Incoherent Light Emitter Patents (Class 257/13)
  • Patent number: 11476393
    Abstract: A phosphor-converted light-emitting device comprising an emitter device configured to emit a spectrum of electromagnetic radiation, a conversion layer comprising at least one phosphor, the conversion layer being configured to convert electromagnetic radiation of the spectrum into electromagnetic radiation of a different further spectrum, and a blocking layer configured to attenuate electromagnetic radiation outside the further spectrum, the conversion layer being arranged between the emitter device and the blocking layer.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 18, 2022
    Assignee: AMS AG
    Inventors: Gunter Siess, Julius Komma, Peter Roentgen, Martin Salt
  • Patent number: 11469345
    Abstract: A vertical light emitting diode structure with high current dispersion and high reliability comprises a conductive substrate with a central region and a side region; a light emitting semiconductor layer is disposed on the central region; an ohmic contact metal layer is disposed at a center of the light emitting semiconductor layer; an N-type electrode is disposed at the side region and is connected with the ohmic contact metal layer and the N-type electrode through an N-type electrode bridging structure; a working current is diffused from the center of the light emitting semiconductor layer to have high current dispersion, so that the problem of heat dissipation of local high current caused by the design that the N-type electrode is disposed on the edge can be solved.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: October 11, 2022
    Assignee: EXCELLENCE OPTO. INC.
    Inventors: Fu-Bang Chen, Kuo-Hsin Huang
  • Patent number: 11450749
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor structure including a buffer layer disposed between an active layer and a substrate. The active layer overlies the substrate. The substrate and the buffer layer include a plurality of pillar structures that extend vertically from a bottom surface of the active layer in a direction away from the active layer. A top electrode overlies an upper surface of the active layer. A bottom electrode underlies the substrate. The bottom electrode includes a conductive body and a plurality of conductive structures that respectively extend continuously from the conductive body, along sidewalls of the pillar structures, to a lower surface of the active layer.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chung Chang, Chun Lin Tsai, Ru-Yi Su, Wei Wang, Wei-Chen Yang
  • Patent number: 11450793
    Abstract: A semiconductor structure, a method for producing a semiconductor structure and a light emitting device are disclosed. In an embodiment a semiconductor structure includes a plurality of discrete encapsulated semiconductor nanoparticles and a plurality of discrete semiconductor free nanoparticles, wherein the discrete encapsulated semiconductor nanoparticles and the discrete semiconductor free nanoparticles form an agglomerate.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 20, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: James Wyckoff, Joseph Treadway, Kari N. Haley
  • Patent number: 11437430
    Abstract: A light-emitting device includes a substrate with light-emitting units. The light-emitting units include a first light-emitting unit, a second light-emitting unit, and one or more of third light-emitting units. Each of the light-emitting units includes a first semiconductor layer, an active layer and a second semiconductor layer. An insulating layer includes a first insulating layer opening and a second insulating layer opening formed on each of the light-emitting units. A first extension electrode covers the first light-emitting unit and the first extension electrode covers the first insulating layer opening on the first light-emitting unit. A second extension electrode covers the second light-emitting unit and the second extension electrode covers the second insulating layer opening on the second light-emitting unit. First and second electrode pads cover different parts of the light-emitting units.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: September 6, 2022
    Assignee: EPISTAR CORPORATION
    Inventors: Chao-Hsing Chen, Chi-Shiang Hsu, Yong-Yang Chen
  • Patent number: 11430913
    Abstract: The present disclosure relates to the field of LED display technologies, and provides an LED chip, an LED light emitting substrate, a display device and a control method thereof. Specifically, the LED chip comprises: an N-type semiconductor layer, a P-type semiconductor layer, as well as a quantum well layer between the N-type semiconductor layer and the P-type semiconductor layer. The quantum well layer is made of indium gallium nitride, wherein indium atoms have a molar ratio of greater than or equal to 0.3 in the indium gallium nitride.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: August 30, 2022
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Huijuan Wang, Meili Wang, Zhenhua Lv, Fei Wang, Zezhou Yang
  • Patent number: 11430659
    Abstract: A light-emitting device includes: a substrate; and a laminated structure provided at the substrate and having a plurality of columnar parts. The columnar part has: an n-type first semiconductor layer; a p-type second semiconductor layer; a light-emitting layer provided between the first semiconductor layer and the second semiconductor layer; and an electrode provided on a side opposite to a side of the substrate, of the laminated structure. The first semiconductor layer is provided between the light-emitting layer and the substrate. An end part on a side opposite to a side of the substrate, of the light-emitting layer, has a first facet surface. An end part on a side opposite to a side of the substrate, of the second semiconductor layer, has a second facet surface. A relation of ?2??1 is satisfied, where ?1 is a taper angle of the first facet surface, and ?2 is a taper angle of the second facet surface. ?1 is 70° or smaller, and ?2 is 30° or greater.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 30, 2022
    Inventors: Takafumi Noda, Katsumi Kishino
  • Patent number: 11424210
    Abstract: A light-emitting package includes a substrate having a mounting area, one or more light-emitting devices mounted on the mounting area of the substrate, a transparent resin section having a light transmitting property for sealing the one or more light-emitting devices, and a light-reflective member molded on one part of the substrate, which is outside the mounting area on which the one or more light-emitting devices are mounted. There is a distance greater than zero between the light-reflective member and the mounting area.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: August 23, 2022
    Assignee: Xiamen San'an Optoelectronics Co., Ltd.
    Inventor: Tsukasa Inoguchi
  • Patent number: 11424289
    Abstract: LED apparatuses featuring etched mesas and techniques for manufacturing LED apparatuses are described, including techniques for reducing surface recombination and techniques for charge carrier confinement. Etched facets of an LED mesa can be passivated using epitaxial regrowth of one or more semiconductor regrowth layers. The one or more semiconductor regrowth layers can include a transition layer. The transition layer can be configured with a bandgap energy between that of layers that are on opposite sides of the transition layer. A transition layer can separate an etched facet and another regrowth layer or separate two regrowth layers. In some instances, selective etching can be performed to preferentially etch a quantum well layer relative to a barrier layer. The selective etching removes surface imperfections, which contribute to surface recombination and which tend to be more prevalent in etched facets of the quantum well layer than etched facets of the barrier layer.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: August 23, 2022
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventors: Anurag Tyagi, James Ronald Bonar, Gareth Valentine
  • Patent number: 11424393
    Abstract: A light-emitting module and a light-emitting diode are provided. The light-emitting diode includes an epitaxial light-emitting structure to generate a light beam with a broadband blue spectrum. A spectrum waveform of the broadband blue spectrum has a full width at half maximum (FWHM) larger than or equal to 30 nm. The spectrum waveform has a plurality of peak inflection points, and a difference between two wavelength values to which any two adjacent ones of the peak inflection points respectively correspond is less than or equal to 18 nm.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 23, 2022
    Assignee: KAISTAR LIGHTING (XIAMEN) CO., LTD.
    Inventors: Jing-Qiong Zhang, Ben-Jie Fan, Hung-Chih Yang, Shuen-Ta Teng
  • Patent number: 11410975
    Abstract: A method of manufacturing a display device 1 includes: providing a substrate including at least one sub-pixel defined therein and a first wiring disposed for the sub-pixel, and the light-emitting element that includes a first electrode disposed on a lower surface and a second electrode disposed on at least two lateral surfaces intersecting with each other; mounting the light-emitting element on the substrate and electrically connecting the first electrode to the first wiring; forming a resin member covering the at least one light-emitting element, on the substrate, exposing a portion of the second electrode from an upper surface of the resin member by removing an upper portion of the resin member; and forming a second wiring with a mesh shape on the resin member such that a portion of the second wiring is disposed on the light-emitting element to electrically connect the second wiring to the second electrode.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 9, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Kinya Ichikawa, Katsuyoshi Kadan, Masahiko Sano, Ryohei Hirose, Hiroshi Yoneda
  • Patent number: 11404603
    Abstract: A nitride semiconductor light-emitting element includes an active layer including an AlGaN-based barrier layer, a p-type contact layer located on an upper side of the active layer, and an electron blocking stack body located between the active layer and the p-type contact layer. The electron blocking stack body includes a first electron blocking layer and a second electron blocking layer. The first electron blocking layer is located on the active layer side and has a higher Al composition ratio than an Al composition ratio in the barrier layer. The second electron blocking layer is located on the p-type contact layer side and has a lower Al composition ratio than an Al composition ratio in the barrier layer.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: August 2, 2022
    Assignee: Nikkiso Co., Ltd.
    Inventors: Yusuke Matsukura, Tetsuhiko Inazu, Cyril Pernot
  • Patent number: 11404601
    Abstract: LED donor substrates and conductive architectures for on-wafer testing are described. In an embodiment, an array of LEDs is supported by an array of electrically conductive stabilization posts. The electrically conductive stabilization posts can be coupled with a test pad for on-wafer testing prior to transferring the LEDs to a receiving substrate.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: August 2, 2022
    Assignee: Apple Inc.
    Inventors: Ranjith Samuel E. John, Adam C. Abrahamsen, Clayton K. Chan, Madhan M. Raj, Michael Y. Chan, Nazneen N. Jeewakhan, Yu S. Yang
  • Patent number: 11404399
    Abstract: The present disclosure provides a chip transfer substrate, a chip transfer device and a chip transfer method. The chip transfer substrate includes a substrate, a plurality of bases spaced apart from each other on the substrate, the plurality of bases being configured to carry micro light emitting diodes (Micro LEDs) to be transferred and being movable on the substrate; and a plurality of distance adjusting components each arranged between two adjacent bases and configured to adjust a distance between the two adjacent bases.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 2, 2022
    Assignees: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Hanyan Sun, Dongqi Liu, Hui Zheng, Xiaojian Yang
  • Patent number: 11404325
    Abstract: Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanostructure channels and NMOS transistors comprising silicon nanostructure channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanostructure channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanostructure channels for NMOS transistors. PMOS transistors having germanium nanostructure channels and NMOS transistors having silicon nanostructure channels are formed as part of a single fabrication process.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jin-Aun Ng, Kuo-Cheng Chiang, Carlos H. Diaz, Jean-Pierre Colinge
  • Patent number: 11398532
    Abstract: A light-emitting device includes: an anode electrode; a cathode electrode; a plurality of light-emitting layers sandwiched between the anode electrode and the cathode electrode; and a light absorption layer disposed between the plurality of light-emitting layers and a light extraction surface, wherein the plurality of light-emitting layers include InP based quantum dots and are configured to emit at least green color of light and red color of light, and the light absorption layer selectively absorbs light at 570 to 610 nm.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: July 26, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenichi Yoshimura, Tadashi Kobashi, Masashi Kago, Tatsuya Ryohwa, Makoto Izumi
  • Patent number: 11398462
    Abstract: A light emitting device for a display including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, and a third LED sub-unit disposed on the second LED sub-unit, in which the third LED sub-unit is configured to emit light having a shorter wavelength than that of light emitted from the first LED sub-unit, and to emit light having a longer wavelength than that of light emitted from the second LED sub-unit.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: July 26, 2022
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Jong Min Jang, Chang Yeon Kim
  • Patent number: 11387368
    Abstract: To provide a method for driving a semiconductor device, by which influence of variation in threshold voltage and mobility of transistors can be reduced. The semiconductor device includes an n-channel transistor, a switch for controlling electrical connection between a gate and a first terminal of the transistor, a capacitor electrically connected between the gate and a second terminal of the transistor, and a display element. The method has a first period for holding the sum of a voltage corresponding to the threshold voltage of the transistor and an image signal voltage in the capacitor; a second period for turning on the switch so that electric charge held in the capacitor in accordance with the sum of the image signal voltage and the threshold voltage is discharged through the transistor; and a third period for supplying a current to the display element through the transistor after the second period.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: July 12, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 11380820
    Abstract: In a light emitting device, a columnar part includes a first semiconductor layer, a second semiconductor layer different in conductivity type from the first semiconductor layer, and a light emitting layer disposed between the first semiconductor layer and the second semiconductor layer, the first semiconductor layer is disposed between the substrate and the light emitting layer, the light emitting layer includes a first layer, and a second layer larger in bandgap than the first layer, the first semiconductor layer has a facet plane, the first layer has a facet plane, the facet plane of the first semiconductor layer is provided with the first layer, and ?2>?1, in which ?1 is a tilt angle of the facet plane of the first semiconductor layer with respect to a surface of the substrate provided with the laminated structure, and ?2 is a tilt angle of the facet plane of the first layer provided to the facet plane of the first semiconductor layer with respect to the surface of the substrate.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: July 5, 2022
    Inventors: Takafumi Noda, Katsumi Kishino
  • Patent number: 11380818
    Abstract: A semiconductor light emitting device including at least one light emitting structure on a substrate, the at least one light emitting structure including a first semiconductor pattern, an active pattern, and a second semiconductor pattern sequentially stacked in a vertical direction substantially perpendicular to an upper surface of the substrate; a first electrode contacting a substrate-facing surface of the first semiconductor pattern; and a second electrode at least partially surrounding and contacting a sidewall of the second semiconductor pattern.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: July 5, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongin Yang, Hankyu Seong, Sunghyun Sim, Jihye Yeon, Hanul Yoo, Jihoon Yun
  • Patent number: 11367811
    Abstract: A white LED including red phosphor, at least one blue LED chip and at least one green LED chip, wherein a red light, a blue light and a green light are mixed simultaneously to produce a white light. The red phosphor comprises a first red phosphor and a second red phosphor. The first red phosphor is made from a substance having structure formula M2AX6:Mn4+, wherein the element M is selected from Li, Na, K, Rb or Cs, the element A is selected from Ti, Si, Ge or Zr, and the element X is selected from F, Cl or Br; the ratio of the second red phosphor to the red phosphor ranges from 0.01% to 15%. Further provided is a backlight module. The adjustably colored points of a device comprising M2AX6:Mn4+ are achieved by adding a second red phosphor to the red phosphor comprising M2AX6:Mn4+.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 21, 2022
    Assignee: APT ELECTRONICS CO., LTD.
    Inventors: Shuguang Yao, Chuiming Wan, Xiaofeng Long, ChiWing Keung, Zhaoming Zeng, Guowei David Xiao
  • Patent number: 11367807
    Abstract: A nitride semiconductor light emitting element includes a multi-quantum well layer including AlGaN, and including a plurality of well layers and producing light by combining carriers and emitting deep ultraviolet light with a central wavelength of 250 nm to 350 nm, a metal electrode part including Al that is located above the multi-quantum well layer and reflects a first light that is a part of the light produced by the multi-quantum well layer and travels upward, a multi-stacked semiconductor layer that is located between the multi-quantum well layer and the metal electrode part, includes a plurality of p-type semiconductor layers including p-type AlGaN, and is configured in such a manner that the first light travels out and back therewithin via reflection at the metal electrode part until meeting a second light that is a part of the light produced by the multi-quantum well layer and travels downward, and an ITO contact electrode part provided between the metal electrode part and the multi-quantum well layer
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: June 21, 2022
    Assignee: Nikkiso Co., Ltd.
    Inventors: Mitsugu Wada, Yusuke Matsukura, Yuta Furusawa
  • Patent number: 11366153
    Abstract: An epitaxial LED wafer is provided and chip process is processed such that each LED chip on the epitaxial wafer can be probed by an array of probe pin and results can be stored in a database. The epitaxial wafer is then diced on an expandable tape, and a display substrate is provided with driving circuits. The tape is expanded such that a pitch of LED chips on the tape is equal to a pitch of LED chips on display substrate. An array of drop pins will collectively and selectively drop LED chips, from the tape to the display substrate, with the same specification according to the probed results in the database.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: June 21, 2022
    Assignees: KKT HOLDINGS SYNDICATE
    Inventors: Tzu-Yi Kuo, Cheng Ta Kao, Chiyan Kuan, Yu-Kuang Tseng
  • Patent number: 11362134
    Abstract: A light emitting device includes a vertical stack of a light emitting diode and a field effect transistor that controls the light emitting diode. An isolation layer is present between the light emitting diode and the field effect transistor, and an electrically conductive path electrically shorts a node of the light emitting diode to a node of the field effect transistor. The field effect transistor may include an indium gallium zinc oxide (IGZO) channel and may be located over the isolation layer. Alternatively, the field effect transistor may be a high-electron-mobility transistor (HEMT) including an epitaxial semiconductor channel layer and the light emitting diode may be located over the HEMT.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: June 14, 2022
    Assignee: NANOSYS, INC.
    Inventor: Zhen Chen
  • Patent number: 11355735
    Abstract: An embodiment of the present invention discloses a display panel and a display device. The display panel includes a dual-sided light emitting device layer, an optical modulation layer, and a cover plate layer. The optical modulation layer is located between the dual-sided light emitting device layer and the cover plate layer. The optical modulation layer is configured to reflect light emitted from the dual-sided light emitting device layer toward the cover plate layer. The present invention disposes the optical modulation layer between the dual-sided light emitting device layer and the cover plate layer to prevent light waste.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 7, 2022
    Inventor: Ming Liu
  • Patent number: 11348966
    Abstract: Provided is a display device including a substrate, a first electrode disposed on the substrate, a second electrode disposed on the substrate and spaced apart from the first electrode, a plurality of first sub-insulating layers extending in a first direction, disposed on the substrate and on the first and second electrodes, and arranged in a second direction crossing the first direction, and a plurality of light emitting elements disposed between the first sub-insulating layers and electrically connected to the first electrode and the second electrode.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 31, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyunae Kim, Youngdae Kim, Cha-dong Kim, Chongsup Chang, Euikang Heo
  • Patent number: 11345850
    Abstract: The present application discloses a composite and its preparation method and application. The composite includes silica-coated quantum dots and graphene nanosheets on the surface of the silica-coated quantum dots; wherein the silica-coated quantum dots include quantum dots and silica layer coated on the surface of the quantum dots. And the graphene nanosheets and the silica layer is bonded by (O—)3Si—R1—NHCO—R3—CONH—R2—Si(O—)3 or (O—)3Si—R4—SCH2CH2—R5—Si(O—)3, R1, R2, R4, R5 are respectively selected from a group consisting of a hydrocarbyl or a hydrocarbyl derivative, R3 is selected from a hydrocarbyl, a hydrocarbyl derivative, an aryl or an aryl derivative. The composite can further improve the stability of quantum dots without affecting the inherent optical properties of quantum dots, thereby improving luminous efficiency.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: May 31, 2022
    Assignee: TCL TECHNOLOGY GROUP CORPORATION
    Inventors: Zhiwen Nie, Yixing Yang
  • Patent number: 11342414
    Abstract: A semiconductor device includes a semiconductor layer, a metal layer electrically contacting the semiconductor layer, and a two-dimensional material layer between the semiconductor layer and the metal layer and having a two-dimensional crystal structure.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: May 24, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minhyun Lee, Haeryong Kim, Hyeonjin Shin, Seunggeol Nam, Seongjun Park
  • Patent number: 11335875
    Abstract: A quantum dot display substrate, a method for manufacturing a quantum dot display substrate and a display device are provided. The method includes: forming a carrier transport layer on a substrate; forming a quantum dot layer emitting light of a corresponding color in each of the pixel regions, and forming the quantum dot layer includes: forming a pattern-defining layer on the carrier transport layer, the pattern-defining layer exposes a portion of the carrier transport layer in the pixel region and covers remaining portion of the carrier transport layer, hydrophilicity and hydrophobicity of the pattern-defining layer are respectively opposite to those of the exposed portion of the carrier transport layer; coating a quantum dot solution, hydrophilicity and the hydrophobicity of the quantum dot solution are respectively the same as those of the exposed portion of the carrier transport layer; and curing the quantum dot solution.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 17, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Wenhai Mei
  • Patent number: 11329175
    Abstract: A semiconductor relay includes: a substrate; a semiconductor layer of a direct transition type which is on the substrate and which has semi-insulating properties; a p-type semiconductor layer on at least part of the semiconductor layer; a first electrode; and a second electrode. The first electrode is electrically connected to the semiconductor layer and in contact with the p-type semiconductor layer. The second electrode is spaced apart from the first electrode and at least partially in contact with one of the semiconductor layer and the substrate, and the first electrode includes a first opening part.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 10, 2022
    Assignee: Panasonic Holdings Corporation
    Inventors: Nanako Hirashita, Satoshi Tamura, Daisuke Shibata, Shinji Ujita
  • Patent number: 11329243
    Abstract: The present invention provides a quantum dot light-emitting diode device, which includes a substrate, a first electrode disposed on the substrate, a hole layer vertically disposed on an anode, wherein the hole layer includes a sidewall, an electron transport layer disposed on the sidewall, a quantum dot layer disposed on the electron transport layer, and a second electrode disposed on the electron transport layer. A density of the zinc oxide nanowire is high in the present disclosure, causing high light current density, which greatly improves a brightness of light to achieve a purpose of increasing a light-emitting performance of the light-emitting diode device.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: May 10, 2022
    Inventors: Yuanchun Wu, Shibo Jiao, Shuren Zhang, Jing Chen, Lixi Wang, Jiangyong Pan, Yan Tu
  • Patent number: 11322908
    Abstract: A nitride light emitter includes: a nitride semiconductor light-emitting element including an AlxGa1-xN substrate (0?x?1) and a multilayer structure above the AlxGa1-xN substrate; and a submount substrate on which the nitride semiconductor light-emitting element is mounted. The multilayer structure includes a first clad layer of a first conductivity type, a first light guide layer, a quantum-well active layer, a second light guide layer, and a second clad layer of a second conductivity type which are stacked sequentially from the AlxGa1-xN substrate. The multilayer structure and submount substrate are opposed to each other. The submount substrate comprises diamond. The nitride semiconductor light-emitting element has a concave warp on a surface closer to the AlxGa1-xN substrate.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 3, 2022
    Assignee: NUVOTON TECHNOLOGY CORPORATION JAPAN
    Inventors: Toru Takayama, Tohru Nishikawa, Tougo Nakatani, Katsuya Samonji, Takashi Kano, Shinji Ueda
  • Patent number: 11322647
    Abstract: In some embodiments, a light emitting structure comprises a layered semiconductor stack comprising a first set of doped layers, a second layer, a light emitting layer positioned between the first set of doped layers and the second layer, and an electrical contact to the first set of doped layers. The first set of doped layers can comprise a first sub-layer, a second sub-layer, and a third sub-layer, where the third sub-layer is adjacent to the light emitting layer. The electrical contact to the first set of doped layers can be made to the second sub-layer. The first, second and third sub-layers can be doped n-type, and an electrical conductivity of the second sub-layer can be higher than an electrical conductivity of the first and third sub-layers. In some cases, the second sub-layer can absorb more light emitted from the light emitting layer than the first or third sub-layers.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: May 3, 2022
    Assignee: Silanna UV Technologies Pte Ltd
    Inventors: Johnny Cai Tang, Chun To Lee, Guilherme Tosi, Christopher Flynn, Liam Anderson, Timothy William Bray, Petar Atanackovic
  • Patent number: 11322656
    Abstract: A semiconductor light emitting element includes: an n-type clad layer of an n-type aluminum gallium nitride (AlGaN)-based semiconductor material; an active layer of an AlGaN-based semiconductor material provided on a first top surface of the n-type clad layer; and an n-side electrode provided on a second top surface of the n-type clad layer adjacent to the first top surface. The n-side electrode includes a first metal layer on the second top surface containing titanium (Ti) and a second metal layer on the first metal layer containing aluminum (Al). A root-mean-square roughness (Rq) of a top surface of the second metal layer is 5 nm or less.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: May 3, 2022
    Assignee: NIKKISO CO., LTD.
    Inventors: Haruhito Sakai, Noritaka Niwa, Tetsuhiko Inazu
  • Patent number: 11319487
    Abstract: A semiconductor nanocrystal particle including zinc (Zn), tellurium (Te) and selenium (Se), a method of producing the same, and an electronic device including the same are disclosed. In the semiconductor nanocrystal particle, an amount of the tellurium is less than an amount of the selenium, the particle includes a core including a first semiconductor material including zinc, tellurium, and selenium and a shell disposed on at least a portion of the core and including a second semiconductor material having a different composition from the first semiconductor material, and the semiconductor nanocrystal particle emits blue light including a maximum peak emission at a wavelength of less than or equal to about 470 nanometers.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: May 3, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong Hee Lee, Eun Joo Jang, Hyun A Kang, Tae Hyung Kim
  • Patent number: 11309454
    Abstract: A deep ultraviolet LED with a design wavelength ?, including a reflecting electrode layer (Au), a metal layer (Ni), a p-GaN contact layer, a p-block layer made of a p-AlGaN layer, an i-guide layer made of an AlN layer, a multi-quantum well layer, an n-AlGaN contact layer, a u-AlGaN layer, an AlN template, and a sapphire substrate that are arranged in this order from a side opposite to the sapphire substrate, in which the thickness of the p-block layer is 52 to 56 nm, a two-dimensional reflecting photonic crystal periodic structure having a plurality of voids is provided in a region from the interface between the metal layer and the p-GaN contact layer to a position not beyond the interface between the p-GaN contact layer and the p-block layer in the thickness direction of the p-GaN contact layer, the distance from an end face of each of the voids in the direction of the sapphire substrate to the interface between the multi-quantum well layer and the i-guide layer satisfies ?/2n1Deff (where ? is the design wav
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 19, 2022
    Assignees: Marubun Corporation, Shibaura Machine Co., Ltd., RIKEN, ULVAC, Inc., Tokyo Ohka Kogyo Co., Ltd., Nippon Tungsten Co., Ltd., Dai Nippon Printing Co., Ltd., Dowa Holdings Co., Ltd.
    Inventors: Yukio Kashima, Eriko Matsuura, Mitsunori Kokubo, Takaharu Tashiro, Hideki Hirayama, Noritoshi Maeda, Masafumi Jo, Ryuichiro Kamimura, Yamato Osada, Kanji Furuta, Takeshi Iwai, Yohei Aoyama, Yasushi Iwaisako, Tsugumi Nagano, Yasuhiro Watanabe
  • Patent number: 11309686
    Abstract: A surface emitting laser includes: a semiconductor layer containing a nitride semiconductor, and including a first semiconductor layer, an active layer, and a second semiconductor layer that are stacked in this order, in which the semiconductor layer includes a light emitting region; and a first light reflecting layer and a second light reflecting layer that are opposed to each other with the semiconductor layer being disposed therebetween. The first semiconductor layer has a high dislocation portion disposed outside the light emitting region. The high dislocation portion has an average dislocation density higher than an average dislocation density of the light emitting region.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 19, 2022
    Assignee: SONY CORPORATION
    Inventors: Hiroshi Nakajima, Tatsushi Hamaguchi, Jugo Mitomo, Susumu Sato, Masamichi Ito, Hidekazu Kawanishi
  • Patent number: 11302852
    Abstract: A display panel and a method of manufacturing a display panel are provided. In a solution, a plurality of grooves are formed on at least one metal layer by an etching process, and a connection portion and the at least one metal layer are connected by an adhesive. The adhesive can flow into the grooves during a bonding process to form a plurality of protrusions to fill the grooves, thereby increasing a contact area with the at least one metal layer and increasing bonding strength between the adhesive and the at least one metal layer. It is possible to avoid poor soldering, dark spots, and the like of a light emitting device.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: April 12, 2022
    Inventor: Lijun Zhang
  • Patent number: 11302845
    Abstract: A semiconductor light-emitting element includes: an n-type clad layer of an n-type aluminum gallium nitride (AlGaN)-based semiconductor material provided on a substrate; an active layer of an AlGaN-based semiconductor material provided on the n-type clad layer and configured to emit deep ultraviolet light having a wavelength of not shorter than 300 nm and not longer than 360 nm; and a p-type semiconductor layer provided on the active layer. The n-type clad layer is configured such that a transmittance for deep ultraviolet light having a wavelength of 300 nm or shorter is 10% or lower.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: April 12, 2022
    Assignee: NIKKISO CO., LTD.
    Inventors: Tetsuhiko Inazu, Cyril Pernot
  • Patent number: 11295971
    Abstract: An adsorption device includes a magnetic plate and a limiting layer. A surface of the magnetic plate includes a first region and a plurality of second regions spaced apart from each other. The first region and each second region do not overlap with each other. The first region forms a magnetic pole of the magnetic plate, and each second region forms the opposite magnetic pole of the magnetic plate. The limiting layer covers the first region. Each second region is exposed to the limiting layer and configured for adsorbing a small-scale LED as a target object.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: April 5, 2022
    Assignee: Century Technology (Shenzhen) Corporation Limited
    Inventors: Po-Liang Chen, Yung-Fu Lin, Hirohisa Tanaka, Yasunori Shimada
  • Patent number: 11281045
    Abstract: Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: March 22, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventors: Taek Joon Lee, Young Gu Kim, Keun Chan Oh, Sun Young Chang, Hye Lim Jang, Baek Kyun Jeon, Jin Soo Jung, Kyung Seon Tak, Jae Jin Lyu, Moon Jung Baek
  • Patent number: 11282985
    Abstract: The present invention discloses a flip-chip LED chip used in a backlight and a producing method thereof. The flip-chip LED chip used in the backlight comprises a substrate, an epitaxial layer, a transparent conductive layer, an insulating layer, a first reflecting layer, a second reflecting layer, a first electrode, and a second electrode. In the present invention, the first reflecting layer and the second reflecting layer are formed on both sides of the substrate. By adjusting the reflectance of the first reflecting layer and the second reflecting layer, the light emitted by the epitaxial layer is reflected by the first reflecting layer and the second reflecting layer, resulting in 20-40% of the light being emitted from the back of the chip, and 60-80% of the light being emitted from the side of the chip. This increases the light uniformity of the LED backlight.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 22, 2022
    Assignee: FOSHAN NATIONSTAR SEMICONDUCTOR CO., LTD
    Inventors: Liang Xu, Caixia Jin, Cheng Li, Chiaming Chuang
  • Patent number: 11276833
    Abstract: A method for manufacturing a quantum dots layer including providing a substrate on which a first electrode, a second electrode, and a third electrode are disposed; providing a first mixed solution including a first quantum dots, which have been surface-treated to have a first polarity, on the first to third electrodes; providing a second polarity opposite to the first polarity to the first electrode resulting in deposition of the first quantum dots on the first electrode; and drying the first mixed solution to form a first quantum dots layer.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: March 15, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sungmo Yeon
  • Patent number: 11275238
    Abstract: The invention relates to an active screen (220), i.e. to a light-emitting screen, comprising a matrix array of modules (222) that each form one pixel, and a matrix array (260) of control elements that are intended to address each of these modules, respectively. According to the invention, each module comprises at least three light-emitting submodules (224) that each include a three-dimensional light-emitting structure (250), and each control element is intended to individually address each submodule. A head-up display (1) comprising such a screen (220), and a device (24) for projecting images, said device being suitable for transmitting, in the direction of a semitransparent mirror (10) the images generated by said screen, is also described.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: March 15, 2022
    Assignee: VALEO COMFORT AND DRIVING ASSISTANCE
    Inventors: François Grandclerc, Pierre Mermillod
  • Patent number: 11276989
    Abstract: The present disclosure is related to a semiconductor device and a method of manufacturing the said semiconductor device. The semiconductor device comprising a stacked configuration of a plurality of semiconductor layers. At least one of the semiconductor layers is a III-V compound semiconductor layer, and at least one of the III-V compound semiconductor layers has formed thereonto a corresponding crystalline terminating oxide layer, wherein the at least one of the plurality of semiconductor layers interfaces via its crystalline terminating oxide layer to a neighbouring epitaxial semiconductor layer thereto. The semiconductor device is a quantum well device.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 15, 2022
    Assignee: Comptek Solutions Oy
    Inventors: Vicente Calvo Alonso, Johnny Dahl, Jouko Lang
  • Patent number: 11271138
    Abstract: A light emitting device for emitting UVC radiation. The device comprises a substrate and a patterned layer. The patterned layer comprises a plurality of mask regions on the substrate. Exposed portions of the substrate are disposed between the mask regions. A plurality of nanostructures are disposed on the exposed portions of the substrate and over the mask regions, the plurality of nanostructures being a single crystal semiconductor and comprising a core tip. An active layer is disposed over the plurality of nanostructures. The active layer is a quantum well structure and comprises at least one material chosen from AlN, AlGaN and GaN. A p-doped layer is disposed over the active layer. Both the active layer and the p-doped layer are conformal to the plurality of nanostructures so as to form an emitter tip over the core tip.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: March 8, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Shanying Cui, Danny Kim
  • Patent number: 11271033
    Abstract: Techniques, devices, and systems are disclosed and include LEDs with a first flat region, at a first height from an LED base and including a plurality of epitaxial layers including a first n-layer, a first active layer, and a first p-layer. A second flat region is provided, at a second height from the LED base and parallel to the first flat region, and includes at least a second n-layer. A sloped sidewall connecting the first flat region and the second flat region is provided and includes at least a third n-layer, the first n-layer being thicker than at least a portion of third n-layer. A p-contact is formed on the first p-layer and an n-contact formed on the second n-layer.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 8, 2022
    Assignee: Lumileds LLC
    Inventors: Costas Dimitropoulos, Sungsoo Yi, John Edward Epler, Byung-Kwon Han
  • Patent number: 11264535
    Abstract: An LED has: a substrate formed as a substrate layer; a buffer layer formed on the substrate layer; and an N? doped layer formed on the buffer layer. A first dual color blue/green MQW active region, a negative electrode, and a second dual color blue/green MQW active region formed on the N? doped layer. A first P? doped layer is formed on the first dual color blue green MQW active region. A second P? doped layer is formed on the second dual color blue green MQW active region. A first P+ doped layer is formed on the first P? doped layer. A second P+ doped layer is formed on the second P? doped layer. A first positive electrode is formed on the first P+ doped layer. A second positive electrode is formed on the second P+ doped layer. A blue/green LED with red luminescence materials emits a full spectrum.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 1, 2022
    Inventor: Jyh-Chia Chen
  • Patent number: 11264441
    Abstract: An organic light emitting display apparatus includes a substrate; a thin film transistor which is disposed over the substrate; a first electrode which is disposed over the substrate and electrically connected to the thin film transistor; a passivation layer which covers the thin film transistor and contacts a predetermined region of an upper surface of the first electrode; an intermediate layer which is disposed over the first electrode, includes an organic emission layer, and contacts a predetermined region of the passivation layer; and a second electrode which is disposed over the intermediate layer.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: March 1, 2022
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Seong-Hyun Jin, Seong-Ho Kim
  • Patent number: 11257687
    Abstract: A method for repairing etching damage on a nitride-based epitaxial layer of an optoelectronic device and an optoelectronic device attributable thereto are provided. The method includes: providing a nitrogen-containing working liquid and a annealing apparatus having a reaction chamber; heating the reaction chamber to a predetermined temperature; atomizing the nitrogen-containing working liquid, and introducing the thus formed nitrogen-containing spray into the reaction chamber; and subjecting the optoelectronic device to an annealing treatment in the reaction chamber in the presence of the nitrogen-containing spray, so as to repair the etching damage on the nitride-based epitaxial layer.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: February 22, 2022
    Assignee: National Chung-Hsing University
    Inventors: Tung-Hsing Wu, Shuo-Huang Yuan, Chih-Yi Yang