With Organic Material Patents (Class 252/79.4)
  • Patent number: 8920667
    Abstract: The invention provides a chemical-mechanical polishing composition and a method of chemically-mechanically polishing a substrate with the chemical-mechanical polishing composition. The polishing composition comprises (a) abrasive particles, wherein the abrasive particles comprise zirconia, (b) at least one metal ion oxidizer, wherein the at least one metal ion oxidizer comprises metal ions of Co3+, Au+, Ag+, Pt2+, Hg2+, Cr3+, Fe3+, Ce4+, or Cu2+, and (c) an aqueous carrier, wherein the pH of the chemical-mechanical polishing composition is in the range of about 1 to about 7, and wherein the chemical-mechanical polishing composition does not contain a peroxy-type oxidizer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Lin Fu, Steven Grumbine, Matthias Stender
  • Patent number: 8916061
    Abstract: The invention relates to a chemical-mechanical polishing composition comprising a ceria abrasive, cations of one or more lanthanide metals, one or more nonionic polymers, water, and optionally one or more additives. The invention further relates to a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate comprises one or more of silicon oxide, silicon nitride, and polysilicon.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 23, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Brian Reiss, Michael Willhoff, Daniel Mateja
  • Patent number: 8916479
    Abstract: Provided are methods for processing semiconductor substrates having titanium nitride (TiN) structures as well as aluminum (Al) structures and, in some embodiments, other structures, such as silicon germanium (SiGe), tantalum nitride (TaN), hafnium oxide (HfOx), silicon nitride (SiN), and/or silicon oxide (SiO2) structures. Etching solutions and processing conditions described herein provide high etching selectivity of titanium nitride relative to these other materials. As such, the titanium nitride structures can be removed (partially or completely) without significant damage to these other structures. In some embodiments, the etching rate of titanium nitride is at least about 200 Angstroms per minute and even at least about 350 Angstroms per minute, while the etching rate of aluminum and/or other materials is less than 15 Angstroms per minute. An etching solution may be kept at 40° C. to 65° C. and may include ammonium hydroxide and hydrogen peroxide (between 1:600 and 1:3,000 by weight).
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 23, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Gregory Nowling
  • Patent number: 8911558
    Abstract: A post-W CMP cleaning solution consists of carboxylic acid and deionized water. The carboxylic acid may be selected from the group consisting of (1) monocarboxylic acids; (2) dicarboxylic acids; (3) tricarboxylic acids; (4) polycarboxylic acids; (5) hydroxycarboxylic acids; (6) salts of the above-described carboxylic acids; and (7) any combination thereof. The post-W CMP cleaning solution can work well without adding any other chemical additives such as surfactants, corrosion inhibitors, pH adjusting agents or chelating agents.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu
  • Patent number: 8911643
    Abstract: A polishing liquid which is used for chemical mechanical polishing of a body to be polished in a planarization process for manufacturing of a semiconductor integrated circuit, the body to be polished including at least a first layer containing polysilicon or modified polysilicon and a second layer containing at least one selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbide, and silicon oxynitride, the polishing liquid having a pH of 1.5 to 7.0, including (1) colloidal silica particles, (2) an organic acid, and (3) an anionic surfactant, and being capable of selectively polishing the second layer with respect to the first layer.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 16, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Tetsuya Kamimura
  • Patent number: 8906253
    Abstract: A gap embedding composition used for embedding a patterned gap formed between photosensitive resin film portions on a semiconductor substrate surface, the gap embedding composition, at least having: a hydrolysis condensate of an aryloxysilane raw material; and an aromatic compound, as a solvent.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: December 9, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Keiji Yamamoto
  • Patent number: 8900472
    Abstract: A liquid agent for the surface treatment of monocrystalline wafers, which contains an alkaline etching agent and also at least one low-volatile organic compound. Systems of this type can be used both for the cleaning, damage etch and texturing of wafer surfaces in a single etching step and exclusively for the texturing of silicon wafers with different surface quality, whether it now be wire-sawn wafers with high surface damage or chemically polished surfaces with minimum damage density.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 2, 2014
    Assignee: Fraunhofer-Gesellschaft zur Föerderung der angewandten Forschung E.V.
    Inventors: Kuno Mayer, Mark Schumann, Daniel Kray, Teresa Orellana Peres, Jochen Rentsch, Martin Zimmer, Elias Kirchgässner, Eva Zimmer, Daniel Biro, Arpad Mihai Rostas, Filip Granek
  • Patent number: 8900478
    Abstract: Disclosed are an etchant which is used for redistribution of a semiconductor substrate having an electrode and which is capable of selectively etching copper without etching nickel; and a method for manufacturing a semiconductor device using the same. Specifically disclosed are an etchant which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and citric acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of citric acid of from 1 to 20% by mass, with a molar ratio of hydrogen peroxide and citric acid being in the range of from 0.3 to 5; an etchant for selective etching of copper which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and malic acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of malic acid of from 1.5 to 25% by mass, with a molar ratio of hydrogen peroxide and malic acid being in the range of from 0.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Akira Hosomi, Kensuke Ohmae
  • Publication number: 20140346138
    Abstract: A polishing composition for a magnetic disk substrate of the present invention includes water, silica particles, and at least one or more selected from an acid, a salt of the acid, and an oxidizing agent. The silica particles are observed with a transmission electron microscope to measure a maximum diameter and a projected area of each particle, and a value obtained by dividing the area of a circle whose diameter is the maximum diameter of a silica particle by the projected area of the silica particle and multiplying the result by 100, is in the range of 100 to 130.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Yoshiaki OSHIMA, Norihito YAMAGUCHI, Haruhiko DOI
  • Patent number: 8889032
    Abstract: A metal wire etchant including persulfate, a sulfonate, a fluorine compound, an azole-based compound, an organic acid, a nitrate, and a chlorine compound, and a method of making the same.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choung, In-Bae Kim, Seon-II Kim, Hong Sick Park, Jae Woo Jeong, Gyu-Po Kim, Won-Guk Seo, Hyun-Cheol Shin, Ki-Beom Lee, Sam-Young Cho, Seung-Yeon Han
  • Patent number: 8889555
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 18, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8883034
    Abstract: The invention provides a polishing composition comprising (a) silica, (b) one or more compounds that increases the removal rate of silicon, (c) one or more tetraalkylammonium salts, and (d) water, wherein the polishing composition has a pH of about 7 to about 11. The invention further provides a method of polishing a substrate with the polishing composition.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 11, 2014
    Inventors: Brian Reiss, John Clark, Lamon Jones, Jeffrey Gilliland, Michael White
  • Patent number: 8877082
    Abstract: Disclosed is a processing method which can achieve a high processing rate, and is capable of making a surface smooth. In order to achieve this an SiC substrate is arranged in a potassium hydroxide solution containing hydrogen peroxide, and ultraviolent radiation is irradiated on the surface of the SiC substrate. An SiO2 layer is formed on the surface of the SiC substrate due to the irradiation of ultraviolet radiation, and this SiO2 layer is chemically removed by means of the potassium hydroxide solution, and also removed by a synthetic quartz surface plate.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 4, 2014
    Assignee: National University Corporation Kumamoto University
    Inventors: Akihisa Kubota, Mutsumi Touge
  • Publication number: 20140306147
    Abstract: A chrome-free acidic aqueous solution of sulfuric acid and one or more organic acids and manganese (II) and (III) ions is applied to an organic polymer surface to etch the surface. The etched surface is then plated with metal.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Inventor: Rohm and Haas Electronic Materials LLC
  • Patent number: 8859428
    Abstract: Methods for removing, reducing or treating the trace metal contaminants and the smaller fine sized cerium oxide particles from cerium oxide particles, cerium oxide slurry or chemical mechanical polishing (CMP) compositions for Shallow Trench Isolation (STI) process are applied. The treated chemical mechanical polishing (CMP) compositions, or the CMP polishing compositions prepared by using the treated cerium oxide particles or the treated cerium oxide slurry are used to polish substrate that contains at lease a surface comprising silicon dioxide film for STI (Shallow trench isolation) processing and applications. The reduced nano-sized particle related defects have been observed due to the reduced trace metal ion contaminants and reduced very smaller fine cerium oxide particles in the Shallow Trench Isolation (STI) CMP polishing.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xiaobo Shi, John Edward Quincy Hughes, Hongjun Zhou, Daniel Hernandez Castillo, II, Jae Ouk Choo, James Allen Schlueter, Jo-Ann Theresa Schwartz, Laura Ledenbach, Steve Charles Winchester, Saifi Usmani, John Anthony Marsella, Martin Kamau Ngigi Mungai
  • Patent number: 8858819
    Abstract: The titled method affords low dishing levels in the polished substrate while simultaneously affording high metal removal rates. The method utilizes an associated polishing composition. Components in the composition include a poly(alkyleneimine) such as polyethyleneimine, an abrasive, an acid, and an oxidizing agent, such as a per-compound.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: October 14, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rachel Dianne McConnell, Ann Marie Hurst, Xiaobo Shi
  • Patent number: 8859429
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 14, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Publication number: 20140295626
    Abstract: An etchant composition includes about 25 percent by weight to about 35 percent by weight of phosphoric acid, about 3 percent by weight to about 9 percent by weight of nitric acid, about 10 percent by weight to about 20 percent by weight of acetic acid, about 5 percent by weight to about 10 percent by weight of a nitrate, about 6 percent by weight to about 15 percent by weight of a sulfonic acid, about 1 percent by weight to about 5 percent by weight of an amine compound including a carboxyl group, about 0.1 percent by weight to about 1 percent by weight of a water-soluble amino acid, about 0.01 percent by weight to about 1 percent by weight of an azole compound, and water.
    Type: Application
    Filed: August 12, 2013
    Publication date: October 2, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hong-Sick PARK, Young-Jun KIM, Young-Woo PARK, Wang-Woo LEE, Won-Guk SEO, Sam-Young CHO, Seung-Yeon HAN, Gyu-Po KIM, Hyun-Cheol SHIN, Ki-Beom LEE
  • Patent number: 8845915
    Abstract: A polishing agent which comprises a composition containing an inorganic acid, an amino acid, a protective film-forming agent, an abrasive, an oxidizing agent, an organic acid and water, adjusted to a pH of 1.5-4, wherein the amount of potassium hydroxide required to raise the pH of the composition without the organic acid to 4 is at least 0.10 mol with respect to 1 kg of the composition without the organic acid, and the organic acid contains at least two carboxyl groups, wherein the logarithm of the inverse of the first acid dissociation constant (pKa1) is no greater than 3.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8846533
    Abstract: A cleaning solution of the present invention contains a sodium ion, a potassium ion, an iron ion, an ammonium salt of a sulfuric ester represented by General Formula (1), and water, and each content of the sodium ion, the potassium ion, and the iron ion is 1 ppb to 500 ppb. ROSO3—(X)+ (1) where R is an alkyl group with a carbon number of 8-22 or an alkenyl group with a carbon number of 8-22, and (X)+ is an ammonium ion.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: September 30, 2014
    Assignee: Kao Corporation
    Inventor: Youichi Ishibashi
  • Patent number: 8841215
    Abstract: Afforded are a polishing agent, and a compound semiconductor manufacturing method and semiconductor device manufacturing method utilizing the agent, whereby the surface quality of compound semiconductor substrates can be favorably maintained, and high polishing rates can be sustained as well. The polishing agent is a polishing agent for Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductors, and includes an alkali metal carbonate, an alkali metal organic salt, a chlorine-based oxidizer, and an alkali metal phosphate, wherein the sum of the concentrations of the alkali metal carbonate and the alkali metal organic salt is between 0.01 mol/L and 0.02 mol/L, inclusive. The compound semiconductor manufacturing method comprises a step of preparing a Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductor, and a step of polishing the face of the compound semiconductor utilizing an aforedescribed polishing agent.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 23, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Masashi Futamura, Takayuki Nishiura
  • Publication number: 20140262805
    Abstract: The present invention relates to an aqueous composition and a process for etching of copper and copper alloys. The aqueous composition comprises Fe3+ ions, an acid and a N-alkoxylated polyamide. The aqueous composition is particularly useful for making of fine structures in the manufacture of printed circuit boards, IC substrates and the like.
    Type: Application
    Filed: November 8, 2012
    Publication date: September 18, 2014
    Inventors: Norbert Lützow, Martin Thoms, Anika Exner, Mirko Kloppisch
  • Publication number: 20140263185
    Abstract: The present invention provides an etching solution for silver or silver alloy comprising one at least ammonium compound represented by the formula (1), (2) or (3) below and an oxidant:
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Inktec Co., Ltd.
    Inventors: Kwang Choon Chung, Hyun-Nam Cho, Young-Kwan Seo
  • Patent number: 8828255
    Abstract: The invention relates to a method for etching a structure (1) including at least one material (4) to be etched, said method consisting in: selecting at least one chemical species that can react with the material (4) to be etched; selecting at least one soluble compound that can release this chemical species; producing a solution (11) containing said compound; placing the structure (1) in a position such that the surface of the material to be etched is in the presence of the solution and additional bubbles of a gas; and producing high-frequency ultrasounds in the solution, at at least one frequency, capable of generating reactive cavitation bubbles such that the chemical species is generated in the presence of these additional bubbles and reacts with the material to be etched, thereby producing a soluble compound or a precipitate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 9, 2014
    Assignees: Institut Polytechnique de Grenoble, Universite Joseph Fourier
    Inventors: Francis Baillet, Nicolas Gondrexon
  • Patent number: 8828872
    Abstract: The invention relates to a method for etching a structure (1) including at least one material (4) to be etched, said method consisting in: selecting at least one chemical species that can react with the material (4) to be etched; selecting at least one soluble compound that can release this chemical species; producing a solution (11) containing the compound and a powder of particles or solid grains (13) in suspension; placing the material to be etched in the presence of the solution; and producing high-frequency ultrasounds in the solution, at at least one frequency, capable of generating active cavitation bubbles such that the chemical species is generated and reacts with the material to be etched, thereby producing a soluble compound or a precipitate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 9, 2014
    Assignees: Institut Polytechnique de Grenoble, Universite Joseph Fourier
    Inventors: Francis Baillet, Nicolas Gondrexon
  • Patent number: 8821747
    Abstract: A method for manufacturing a glass substrate for a magnetic disk comprises a surface grinding step of processing a mirror-surface plate glass, having a main surface in the form of a mirror surface, to a required flatness and surface roughness using fixed abrasive particles. The method comprises, before the surface grinding step using the fixed abrasive particles, a surface roughening step of roughening the surface of the mirror-surface plate glass by frosting.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 2, 2014
    Assignee: Hoya Corporation
    Inventors: Takanori Mizuno, Yosuke Suzuki
  • Patent number: 8821752
    Abstract: The present invention provides an etching composition, comprising a silyl phosphate compound, phosphoric acid and deionized water, and a method for fabricating a semiconductor, which includes an etching process employing the etching composition. The etching composition of the invention shows a high etching selectivity for a nitride film with respect to an oxide film. Thus, when the etching composition of the present invention is used to remove a nitride film, the effective field oxide height (EEH) may be easily controlled by controlling the etch rate of the oxide film. In addition, the deterioration in electrical characteristics caused by damage to an oxide film or etching of the oxide film may be prevented, and particle generation may be prevented, thereby ensuring the stability and reliability of the etching process.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: September 2, 2014
    Assignees: SK Hynix Inc., Soulbrain Co., Ltd.
    Inventors: Sung-Hyuk Cho, Kwon Hong, Hyung-Soon Park, Gyu-Hyun Kim, Ji-Hye Han, Jung-Hun Lim, Jin-Uk Lee, Jae-Wan Park, Chan-Keun Jung
  • Patent number: 8821753
    Abstract: The present invention provides an etching solution for silver or silver alloy comprising one at least ammonium compound represented by the formula (1), (2) or (3) below and an oxidant:
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: September 2, 2014
    Assignee: Inktec Co., Ltd.
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Young-Kwan Seo
  • Patent number: 8822339
    Abstract: The present invention relates to a CMP slurry composition comprising an abrasive particle; a dispersant; an ionic polymer additive; and a non-ionic polymer additive including a polyolefin-polyethylene glycol copolymer including at least two polyethylene glycol repeat unit as a backbone and at least a polyethylene glycol repeating unit as a side chain, and a polishing method with using the slurry composition. The CMP slurry composition shows a low polishing rate to a single-crystalline silicon layer or a polysilicon layer and a high polishing rate to a silicon oxide layer, resulting in having an excellent polishing selectivity.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 2, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong-Mok Shin, Eun-Mi Choi, Seung-Beom Cho
  • Patent number: 8821751
    Abstract: A CMP composition and associated method are provided that afford good corrosion protection and low defectivity levels both during and subsequent to CMP processing. This composition and method are useful in CMP (chemical mechanical planarization) processing in semiconductor manufacture involving removal of metal(s) and/or barrier layer material(s) and especially for CMP processing in low technology node applications.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 2, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xiaobo Shi, Ronald Martin Pearlstein
  • Patent number: 8821750
    Abstract: The present invention relates to a metal polishing slurry containing abrasive grains, a metal-oxide-dissolving agent, and water, wherein the abrasive grains contain two or more abrasive grain species different from each other in average secondary particle diameter. Using the metal polishing slurry of the present invention, a metal polishing slurry can be obtained which gives a large polishing rate of an interlayer dielectric layer, and is high in the flatness of the polished surface. This metal polishing slurry can provide suitable method for a semiconductor device which is excellent in being made finer and thinner and in dimension precision and in electric characteristics, is high in reliability, and can attain a decrease in costs.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 2, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Jin Amanokura, Takafumi Sakurada, Sou Anzai, Takashi Shinoda, Shigeru Nobe
  • Publication number: 20140238953
    Abstract: Object is to provide an etching solution which generates less foam and can etch copper or copper alloy at high selectivity when used in a step of etching copper or copper alloy in an electronic substrate having both of copper or copper alloy and nickel. The etching solution to be used in a step of selectively etching copper or copper alloy in an electronic substrate having both of copper or copper alloy and nickel has, as essential components thereof, (A) a linear alkanolamine, (B) a chelating agent having an acid group in the molecule thereof, and (C) hydrogen peroxide.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 28, 2014
    Inventors: Tsutomu Kojima, Yukichi Koji
  • Patent number: 8808573
    Abstract: The present invention provides an acidic aqueous polishing composition suitable for polishing a silicon nitride-containing substrate in a chemical-mechanical polishing (CMP) process. The composition, at point of use, comprises about 0.01 to about 2 percent by weight of a particulate calcined ceria abrasive, about 10 to about 1000 ppm of at least one cationic polymer, optionally, about 10 to about 2000 ppm of a polyoxyalkylene polymer; and an aqueous carrier therefor. The at least one cationic polymer is selected from a poly(vinylpyridine) polymer and a combination of a poly(vinylpyridine) polymer and a quaternary ammonium-substituted polymer. Methods of polishing substrates and of selectively removing silicon nitride from a substrate in preference to removal of polysilicon using the compositions are also provided.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 19, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventor: William Ward
  • Publication number: 20140225028
    Abstract: Methods for preventing isotropic removal of materials at corners faulted by seams, keyholes, and other anomalies in films or other structures include use of etch blockers to cover or coat such corners. This covering or coating prevents exposure of the corners to isotropic etch solutions and cleaning solutions and, thus, prevents higher material removal rates at the corners than at smoother areas of the structure or film. Solutions, including wet etchants and cleaning solutions, that include at least one type of etch blocker are also disclosed, as are systems for preventing higher rates of material removal at corners formed by seams, crevices, or recesses in a film or other structure. Semiconductor device structures in which etch blockers are located so as to prevent isotropic etchants from removing material from corners of seams, crevices, or recesses of a film or other structure at undesirably high rates are also disclosed.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Nishant Sinha, J. Neil Greeley
  • Patent number: 8801958
    Abstract: A titanium etchant composition and a method of forming a semiconductor device using the same, the titanium etchant composition including a titanium remover; a corrosion inhibitor; and a deionized water; wherein the corrosion inhibitor includes 5-aminotetrazole.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 12, 2014
    Assignees: Samsung Electronics Co., Ltd., Samyoung Pure Chemicals Co., Ltd.
    Inventors: Dong-Min Kang, Heon jin Park, Kyoochul Cho, Baiksoon Choi, Seunghyun Ahn, Jeong Kwon, JungIg Jeon
  • Patent number: 8795549
    Abstract: The present invention relates to novel printable etching media having improved properties for use in the process for the production of solar cells. These are corresponding particle-containing compositions by means of which extremely fine lines and structures can be etched very selectively without damaging or attacking adjacent areas.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 5, 2014
    Assignee: Merck Patent GmbH
    Inventors: Werner Stockum, Armin Kuebelbeck
  • Patent number: 8790521
    Abstract: A combination, composition and associated method for chemical mechanical planarization of a tungsten-containing substrate are described herein which afford tunability of tungsten/dielectric selectivity and low selectivity for tungsten removal in relation to dielectric material. Removal rates for both tungsten and dielectric are high and stability of the slurry (e.g., with respect to pH drift over time) is high.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: July 29, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rachel Dianne McConnell, Ann Marie Hurst
  • Patent number: 8778217
    Abstract: Disclosed is a polishing slurry for CMP which makes it possible to polish a barrier layer, a wiring metal layer and an interlayer dielectric continuously, and restrain a phenomenon that the interlayer dielectric in a region near the wiring metal layer is excessively shaven off so that a depression is generated. A polishing slurry, for CMP, containing abrasive particles, an acid, a tolyltriazole compound represented by the following general formula (I), and water: wherein R1s each independently represent an alkylene group having 1 to 4 carbon atoms, and R2 represents an alkylene group having 1 to 4 carbon atoms.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: July 15, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventor: Tadahiro Kimura
  • Patent number: 8778210
    Abstract: Compositions useful for the selective removal of silicon nitride materials relative to poly-silicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 ? min?1.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: July 15, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Emanuel I. Cooper, Eileen R. Sparks, William R. Bowers, Mark A. Biscotto, Kevin P. Yanders, Michael B. Korzenski, Prerna Sonthalia, Nicole E. Thomas
  • Publication number: 20140193945
    Abstract: Disclosed herein is an aqueous alkaline etching solution comprising water and an alkaline material being selected from the group consisting of ammonium hydroxide, ammonium phosphate, ammonium carbonate, quaternary ammonium hydroxide, quaternary ammonium phosphate, quaternary ammonium carbonate, an alkali metal hydroxide, an alkaline earth metal hydroxide, or a combination comprising at least one of the foregoing alkaline materials; the aqueous alkaline solution being operative to etch aluminum oxide at a rate greater than or equal to about 2:1 over a rate at which it etches a metal oxide semiconductor to be protected; wherein the aqueous etching solution has a pH of 8 to 13.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 10, 2014
    Inventors: Yuanyuan Li, Kaige Sun, Thomas N. Jackson
  • Patent number: 8771540
    Abstract: The present disclosure provides a concentrate for use in chemical mechanical polishing slurries, and a method of diluting that concentrate to a point of use slurry. The concentrate comprises abrasive, complexing agent, and corrosion inhibitor, and the concentrate is diluted with water and oxidizer. These components are present in amounts such that the concentrate can be diluted at very high dilution ratios, without affecting the polishing performance.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 8, 2014
    Assignee: Fujifilm Planar Solutions, LLC
    Inventors: Hyungjun Kim, Richard Wen, Bin Hu, Minae Tanaka, Deepak Mahulikar
  • Publication number: 20140186996
    Abstract: The present invention relates to an etchant and an etching process, which are preferred for use in etching of oxides containing at least indium and gallium, such as an oxide consisting of indium, gallium and oxygen or an oxide consisting of indium, gallium, zinc and oxygen. According to preferred embodiments of the present invention, an etchant comprising sulfuric acid or a salt thereof and a carboxylic acid (except for oxalic acid) or a salt thereof ensures a preferred etching rate, a good residue removal property and low corrosiveness to wiring materials when used in etching of oxides containing at least indium and gallium. Moreover, this etchant not only causes no precipitate but also retains a preferred etching rate even when the concentration of oxides dissolved in the etchant is elevated.
    Type: Application
    Filed: November 19, 2013
    Publication date: July 3, 2014
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hidenori TAKEUCHI, Kunio YUBE, Satoshi OKABE, Mari USUI
  • Publication number: 20140174312
    Abstract: The disclosure provides a composition for gravure offset printing, including 7-92 parts by weight of a functional material, 1-76 parts by weight of a polymer, 4-13 parts by weight of a solvent, and 1-2.5 parts by weight of an additive, wherein a surface tension of the composition is between 20-40 mN/m. The disclosure further provides a gravure offset printing process, including providing a template containing a gravure pattern, filling the composition in the gravure pattern of the template, transferring the composition from the template onto a blanket, and transferring the composition from the blanket to a substrate, wherein a transfer ratio of the composition from the blanket to the substrate is above 80%.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 26, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Ming WANG, Chih-Wei HSIEH
  • Patent number: 8758634
    Abstract: Disclosed is a composition for and applying said method for micro etching of copper or copper alloys during manufacture of printed circuit boards. Said composition comprises a copper salt, a source of halide ions, a buffer system and a benzothiazole compound as an etch refiner. The inventive composition and method is especially useful for manufacture of printed circuit boards having structural features of ?100 ?m.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 24, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Dirk Tews, Christian Sparing, Martin Thoms
  • Patent number: 8753528
    Abstract: The present disclosure provides a chemical etchant which is capable of removing Ge and Ge-rich SiGe alloys in a controlled manner. The chemical etchant of the present disclosure includes a mixture of a halogen-containing acid, hydrogen peroxide, and water. Water is present in the mixture in an amount of greater than 90% by volume of the entire mixture. The present disclosure also provides a method of making such a chemical etchant. The method includes mixing, in any order, a halogen-containing acid and hydrogen peroxide to provide a halogen-containing acid/hydrogen peroxide mixture, and adding water to the halogen-containing acid/hydrogen peroxide mixture. Also disclosed is a method of etching a Ge or Ge-rich SiGe alloy utilizing the chemical etchant of the present application.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: June 17, 2014
    Assignees: International Business Machines Corporation, S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Stephen W. Bedell, Keith E. Fogel, Nicolas Daval
  • Publication number: 20140162403
    Abstract: The present invention relates to an etching solution being capable of selectively etching a copper/molybdenum-based multilayer thin film with respect to a semiconductor device having an oxide semiconductor layer and a copper/molybdenum-based multilayer thin film, wherein the etching solution comprises (A) hydrogen peroxide, (B) an inorganic acid containing no fluorine atom, (C) an organic acid, (D) an amine compound having 2 to 10 carbon atoms, and having an amino group and at least one group selected from an amino group and a hydroxyl group, (E) an azole, and (F) a hydrogen peroxide stabilizer, and has a pH of 2.5 to 5, as well as an etching method using the etching solution for selectively etching a copper/molybdenum-based multilayer thin film from a semiconductor device having an oxide semiconductor layer and a copper/molybdenum-based multilayer thin film.
    Type: Application
    Filed: July 25, 2012
    Publication date: June 12, 2014
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Satoshi Okabe, Tomoyuki Adaniya, Taketo Maruyama
  • Patent number: 8747687
    Abstract: An aqueous CMP agent, comprising (A) solid polymer particles interacting and forming strong complexes with the metal of the surfaces to be polished; (B) a dissolved organic non-polymeric compound interacting and forming strong, water-soluble complexes with the metal and causing an increase of the material removal rate MRR and the static etch rate SER with increasing concentration of the compound (B); and (C) a dissolved organic non-polymeric compound interacting and forming slightly soluble or insoluble complexes with the metal, which complexes are capable of being adsorbed by the metal surfaces, and causing a lower increase of the MRR than the compound (B) and a lower increase of the SER than the compound (B) or no increase of the SER with increasing concentration of the compound (C); a CMP process comprising selecting the components (A) to (C) and the use of the CMP agent and process for polishing wafers with ICs.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 10, 2014
    Assignee: BASF SE
    Inventors: Vijay Immanuel Raman, Ilshat Gubaydullin, Yuzhuo Li, Mario Brands, Yongqing Lan
  • Patent number: 8741167
    Abstract: This invention provides a method of making a photovoltaic cell. The method uses an etching composition comprising one or more onium salts selected from the group consisting of iodonium salts and sulfonium and an organic medium to etch the anti-reflection coating. Also provided is a photovoltaic cell made by this method.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: June 3, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Angel R Cartagena, Feng Gao, Haixin Yang, Lei Zhang
  • Patent number: 8734665
    Abstract: A composition and a method for chemical mechanical polishing. The composition includes a surfactant anion an alkyl alcohol, a controlled amount of chloride ion source and a diluent. The composition further includes abrasive particles and an oxidizer. The method includes providing the composition on a surface to be polished and polishing the surface by contacting the surface with a polishing pad.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Graham M. Bates, Michael T. Brigham, Joseph K. Comeau, Jason P. Ritter, Eva A. Shah, Matthew T. Tiersch, Eric J. White
  • Patent number: 8735293
    Abstract: A method for chemical mechanical polishing of a substrate comprising a germanium-antimony-tellurium chalcogenide phase change alloy using a chemical mechanical polishing composition comprising water; 1 to 40 wt % colloidal silica abrasive particles having an average particle size of ?50 nm; and 0 to 5 wt % quarternary ammonium compound; wherein the chemical mechanical polishing composition is oxidizer free and chelating agent free; and, wherein the chemical mechanical polishing composition has a pH >6 to 12.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 27, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Zhendong Liu