Luminophor Irradiation Patents (Class 250/458.1)
  • Patent number: 11428633
    Abstract: The present disclosure relates to systems and methods for cellular imaging and identification through the use of a light sheet flow cytometer. In one implementation, a light sheet flow cytometer may include a light source configured to emit light having one or more wavelengths, at least one optical element configured to form a light sheet from the emitted light, a microfluidic channel configured to hold a sample, and an imaging device. The imaging device may be adapted to forming 3-D images of the sample such that identification tags attached to the sample are visible.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: August 30, 2022
    Assignee: Verily Life Sciences LLC
    Inventors: Cheng-Hsun Wu, Brian M. Rabkin, Supriyo Sinha, John D. Perreault, Chinmay Belthangady, James Higbie, Seung Ah Lee
  • Patent number: 11423306
    Abstract: In one embodiment, a method of determining tag signals from measured intensities, the measured intensities collected by light sensors in a sensor array directed to a sample surface, the sample surface including pixel areas and holding a plurality of clusters during a sequence of sampling events, each light sensor directed to and measuring intensity from one of the pixel areas during each sampling period includes adjustments for background intensity and crosstalk and taking into account signal decay and phasing/pre-phasing. Coefficients for the adjustments can be determined by gradient descent, using as ground truth base calling by the system being characterized or by using reliable base calling of well-characterized sample run through the system being characterized.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: August 23, 2022
    Assignee: Illumina, Inc.
    Inventor: Emrah Kostem
  • Patent number: 11422347
    Abstract: An optical assembly for scanning excitation radiation and/or manipulation radiation in a laser scanning microscope. The assembly an optical scanning unit as a first focusing device for providing a first pupil plane, a first beam deflecting device, which is made of a first scanner arranged in the first pupil plane, for scanning the excitation radiation and/or manipulation radiation in a first coordinate direction, and a second focusing device for generating a second pupil plane, which is optically conjugated to the first pupil plane. A second beam deflecting device is provided for deflecting the excitation radiation and/or manipulation radiation, said second deflecting device being arranged in the second pupil plane. A third focusing device is provided in order to generate a third pupil plane, optically conjugated to the first pupil plane.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 23, 2022
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Tiemo Anhut, Matthias Wald, Daniel Schwedt, Beate Böhme
  • Patent number: 11386544
    Abstract: An electronics system may include a substrate, an electronic device bonded to the substrate, a plurality of photoluminescent particles disposed on the electronic device, an illuminator, a sensor, and a control module. The illuminator can illuminate the electronic device. The sensor can capture a first set of positions of the photoluminescent particles on the electronic device when the electronic device is not operating under a load and a second set of positions of the photoluminescent particles when the electronic device is operating under a load. The control module can determine thermomechanical stress on the electronic device based at least in part on a difference between the first set of positions and the second set of positions.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 12, 2022
    Assignee: TOYOTA MOTOR ENGINEEEING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shailesh N. Joshi, Umesh Gandhi, Vishnu Sundaresan, Vijay Venkatesh, Srivatsava Krishnan
  • Patent number: 11385451
    Abstract: A sample imaging device includes a side illumination unit, a two window sample chamber, and refractive index matching. An optically transparent sample holder is in the sample well as is sample immersion fluid. The refractive index matching includes matching of the refractive index of material of a sample to be imaged.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: July 12, 2022
    Assignee: The Regents of the University of California
    Inventors: Per Niklas Hedde, Leonel Malacrida
  • Patent number: 11380095
    Abstract: A work supporting apparatus includes: a visible light camera (visible light image photographing unit) configured to photograph a visible light image; a far-infrared camera (thermal image photographing unit) configured to photograph a thermal image; a work progress status determining unit configured to determine a work progress status from the visible light image photographed by the visible light camera and the thermal image photographed by the far-infrared camera; and a display configured to display a determination result of the work progress status.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 5, 2022
    Assignee: MAXELL, LTD.
    Inventors: Daisuke Yoshida, Hiroaki Ito
  • Patent number: 11363939
    Abstract: An endoscope system includes a light source configured to generate either one of first illumination light and second illumination light, an image pickup apparatus configured to obtain an image by picking up an image of an object, and a processor. The processor is configured to make an instruction to set an observation mode of the endoscope system at either one of a first observation mode and a second observation mode, detect an observation state at a time of observing the object based on a feature value calculated from pixel values included in pixels forming a first image, and invalidate an instruction to set the observation mode of the endoscope system at the second observation mode when the observation state at the time of observing the object is not an appropriate observation state.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: June 21, 2022
    Assignee: OLYMPUS CORPORATION
    Inventors: Daiki Ariyoshi, Risa Arai
  • Patent number: 11366060
    Abstract: An apparatus for detecting fluorescent light emitted from a sample comprises: a light source, which is configured to emit excitation light of an excitation wavelength towards a sample comprising fluorophores such that fluorescent light is induced; a photo-detector for detecting light incident on the photo-detector; and an interference filter arranged on the photo-detector, wherein the interference filter is configured to selectively collect and transmit light towards the photo-detector based on an angle of incidence of the light towards the interference filter, wherein the interference filter is configured to selectively transmit supercritical angle fluorescence from the sample towards the photo-detector and suppress undercritical angle fluorescence from the sample.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: June 21, 2022
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN
    Inventors: Finub James Shirley, Pol Van Dorpe
  • Patent number: 11361429
    Abstract: An MRI method is disclosed for the geometrical characterisation of pulmonary airways on the basis of a first tridimensional image of at least one bronchus of a bronchial tree and includes: acquiring a first MRI image, an MRI sequence being synchronised with a respiratory frequency; filtering the first image; segmenting a portion of the filtered image including the contours of the bronchial tree and its inner volumetric portion; estimating at least one plane of cut of a bronchus; generating at least one image slice of a bronchus; estimating, for each image slice, an area contained within the bronchial wall and/or a bronchial wall thickness.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: June 14, 2022
    Assignees: UNIVERSITE DE BORDEAUX, L'INSTITUT POLYTECHNIQUE DE BORDEAUX, CENTRE HOSPITALIER UNIVERSITAIRE DE BORDEAUX, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), INSTITUT NATIONAL DE LA SANTE DE LA RECHERCHE MEDICALE
    Inventors: Gael Dournes, Fabien Baldacci, François Laurent, Patrick Berger
  • Patent number: 11360033
    Abstract: An inspection device includes: an illumination device that irradiates an object with near infrared light; a spectroscope that disperses reflected light from the object irradiated with the near infrared light; an imaging device that takes a spectroscopic image of the reflected light dispersed by the spectroscope; and a processor. The processor: obtains spectral data at a plurality of points on the object based on the spectroscopic image obtained by the imaging device; selects, as typical spectral data representing the object from among the spectral data at the plurality of points, one of: spectral data in which a luminance value in a predetermined wavelength is a median value; and spectral data in which a summation of luminance values in a predetermined wavelength range is a median value; and performs a predetermined analysis for the object based on the typical spectral data and detects a different type of object.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: June 14, 2022
    Assignee: CKD CORPORATION
    Inventor: Yukihiro Taguchi
  • Patent number: 11340391
    Abstract: An optical filter may include a first group of layers. The first group of layers may include alternating layers of a first dielectric material, of a group of dielectric materials, and a second dielectric material of the group of dielectric materials. The optical filter may include a second group of layers. The second group of layers may include alternating layers of a third dielectric material, of the group of dielectric materials, and a fourth dielectric material of the group of dielectric materials. The optical filter may include a third group of layers. The third group of layers may include alternating layers of a fifth dielectric material, of the group of dielectric materials, a sixth dielectric material, of the group of dielectric materials, and a metal material. The third group of layers may be disposed between the first group of layers and the second group of layers.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: May 24, 2022
    Assignee: VIAVI Solutions Inc.
    Inventor: Georg J. Ockenfuss
  • Patent number: 11333596
    Abstract: An observation container (10) includes: a bottom portion that includes a bottom wall (12A) (first plate part) and a bottom wall (12B) (second plate part) which intersect each other and that is configured to accommodate a liquid sample O as a sample containing microparticles to be imaged by imaging units (30A) and (30B) serving as an imaging device; and a region that has transparency with respect to a wavelength of light used for observation of the microparticles.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 17, 2022
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akinori Kimura, Asako Motomura, Yoko Sugiyama, Hiroshi Suganuma
  • Patent number: 11322906
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 3, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 11295152
    Abstract: A method and system for object recognition via a computer vision application including an object to be recognized, the object having an object specific luminescence spectral pattern, a light source including at least two illuminants for illuminating a scene including the object to be recognized by switching between the two illuminants, a sensor configured to capture radiance data of the scene including the object when the scene is illuminated by the light source, and a data storage unit storing fluorescence spectral patterns together with appropriately assigned respective objects. The method and system further include a data processing unit configured to extract the object specific fluorescence spectral pattern from the radiance data of the scene and to match the extracted object specific fluorescence spectral pattern with the fluorescence spectral patterns stored in the data storage unit, and to identify a best matching fluorescence spectral pattern and its assigned object.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 5, 2022
    Assignee: BASF Coatings GmbH
    Inventors: Yunus Emre Kurtoglu, Matthew Ian Childers
  • Patent number: 11293876
    Abstract: A measurement method for visualizing the flow of a fluid that includes: a preparation process where a photochromic compound, whose amount of absorption of light changes upon irradiation with transformation-inducing light, is dissolved in the fluid; a transformation-inducing irradiation process where the fluid is irradiated with transformation-inducing light that causes photochromism; and a post-transformation imaging process where an image of the fluid is taken after irradiation by the transformation-inducing light. During the post-transformation imaging process, a first image is generated by taking an image of the fluid by using first light in the first wavelength range in which the amount of absorption of light changes upon irradiation with transformation-inducing light.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 5, 2022
    Assignees: TOKAI UNIVERSITY EDUCATION SYSTEM, KANOMAX JAPAN INC.
    Inventors: Akihiko Azetsu, Ikkei Kitajima, Kazaki Kuratsuji, Masayuki Ochiai
  • Patent number: 11287317
    Abstract: An optical measurement device may include a light source; an emission optic configured to direct a first portion of light generated by the light source to a measurement target; a collection optic configured to receive light from the measurement target; an optical conduit configured to direct a second portion of light generated by the light source to a spectral reference; the spectral reference; a sensor; and a filter. A first portion of the filter may be provided between the collection optic and a first portion of the sensor. A second portion of the filter may be provided between the spectral reference and a second portion of the sensor.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: March 29, 2022
    Assignee: VIAVI Solutions Inc.
    Inventors: William D. Houck, Valton Smith
  • Patent number: 11275030
    Abstract: This disclosure provides methods and devices for the label-free detection of target molecules of interest. The principles of the disclosure are particularly applicable to the detection of biological molecules (e.g., DNA, RNA, and protein) using standard SiO2-based microarray technology.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 15, 2022
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: M. Selim Unlu, David A. Bergstein, Michael F. Ruane, Bennett B. Goldberg
  • Patent number: 11262302
    Abstract: An example system for inspecting a surface includes a laser, an optical system, a gated camera, and a control system. The laser is configured to emit pulses of light, with respective wavelengths of the pulses of light varying over time. The optical system includes at least one optical element, and is configured to direct light emitted by the laser to points along a scan line one point at a time. The gated camera is configured to record a fluorescent response of the surface from light having each wavelength of a plurality of wavelengths at each point along the scan line. The control system is configured to control the gated camera such that an aperture of the gated camera is open during fluorescence of the surface but closed during exposure of the surface to light emitted by the laser.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 1, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Keith D. Humfeld, Morteza Safai
  • Patent number: 11255967
    Abstract: A time-to-digital converter includes a self-calibrating, n-stage chain of a number n of gate delay elements connected in parallel and series between a clock signal line for supplying a clock signal and a stop signal line for supplying a stop signal; and a charge-pump and phase-detector unit for the feedback control of the gate delay elements, having a first input as a controlled-variable input, a second input as a reference-variable input, and an output as a correcting-variable output. The clock signal line is connected to the first input of the charge-pump and phase-detector unit, a push-pull line for supplying a push-pull signal is connected to the second input, and, for feedback, the gate delay elements are connected to the output of the charge-pump and phase-detector unit.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: February 22, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Reiner Schnitzer, Rene Adams
  • Patent number: 11249025
    Abstract: Fiducial markers are provided on a patterned array of the type that may be used for molecular analysis, such as sequencing. The fiducial markers may have configurations and layouts that enhance their detection in image or detection data, that facilitate or improve processing, that provide encoding of useful information, and so forth. Examples of the fiducial markers may include non-rectilinear layouts that may provide for more robust location of both the fiducial markers and sites of the patterned array.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 15, 2022
    Assignee: Illumina, Inc.
    Inventors: John S. Vieceli, Alex Nemiroski, Paul Belitz, Robert Langlois, M. Shane Bowen, Danny Yuan Chan, Bala Murali K. Venkatesan, Hui Han, Kevan Samiee, Stephen Tanner
  • Patent number: 11249022
    Abstract: A method, apparatus and computer program product are provided to determine the fluorescence lifetime in an efficient manner. In the context of a method electric charge generated by fluorescence emission during two overlapping time periods of a single measurement cycle is stored to form first and second measures. The electric charge generated during that segment of the two time periods during which the two time periods overlap is incorporated in the first measure and in the second measure. The method also includes determining a fluorescence lifetime based at least in part upon the first and second measures.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: February 15, 2022
    Assignee: NOKIA TECHNOLOGIES OY
    Inventors: Marijan Herceg, Tomislav Matic
  • Patent number: 11237108
    Abstract: A biological analysis system can include an excitation module and an emission module. The excitation module can include a collimator element for receiving excitation light from the excitation light source and transmitting collimated excitation light in a first direction, and a plurality of excitation mirrors arrayed along the excitation light path, each excitation mirror disposed at an acute angle relative to the first direction and configured to reflect collimated excitation light along a second direction. The emission module can be positioned to receive excitation light transmitted along the second direction and can include a sample block comprising a plurality of sample receptacles positioned to receive a beam of collimated excitation light, and a plurality of photodetectors configured to receive emission light transmitted from a respective sample receptacle in a direction transverse to the second direction of the excitation light path.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 1, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Ming Song Chen, Chee Woei Chong, Wuh Ken Loh, Wern Yuh Foo, Kuan Moon Boo, Norbert Leclerc, Kristina Uhlendorf, Reiner Koellner, Torsten Fuchs, Stefan Breitfelder
  • Patent number: 11237047
    Abstract: An optical measurement device includes: an optical sensor that detects pulsed signal light and that outputs a detection signal formed of an exponential-function response; an A/D converter that samples the detection signal output from the optical sensor and that converts the detection signal into a digital signal; and a processor comprising hardware, the processor being configured to subject the digital signal output from the A/D converter to inverse transformation by using a multiple diagonal matrix, thus calculating an estimated pulse of the signal light.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 1, 2022
    Assignee: OLYMPUS CORPORATION
    Inventors: Kentaro Imoto, Makoto Ishikake
  • Patent number: 11221473
    Abstract: Devices and methods for super-resolution optical microscopy are described. Devices include an optical multiplexer to develop an excitation/illumination optical beam that includes alternating pulses of different profiles. Devices also include a signal processing unit to process a sample response to excitation/illumination beam and to subtract the neighboring pulses of the different profiles from one another on a pulse-to-pulse basis. Devices can be incorporated in existing confocal microscopy designs. As the subtraction effectively reduces the volume of the response signal, the spatial resolution of the systems can be markedly improved as compared to previously known optical microscopy approaches.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: January 11, 2022
    Assignee: Clemson University Research Foundation
    Inventors: Yang Li, Tong Ye, Xun Chen
  • Patent number: 11215560
    Abstract: A portable imaging apparatus and system. A sample processing device has a reaction chamber configured to receive a sample and react the sample with a fluorescent compound that emits a specified wavelength of light when excited by light within an excitation band. An illumination source can be positioned to illuminate the reaction chamber when the sample processing device is positioned for imaging. A light guide can be positioned to face the reaction chamber and transfer the emitted light to an imaging detector. The light guide has a filter that blocks the wavelength of light from the illumination source and passes the fluorescent emitted light. The light guide unit defines an angular light acceptance range and is configured to constrain angular spreading of light.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: January 4, 2022
    Assignee: COM DEV Ltd.
    Inventor: Alan Scott
  • Patent number: 11209349
    Abstract: Apparatus and methods for performing optical analyses in a harsh environment are disclosed. Some of the systems and methods of the present disclosure include fluorescence, absorption, and reflectance detection using a drum spectrometer. Other systems and methods of the present disclosure include a measurement channel and a parallel reference channel concurrently filtering optical signals.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: December 28, 2021
    Inventors: David Dalby, Gordon Lamb, Michael Hazell, Paul Ryder, Robert Jones, Margaret Waid, Michael Yuratich
  • Patent number: 11206989
    Abstract: Structures and techniques are provided for shaping or steering a light field for an optical biological parameter sensor such that the light is partially or wholly collimated and enters a person's skin at an oblique angle to the person's skin such that the light has a direction component oriented towards or away from a photodetector of the optical biological parameter sensor.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: December 28, 2021
    Assignee: Fitbit, Inc.
    Inventors: Kyle P. Nadeau, Chris H. Sarantos
  • Patent number: 11211223
    Abstract: A method for imaging a sample with charged particles comprises directing charged particles towards the sample along a primary axis, and simultaneously detecting a first portion and a second portion of the charged particles transmitted through the sample with a first detector and a second detector, respectively. The second detector is positioned downstream of the first detector. Each of the transmitted charged particles exits the sample at an exit angle between a direction of the transmitted charged particle and the primary axis. The exit angles of the first portion of the transmitted charged particles overlap with the exit angles of the second portion of the transmitted charged particles. In this way, complimentary information, such as the structural and compositional information, may be obtained simultaneously.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 28, 2021
    Assignee: FEI Company
    Inventors: Ivan Lazić, Stefano Vespucci, Eric Gerardus Bosch, Bert Henning Freitag
  • Patent number: 11205599
    Abstract: An evaluation method of a silicon epitaxial wafer, including using a photoluminescence (PL) measuring apparatus to measure a PL spectrum of the mirror wafer and adjusting the apparatus so emission intensity of a TO-line becomes 30000 to 50000 counts, irradiating the silicon epitaxial wafer with an electron beam, measuring PL spectrum from an electron beam irradiation region, and sorting out and accepting a silicon epitaxial wafer which has emission intensity resulting from a CiCs defect of the PL spectrum being 0.83% or less of the emission intensity of the TO-line and from a CiOi defect being 6.5% or less of the emission intensity of the TO-line.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 21, 2021
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Yasushi Mizusawa
  • Patent number: 11200648
    Abstract: A method for enhancing illumination intensity of an image according to an embodiment of the present disclosure may include receiving an image, determining a filter application scheme by using a neural network model trained to enhance the illumination intensity of the image, and outputting an image having enhanced illumination intensity by applying, to the image, the determined filter application scheme. The neural network model trained using machine learning includes a first group of layers for extracting feature information of the image, a second group of layers for determining a type of filter based on the extracted feature information, and a third group of layers for determining the optimal parameter for the filter based on the extracted feature information. The neural network model may be provided through an external server in an IoT environment using a 5G network.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 14, 2021
    Assignee: LG ELECTRONICS INC.
    Inventors: Woonchae Lee, Wonsu Choi, Seonhui Sunny Kim, Minho Lee
  • Patent number: 11187594
    Abstract: An assembly, for example an electrostatic chuck assembly, includes a first member, a second member disposed proximate the first member, a bond layer disposed between the first member and the second member, and at least one optical sensor disposed proximate the bond layer to detect a temperature of the bond layer in a field of view of the at least one optical sensor. The bond layer includes a phosphorescent material and provides a dual function of bonding the second member to the first member and emitting phosphorescent radiation towards the at least one optical sensor. In one form, the first member is an electrostatic chuck member and the second member is a heating plate. The assembly may further include a cooling plate and an additional bond layer disposed between the heating plate and the cooling plate.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 30, 2021
    Assignee: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: John Patrick Bergen, Daryl G. James
  • Patent number: 11185214
    Abstract: An endoscope system includes a correction-value calculating unit that calculates a correction value of data to be used for calculation of the biological information or the like; an index-value calculating unit that calculates one type of index value or a plurality of types of index values to be used as a determination reference for determining whether, for example, the correction value is to be calculated; a determination unit that determines, by using the one type of index value or the plurality of types of index values, whether an endoscope image is appropriate for correction; and a correction unit that, if the determination unit determines that the endoscope image is appropriate for correction, corrects the endoscope image, the biological information, or the data by using the correction value calculated by using the endoscope image that has been determined to be appropriate for correction.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 30, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Hiroaki Yamamoto
  • Patent number: 11181477
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 23, 2021
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Patent number: 11179024
    Abstract: An endoscope system includes a correction-value calculating unit that calculates a correction value of data to be used for calculation of biological information; an index-value calculating unit that calculates one type of index value or a plurality of types of index values to be used as a determination reference for determining whether the correction value is to be calculated or whether the correction value is to be used; a display unit that displays the one type of index value or the plurality of types of index values; an input unit that inputs an instruction for calculating the correction value or an instruction for executing correction by using the correction value; and a correction unit that, if the correction-value calculating unit calculates the correction value in response to the instruction for calculating the correction value or if the instruction for executing correction is issued, executes correction by using the correction value.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 23, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Hiroaki Yamamoto
  • Patent number: 11166415
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 9, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11169074
    Abstract: In the present technology, the timing at which suction is performed is optimized in order to enhance the microparticle separation performance in a technology for separating target microparticles in a microchip. For this purpose, the present technology provides a method of optimizing a microparticle suction condition, and the like, using a microchip having a main flow channel through which a liquid containing a microparticle flows, a microparticle suction flow channel arranged coaxially with the main flow channel, and a branch flow channel branching from the main flow channel. The method includes: a branch point specifying process of specifying a branch point at which the branch flow channel branches from the main flow channel; and a time assignment process of assigning a time T1 to be applied to suction of the microparticle.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 9, 2021
    Assignee: SONY CORPORATION
    Inventors: Gakuji Hashimoto, Tatsumi Ito, Kazuya Takahashi, Junji Kajihara
  • Patent number: 11164082
    Abstract: The present disclosure provides methods for applying artificial neural networks to flow cytometry data generated from biological samples to diagnose and characterize cancer in a subject. The disclosure also provides methods of training, testing, and validating artificial neural networks.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 2, 2021
    Assignee: ANIXA DIAGNOSTICS CORPORATION
    Inventors: Amit Kumar, John Roop, Anthony J. Campisi, George Dominguez
  • Patent number: 11154370
    Abstract: A method for performing a surgical procedure includes planning a resection of a bone of a patient. A volume of the bone is removed according to the planned resection using a surgical tool. As the bone is removed, data corresponding to a shape and volume of the removed bone is tracked with a computer system operatively coupled to the surgical tool. A prosthesis is implanted onto the bone of the patient based on the tracked data corresponding to the shape of the removed bone.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 26, 2021
    Assignee: Mako Surgical Corp.
    Inventor: Dan Librot
  • Patent number: 11158768
    Abstract: A light emitting assembly comprising a solid state device, when and if coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device a first wavelength radiation, and an enveloping vessel enhancing the luminescence of the solid-state device and providing a mechanism for arranging luminophoric medium in receiving relationship to said first, radiation, and which in exposure to said first radiation, is excited to responsively emit second wavelength radiation or to otherwise transfer its energy without radiation to a third radiative component. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is converted to achromatic light without hue by packaging the diode with fluorescent organic and/or inorganic fluorescers and phosphors on the walls of the solid-state light envelope which keeps the diode and the fluorescers and phosphors under a vacuum or a rare or Noble gas.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: October 26, 2021
    Inventor: Bruce H. Baretz
  • Patent number: 11150135
    Abstract: A bidirectional reflectance distribution function (BRDF) measurement system is provided that measures the BRDF across many photonic bands such as the UV, Vis, NIR, SWIR, MWIR, and LWIR (scale) simultaneously (speed) in an innovative measurement system. The measurement system includes an illuminating optical system, a detection system, and a calibration reference. The illuminating optical system directs illuminating light to an imaging location and the detection system detects returning light from the imaging location. The calibration reference including an optical metamaterial having a receiving surface. The calibration reference is placed at the imaging location and alters illuminating light incident on the receiving surface to produce returning light having known optical properties.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: October 19, 2021
    Assignee: Raytheon Company
    Inventor: Scott Sorbel
  • Patent number: 11148144
    Abstract: A method, computer program product, and apparatus are provided for controlling components of a detection device. The device may detect turbidity of liquid with sensors such as a density sensor and/or nephelometric sensor. A light modulation pattern may reduce or eliminate interference in sensor readings. Readings may be performed during off cycles of an illumination light to reduce interference but to provide improved visibility of a tube. Dark and light sensor readings may be performed with an emitter respectively off or on to account for ambient light in subsequent readings. Readings from the density sensor and/or nephelometric sensor may be used to calculate McFarland values. The device may be zeroed based on an emitter level that results in a sensor reading satisfying a predetermined criterion.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: October 19, 2021
    Assignee: bioMerieux, Inc.
    Inventors: Joel Patrick Harrison, John Kenneth Korte, Jeffrey Edward Price
  • Patent number: 11145560
    Abstract: A photoresist with a detection additive is utilized to help increase the contrast of images during an after development inspection process. The detection additive fluoresces during the after development inspection process and adds to the energy that is reflected during the after development inspection process, increasing the contrast during the after development inspection process and helping to identify defects that are not otherwise detectable.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hsing-Chieh Lee, Ming-Tan Lee
  • Patent number: 11137663
    Abstract: A frequency conversion device, including a source of a pump beam of electromagnetic radiation of a first wavelength, and an array of mutually spaced semiconductor islands including at least one III-V semiconductor compound and configured so that the pump beam of electromagnetic radiation of the first wavelength incident upon the semiconductor islands and electromagnetic radiation of a second wavelength incident upon the semiconductor islands cause the semiconductor islands to emit electromagnetic radiation of a third wavelength different to the first and second wavelengths by at least one of a sum frequency generation process and a difference frequency generation process, wherein the semiconductor islands are supported by a transparent support such that the support is substantially transparent to radiation of the third wavelength, wherein at least the radiation of the third wavelength passes through the transparent support.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 5, 2021
    Assignee: The Australian National University
    Inventors: Dragomir N. Neshev, Mohsen Rahmani, Hark Hoe Tan, Chennupati Jagadish, Yuri Kivshar, Fouad Karouta, Alexander Solntsev, Lei Xu, Giuseppe Marino, Andrey Sukhorukov
  • Patent number: 11119028
    Abstract: An optical particle sensor comprises at least first and second light sources of different wavelength for sequential operation. An optical detector is used to detect light from the light sources emitted or scattered by particles to be sensed. A current injection compensation signal is also provided which is dependent on which light source of the optical arrangement is in use. The compensation signal means the amplifier does not need to re-settle in response to different background illumination levels associated with the different light sources. In this way, detection signals may be obtained in quick succession from different light sources.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: September 14, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Paul Van Der Sluis
  • Patent number: 11112364
    Abstract: A molecular detection device is related. The device includes a carrier, a detector and a control computer. The carrier includes a substrate, a middle layer and a metal layer. The middle layer is sandwiched between the substrate and the middle layer. The detector is configured to detect molecules on a surface of the carrier. The control computer is connected to the detector and configured to analyze a detection result. The middle layer includes a base and a patterned bulge on the base, and the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 7, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 11105743
    Abstract: The present disclosure provides a portable device and method for controlling an alcoholic beverage through an at least partially transparent container. The method includes acquiring a fluorescence spectrum of the beverage through a wall of the container, normalizing a profile of a measured spectrum according to the maximum intensity of a reference spectrum, calculating a resemblance factor between the measured spectrum and the reference spectrum, and determining if the beverage is genuine according to the obtained value of the resemblance factor.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 31, 2021
    Assignees: PERNOD RICARD, CNRS—Direction de l'Innovation et des Relations avec les Enterprises (DIRE), UNIVERSITE DE BORDEAUX, Institut Polytechnique de Bordeaux
    Inventors: Pascal Brunerie, Katia Gouret, Benoit Fil, Stephane Verger, Jean-Luc Bruneel, Francois Guillaume, Caroline Bruneel Delhaye
  • Patent number: 11099189
    Abstract: A pyrogenicity test assay and method of pyrogen testing that allows for rapid and ultrahigh sensitivity testing of parenteral pharmaceuticals or medical devices that contact blood or cerebrospinal fluid by employing a Limulus Amoebocyte Lysate (LAL) assay utilizing a photonic-crystal biosensor. The photonic-crystal biosensor is capable of determining the presence of endotoxins in a test sample by monitoring shifts in the resonant wavelength of an open microcavity affected by the changes in the refractive index of the analyte solutions used.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 24, 2021
    Assignee: Board of Regents, the University of Texas System
    Inventors: Jing Yong Ye, Jonathan D. Scudder
  • Patent number: 11099132
    Abstract: The invention relates to an optical measurement device for a reaction vessel, and a method therefor. An object is to measure the optical state within a reaction vessel in an efficient, rapid, and highly reliable manner, without an expansion of the device scale.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 24, 2021
    Assignee: UNIVERSAL BIO RESEARCH CO., LTD.
    Inventor: Hideji Tajima
  • Patent number: 11085818
    Abstract: A rapid sensing value estimation circuit and a method thereof are provided. The rapid sensing value estimation circuit includes a first sensing unit, an integration sensing circuit and a rapid estimation circuit. The rapid estimation circuit includes a clock generator, a second counter, a first digital comparator, and an arithmetic module. The clock generator generates a clock signal. The second counter counts the clock signal to generate a second count value. The first digital comparator determines whether the second count value exceeds a first predetermined count value when the first count value increases. The arithmetic module estimates the first count value at an end of an integration time according to a ratio of the second maximum count value to the second count value and the first count value when the second count value exceeding the first predetermined count value, to generate an estimated count value result.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 10, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Jia-Hua Hong
  • Patent number: 11067438
    Abstract: A laser beam profile measurement device includes: a plate-like or block-like fluorescence generation element including an incidence surface on which a laser light is incident and an emission surface from which the laser light is emitted; a light separation element for separating fluorescence from the laser light, the fluorescence generated in the fluorescence generation element and emitted from the emission surface; and an image element for receiving the fluorescence. The fluorescence generation element includes a first film formed on the incidence surface thereof. The first film has a wavelength-to-reflectance characteristic of transmitting a wavelength ?1 of the laser light and reflecting a wavelength ?2 of the fluorescence. The first film has a wavelength-to-reflectance characteristic of transmitting a wavelength ?1 of the laser light and reflecting a wavelength ?2 of the fluorescence.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: July 20, 2021
    Assignee: CANARE ELECTRIC CO., LTD.
    Inventor: Masaki Tsunekane