulting secondary signal. If the film is destroyed, the plugging agent plugs up the damaged portion of the film. Consequently, liquid leakage can be minimized.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 15, 2011
    Assignee: JEOL Ltd.
    Inventors: Hidetoshi Nishiyama, Mitsuo Suga, Mitsuru Koizumi
  • Patent number: 7906762
    Abstract: A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: March 15, 2011
    Assignee: FEI Company
    Inventors: Mart Petrus Maria Bierhoff, Bart Buijsse, Cornelis Sander Kooijman, Hugo Van Leeuwen, Hendrik Gezinus Tappel, Colin August Sanford, Sander Richard Marie Stoks, Ben Jacobus Marie Bormans, Steven Berger, Koen Arnoldus Wilhelmus Driessen, Johannes Antonius Hendricus Wilhelmus Gerardus Persoon
  • Patent number: 7897936
    Abstract: A sample fabricating method of irradiating a sample with a focused ion beam at an incident angle less than 90 degrees with respect to the surface of the sample, eliminating the peripheral area of a micro sample as a target, turning a specimen stage around a line segment perpendicular to the sample surface as a turn axis, irradiating the sample with the focused ion beam while the incident angle on the sample surface is fixed, and separating the micro sample or preparing the micro sample to be separated. A sample fabricating apparatus for forming a sample section in a sample held on a specimen stage by scanning and deflecting an ion beam, wherein an angle between an optical axis of the ion beam and the surface of the specimen stage is fixed and formation of a sample section is controlled by turning the specimen stage.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 1, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyasu Shichi, Tohru Ishitani, Hidemi Koike, Kaoru Umemura, Eiichi Seya, Mitsuo Tokuda, Satoshi Tomimatsu, Hideo Kashima, Muneyuki Fukuda
  • Patent number: 7888655
    Abstract: The invention relates to a transfer mechanism for transferring a specimen (2) from a first position in a first holder (40) to a second position in a second holder (10) and/or vice versa, each holder (10, 40) equipped to detachably hold the specimen, the transfer of the specimen between the holders taking place in a transfer position different from the second position, characterized in that when the specimen is transferred between the holders (10, 40) a mechanical guidance mechanism positions the holders with a mutual accuracy higher than the mutual accuracy in the second position, and said mechanical guidance mechanism not positioning at least one of the holders (10, 40) when the specimen is in the second position. The mechanical guidance mechanism may comprise extra parts (50). At least one of the holders (40) may be equipped to hold a multitude of specimens.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: February 15, 2011
    Assignee: FEI Company
    Inventors: Erik Pieter van Gaasbeek, Pleun Dona, Gerbert Jeroen van de Water, Johannes Antonius Maria van den Oetelaar, Paul Johannes Leonardes Barends, Ian Johannes Bernardus van Hees
  • Patent number: 7888639
    Abstract: An object of the invention is to realize a method and an apparatus for processing and observing a minute sample which can observe a section of a wafer in horizontal to vertical directions with high resolution, high accuracy and high throughput without splitting any wafer which is a sample. In an apparatus of the invention, there are included a focused ion beam optical system and an electron optical system in one vacuum container, and a minute sample containing a desired area of the sample is separated by forming processing with a charged particle beam, and there are included a manipulator for extracting the separated minute sample, and a manipulator controller for driving the manipulator independently of a wafer sample stage.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Mitsuo Tokuda, Muneyuki Fukuda, Yasuhiro Mitsui, Hidemi Koike, Satoshi Tomimatsu, Hiroyasu Shichi, Hideo Kashima, Kaoru Umemura
  • Patent number: 7888643
    Abstract: The invention relates to a focusing and positioning ancillary device for a particle-optical scanning microscope, a particle-optical scanning microscope including a corresponding positioning aid, and a method for focusing and positioning an object in a particle-optical scanning microscope. The focusing and positioning ancillary device includes an illuminating device, a camera, a display and a control unit. The illuminating device produces a collimated or focused light beam at an angle to the particle-optical beam axis which intersects the particle-optical beam axis at a predetermined position. The camera is sensitive to the wavelength of the light beam and records an image of the object, which is positioned on the object table, at a second angle to the particle-optical beam axis. The control unit produces an image captured by the camera on the display together with a marking which indicates the position of the particle-optical beam axis in the image.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: February 15, 2011
    Assignee: Carl Zeiss NTS GmbH
    Inventor: Michael Albiez
  • Patent number: 7884326
    Abstract: A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 8, 2011
    Assignees: FEI Company, The Board of Trustees of the University of Illinois, The Regents of the University of California
    Inventors: Jeroen van de Water, Johannes van den Oetelaar, Raymond Wagner, Hendrik Nicolaas Slingerland, Jan Willem Bruggers, Adriaan Huibert Dirk Ottevanger, Andreas Schmid, Eric A. Olson, Ivan G. Petrov, Todor I. Donchev, Thomas Duden
  • Publication number: 20110017922
    Abstract: A variable-tilt specimen holder for a charged particle instrument having a tilt stage, where the tilt stage has a maximum range of tilt, a sample plate affixed to the tilt stage, and an ion-beam column having an ion-beam column axis. The variable-tilt specimen holder has a base for mounting to the sample plate, so that the base is substantially parallel to the tilt stage. Bearing blocks on the base rotatably support a pivot plate that has slots for holding TEM specimens or TEM grids holding specimens. The pivot plate is rotatable so that the TEM specimens held therein can be aligned with the axis of the ion beam column for thinning of the specimen.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Applicant: OMNIPROBE, INC.
    Inventor: Gonzalo Amador
  • Patent number: 7875861
    Abstract: The invention relates to a positioning device for positioning a patient in a medical device comprising a patient receiving device for placing a patient and a robot arm having a plurality of movement axes for positioning the patient receiving device in a room. The positioning device can be placed into a manual operating mode in which a position of the patient receiving device in the room can be changed manually. The invention also relates to a method for operating the positioning device, comprising: providing a normal operating mode for positioning the patient receiving device automatically at a position predefined by a control device; providing a manual operating mode for manually changing a position of the patient receiving device; and switching from the normal operating mode into the manual operating mode if a switchover condition is present. The invention further relates to an irradiation device having the positioning device.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: January 25, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Hüttenberger, Eike Rietzel
  • Patent number: 7872231
    Abstract: In a chamber of a charged particle beam apparatus, the sample on the sample substrate is gripped and carried to the sample holder, and there is controlled the attitude of the sample when the sample is fixed on the sample holder. There possesses a marking process applying, in the chamber, a marking to a surface of the sample Wb existing on the sample substrate by a beam, a carriage process gripping the sample by a sample gripping means and carrying it from the sample substrate to the sample holder, and an attitude control process controlling, when fixing the sample to the sample holder, the attitude of the sample while observing the marking applied to the surface of the sample.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 18, 2011
    Assignee: Sll NanoTechnology Inc.
    Inventors: Junichi Tashiro, Masanao Munekane
  • Patent number: 7868303
    Abstract: A patterning device handling apparatus for use in charged particle beam imaging is disclosed. The disclosed patterning device handling apparatus comprises a first gripping member and a second gripping member. The first gripping member is equipped with a plurality of first positioning projections, and the second gripping member is equipped with a plurality of second positioning projections. When the patterning device is held at one angle, the first positioning projections abut against one edge of the patterning device and the second positioning projections abut against the opposite edge of the patterning device. When the patterning device is held at another angle, the first positioning projections abut against two neighboring edges of the patterning device, and the second positioning projections abut against the other two neighboring edges of the patterning device. Therefore, the disclosed patterning device handling apparatus can hold the pattering device at different angles.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Hermes Microvision, Inc.
    Inventors: You-Jin Wang, Hsuan-Bin Huang, Chung-Shih Pan
  • Publication number: 20100320396
    Abstract: A sample holder capable of holding samples is provided which comprises a plurality of probes in contact with a sample, fine movement mechanisms for moving the plural probes, and a driver connected to the fine movement mechanisms, wherein the plural fine movement mechanisms move the plural probes independently of one another and the driver moves the plural probes simultaneously.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 23, 2010
    Inventors: Shohei TERADA, Tatsumi Hirano
  • Patent number: 7851769
    Abstract: The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3a, 3b, 3c) mounted on the base, each nano-actuator showing a tip (4a, 4b, 4c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: December 14, 2010
    Assignee: The Regents of the University of California
    Inventors: Andreas Karl Schmid, Nord Andresen
  • Publication number: 20100305747
    Abstract: An improved method and apparatus for extracting and handling samples for S/TEM analysis. Preferred embodiments of the present invention make use of a micromanipulator and a hollow microprobe probe using vacuum pressure to adhere the microprobe tip to the sample. By applying a small vacuum pressure to the lamella through the microprobe tip, the lamella can be held more securely and its placement controlled more accurately than by using electrostatic force alone. By using a probe having a beveled tip and which can also be rotated around its long axis, the extracted sample can be placed down flat on a sample holder.
    Type: Application
    Filed: October 20, 2007
    Publication date: December 2, 2010
    Applicant: FEI COMPANY
    Inventors: Enrique Agorio, James Edgar Hudson, Gerhard Daniel, Michael Tanguay, Jason Arjavac
  • Patent number: 7838848
    Abstract: A patterning device holding apparatus includes a support platform unit with a plurality of first positioning projections and a gripper unit. The gripper unit includes a head portion and a plurality of second positioning projections disposed on the head portion, and a rolling member set at a base portion. The grapping and releasing of the patterning device is achieved by the rotation of the gripper unit about a pivot substantially parallel with the center axis of the rolling member. The first and second positioning projections corporately abut against the edges of a patterning device to fix the patterning device in place.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 23, 2010
    Assignee: Hermes Microvision, Inc.
    Inventors: Hsuan-Bin Huang, You-Jin Wang, Chung-Shih Pan
  • Publication number: 20100270476
    Abstract: The invention can provide a reaction force treatment mechanism used in a stage apparatus including a pedestal, a platen which supported by the pedestal through a vibration isolation unit, a mobile body which supported by the platen and moves on the platen, and an actuator which actuates the mobile body in one direction, the reaction force treatment mechanism including: a connection portion which connects a stator of the actuator to the pedestal through an stress relief mechanism for absorbing displacement in a direction different from the one direction; and a guide portion which movably guides the stator of the actuator in the one direction while restraining the stator of the actuator relative to the platen in a direction different from the one direction.
    Type: Application
    Filed: April 28, 2010
    Publication date: October 28, 2010
    Applicant: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventors: Jun NISHIMAKI, Yasuhito NAKAMORI, Yoshiyuki TOMITA
  • Publication number: 20100264330
    Abstract: An apparatus capable of improving image quality by making it possible to suck specimens of different sizes electrostatically, and uniformalizing an electric field of a specimen edge portion, while suppressing increase in prime cost is provided. Specimen holding means is an electrostatic chuck, a master flat plane part surrounding a specimen of the largest size of specimen sizes, and an opening surrounding a specimen size except for the largest specimen size are included at an outer peripheral portion of the electrostatic chuck, a dummy specimen attachable to and detachable from the electrostatic chuck is included, and at a time of switching the specimen size, a dummy specimen is selected (or may be prevented from being used).
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Masaki MIZUOCHI, Shoji Tomida
  • Publication number: 20100258432
    Abstract: A sputtering apparatus includes a substrate holder, a magnetic field applying unit, and target mounting table. The substrate holder includes a first stage which can mount a substrate and can rotate about a first rotating shaft, a second stage which can rotate about a second rotating shaft shifted from the first rotating shaft, a spinning unit which rotates the first stage about the first rotating shaft, and a revolving unit which revolves the first stage about the second rotating shaft. The magnetic field applying unit applies a magnetic field in a specific direction to the substrate. The target mounting table can mount a target configured to deposit a film on the substrate. The spinning unit rotates the first stage in a direction opposite to that of the rotation of the revolving unit, and rotates the first stage so as to maintain the specific direction of the magnetic field.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventor: Franck ERNULT