Device Protection (e.g., From Overvoltage) Patents (Class 257/173)
  • Patent number: 9209169
    Abstract: A semiconductor device includes: a semiconductor layer having an active region defined thereover, wherein the active region comprises a first sub-region and a second sub-region; a first doped region disposed in a portion of the semiconductor layer, extending across the first sub-region and the second sub-region; a high-voltage (HV) semiconductor element disposed over the semiconductor layer in the first sub-region, wherein the HV semiconductor element comprises a portion of the first doped region formed in the semiconductor layer in the first-sub region of the active region; and an electrostatic discharge (ESD) protection element disposed over the semiconductor layer in the second sub-region, wherein the ESD protection element comprises the other portion of the doped region formed in the semiconductor layer in the second sub-region of the active region.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: December 8, 2015
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventor: Tsung-Hsiung Lee
  • Patent number: 9202760
    Abstract: Devices, semiconductor structures and methods are provided, where a substrate is around a semiconductor device is biased via a resistive element.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 1, 2015
    Assignee: Infineon Technologies AG
    Inventor: Krzysztof Domanski
  • Patent number: 9203237
    Abstract: Circuit protection is provided. In accordance with one or more example embodiments, a thyristor-based circuit and a diode-based circuit are connected in series between an internal circuit terminal and reference terminal, for protecting the internal circuit terminal against circuit stresses such as overvoltage and/or overcurrent, as may be associated with electrostatic discharge. The thyristor and diode-based circuits operate in a first mode at which leakage current is limited by the thyristor, and in a second (protection) mode in which a voltage at the internal terminal exceeds a threshold level at which the thyristor-based circuit operates in a forward-biased mode and the diode operates in a breakdown mode, for shunting current between the internal circuit terminal and reference terminal.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 1, 2015
    Assignee: NXP B.V.
    Inventors: Hans-Martin Ritter, Achim Werner
  • Patent number: 9177952
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate comprising a buried insulator layer and a semiconductor layer over the buried insulator layer having a first conductivity type, and first and second bipolar transistor devices disposed in the semiconductor layer, laterally spaced from one another, and sharing a common collector region having a second conductivity type. The first and second bipolar transistor devices are configured in an asymmetrical arrangement in which the second bipolar transistor device includes a buried doped layer having the second conductivity type and extending along the buried insulator layer from the common collector region across a device area of the second bipolar transistor device.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai Ean Gill, Changsoo Hong, Michael H. Kaneshiro
  • Patent number: 9159719
    Abstract: A two-stage protection device for an electronic component protects against transient disturbances. The electronic component may be a semiconductor component, and may include one or multiple transistors and/or an integrated circuit. The protection device is connected to at least a first contact and a second contact of the electronic component, and is disposed essentially in parallel to the component that is to be protected, between the first contact and the second contact. The protection device includes a first stage with at least one diode and a second stage separated from the first stage by a resistor. The second stage includes at least one diode arrangement having two back-to-back disposed diodes which are disposed cathode-to-cathode.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: October 13, 2015
    Assignee: Infineon Technologies AG
    Inventors: Michael Mayerhofer, Andrei Cobzaru, Adrian Finney, Ulrich Glaser, Gilles Guerrero, Bogdan-Eugen Matei, Markus Mergens
  • Patent number: 9153679
    Abstract: A silicon-controlled rectification device with high efficiency is disclosed, which comprises a P-type region surrounding an N-type region. A first P-type heavily doped area is arranged in the N-type region and connected with a high-voltage terminal. A plurality of second N-type heavily doped areas is arranged in the N-type region. A plurality of second P-type heavily doped areas is closer to the second N-type heavily doped areas than the first N-type heavily doped area and arranged in the P-type region. At least one third N-type heavily doped area is arranged in the P-type region and connected with a low-voltage terminal. Alternatively or in combination, the second N-type heavily doped areas and the second P-type heavily doped areas are respectively arranged in the P-type region and the N-type region.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 6, 2015
    Assignee: Amazing Microelectronic Corp.
    Inventors: Tung-Yang Chen, James Jeng-Jie Peng, Woei-Lin Wu, Ryan Hsin-Chin Jiang
  • Patent number: 9130008
    Abstract: Some embodiments relate to a silicon controlled rectifier (SCR) that includes a current path which couples an SCR anode to an SCR cathode. The current path includes a first vertical current path component coupled to the SCR anode, and a second vertical current path component coupled to the SCR cathode. A horizontal current path component includes a first well region and a second well region that meet at a junction lying along a first plane. The first and second well regions cooperatively span a distance between the first and second vertical current path components. The first and second vertical current path components mirror one another symmetrically about the first plane.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: September 8, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yu Lin, Ming-Dou Ker, Ming Hsien Tsai, Li-Wei Chu, Ming-Hsiang Song
  • Patent number: 9123540
    Abstract: Signal IO protection devices referenced to a single supply are provided herein. In certain implementations, a protection device includes a first silicon controlled rectifier (SCR) and a first diode for providing protection between a signal node and a power supply network, such as a power low supply network or a power high supply network. The SCR and diode structures are integrated in a common circuit layout, such that certain wells and active regions are shared between structures. In other implementations, a protection device includes first and second SCRs for providing protection between the signal node and the power low supply network or between the signal node and the power high supply network, and the SCR structures are integrated in a common circuit layout. The protection devices are suitable for single cell data conversion interface protection to a single supply in sub 3V operation.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 1, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Javier Alejandro Salcedo, Srivatsan Parthasarathy
  • Patent number: 9117834
    Abstract: An ESD protection device includes a first discharge electrode and a second discharge electrode arranged to oppose each other, a discharge supporting electrode formed so as to span between the first and second discharge electrodes, and an insulator substrate that retains the first and second discharge electrodes and the discharge supporting electrode. The discharge supporting electrode is constituted by a group of a plurality of metal particles each coated with a semiconductor film containing silicon carbide. This discharge supporting electrode is obtained by firing a semiconductor-metal complex powder in which a semiconductor powder composed of silicon carbide is fixed to surfaces of metal particles. Selection is made so that the relationship between a coating amount Q [wt %] of the semiconductor powder in the semiconductor-metal complex powder and a specific surface area S [m2/g] of the metal powder satisfies Q/S?8.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 25, 2015
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takahiro Sumi, Jun Adachi, Takayuki Tsukizawa
  • Patent number: 9093283
    Abstract: The present invention has for its purpose to provide a technique capable of reducing planar dimension of the semiconductor device. An input/output circuit is formed over the semiconductor substrate, a grounding wiring and a power supply wiring pass over the input/output circuit, and a conductive layer for a bonding pad is formed thereover. The input/output circuit is formed of MISFET elements in the nMISFET forming region and the pMISFET forming region, resistance elements in the resistance element forming regions and diode elements in the diode element forming regions functioning as protective elements. A wiring connected to the protective elements and positioned under the grounding wiring and the power supply wiring is pulled out in a pulling-out region between the nMISFET forming region and the pMISFET forming region and between the grounding wiring and the power supply wiring to be connected to the conductive layer.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: July 28, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takahiro Hayashi, Shunsuke Toyoshima, Kazuo Sakamoto, Naozumi Morino, Kazuo Tanaka
  • Patent number: 9093568
    Abstract: In a semiconductor diode a semiconductor body includes an injection efficiency control region between a drift region of a first conductivity type and a first electrode region of a second, opposite conductivity type. The injection efficiency control region includes a superjunction structure including a barrier region of the first conductivity type and a compensation region of a second conductivity type arranged consecutively along a lateral direction and directly adjoining each other. A net dopant concentration of the barrier region averaged along a vertical extension of the barrier region is at least three times greater than a net dopant concentration of the drift region averaged along 20% of a vertical extension of the drift zone adjoining the barrier region.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: July 28, 2015
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Johannes Georg Laven, Roman Baburske
  • Patent number: 9087809
    Abstract: An ultra-fast breakover diode has a turn on time TON that is less than 0.3 microseconds, where the forward breakover voltage is greater than +400 volts and varies less than one percent per ten degrees Celsius change. In another aspect of the invention, a breakover diode has a reverse breakdown voltage that is greater, in absolute magnitude, than the forward breakover voltage, where the forward breakover voltage is greater than +400 volts. Yet another aspect of the invention involves a string of series-connected breakover diode dice, along with a resistor string, in a packaged circuit. The packaged circuit acts like a single breakover diode having a large forward breakover voltage and a comparably large reverse breakdown voltage, even though the packaged circuit includes no discrete high voltage reverse breakdown diode. The packaged circuit is usable to supply a triggering current to a thyristor in a voltage protection circuit.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: July 21, 2015
    Assignee: IXYS Corporation
    Inventor: Subhas Chandra Bose Jayappa Veeramma
  • Publication number: 20150144996
    Abstract: A semiconductor device includes an SCR ESD device region disposed within a semiconductor body, and a plurality of first device regions of the first conductivity type disposed on a second device region of the second conductivity type, where the second conductivity type is opposite the first conductivity type. Also included is a plurality of third device regions having a sub-region of the first conductivity type and a sub-region of the second conductivity type disposed on the second device region. The first regions and second regions are distributed such that the third regions are not directly adjacent to each other. A fourth device region of the first conductivity type adjacent to the second device region and a fifth device region of the second conductivity type disposed within the fourth device region are also included.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 28, 2015
    Inventors: Krzysztof Domanski, Cornelius Christian Russ, Kai Esmark
  • Publication number: 20150144997
    Abstract: One embodiment of the present invention relates to a silicon-controlled-rectifier (SCR). The SCR includes a longitudinal silicon fin extending between an anode and a cathode and including a junction region there between. One or more first transverse fins traverses the longitudinal fin at one or more respective tapping points positioned between the anode and the junction region. Other devices and methods are also disclosed.
    Type: Application
    Filed: February 5, 2015
    Publication date: May 28, 2015
    Inventors: Mayank Shrivastava, Christian Russ, Harald Gossner
  • Patent number: 9041054
    Abstract: A high holding voltage (HV) electrostatic discharge (ESD) protection circuit comprises a silicon controlled rectifier (SCR) device and compensation regions located within the length between the anode and cathode (LAC) of the SCR device which increase the holding voltage of the SCR device. The compensation regions may introduce negative feedback mechanisms into the SCR device which may influence the loop gain of the SCR and cause it to reach regenerative feedback at a higher holding voltage.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 26, 2015
    Assignee: Sofics BVBA
    Inventors: Sven Van Wijmeersch, Olivier Marichal
  • Patent number: 9029910
    Abstract: A programmable semiconductor controlled rectifier (SCR) circuit is disclosed. The SCR includes a first terminal (310) and a second terminal (308). A first lightly doped region (304) having a first conductivity type (N?) is formed on a second lightly doped region (314) having a second conductivity type (P?). A first heavily doped region having the second conductivity type (P+) is formed within the first lightly doped region at a face of the substrate and coupled to the first terminal. A second heavily doped region having the first conductivity type (N+) is formed within the second lightly doped region at the face of the substrate and coupled to the second terminal. A third heavily doped region (400) having the second conductivity type (P+) is formed at the face of the substrate between the first and second heavily doped regions and electrically connected to the second lightly doped region.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: May 12, 2015
    Inventor: Robert N. Rountree
  • Patent number: 9029952
    Abstract: A semiconductor structure includes a substrate, a first well having a first conductive type, a second well having a second conductive type, a body region, a first doped region, a second doped region, a third doped region and a field plate. The first and second wells are formed in the substrate. The body region is formed in the second well. The first and second doped regions are formed in the first well and the body region, respectively. The second and first doped regions have the same polarities, and the dopant concentration of the second doped region is higher than that of the first doped region. The third doped region is formed in the second well and located between the first and second doped regions. The third and first doped regions have reverse polarities. The field plate is formed on the surface region between the first and second doped regions.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 12, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Chih-Ling Hung, Chien-Wen Chu, Hsin-Liang Chen, Wing-Chor Chan
  • Publication number: 20150102384
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate comprising a buried insulator layer and a semiconductor layer over the buried insulator layer having a first conductivity type, and first and second bipolar transistor devices disposed in the semiconductor layer, laterally spaced from one another, and sharing a common collector region having a second conductivity type. The first and second bipolar transistor devices are configured in an asymmetrical arrangement in which the second bipolar transistor device includes a buried doped layer having the second conductivity type and extending along the buried insulator layer from the common collector region across a device area of the second bipolar transistor device.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Rouying Zhan, Chai Ean Gill, Changsoo Hong, Michael H. Kaneshiro
  • Patent number: 9006783
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Patent number: 9000481
    Abstract: A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: April 7, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Jun Hu, Wayne F. Eng
  • Publication number: 20150091056
    Abstract: Disclosed is an electrostatic discharge (ESD) protection circuit. The ESD protection circuit may include a silicon controller rectifier (SCR) which may be triggered via at least one of its first trigger gate or second trigger gate. The ESD protection circuit may further include a highly doped region coupled to either the anode or cathode of the SCR, wherein the highly doped region may provide additional carriers to facilitate triggering of the SCR during an ESD event, whereby the SCR may be triggered more quickly.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Applicant: SOFICS BVBA
    Inventors: Bart Sorgeloos, Benjamin Van Camp, Olivier Marichal
  • Patent number: 8994110
    Abstract: A semiconductor integrated circuit is provided. In the semiconductor integrated circuit, each of ESD protection circuitries is disposed between two of TSV bumps arrayed in a matrix, the two being arranged adjacent to each other. First main power lines are disposed to overlap P-channel ESD protection elements. Second main power lines are disposed to overlap N-channel ESD protection elements. The first and second main power lines are arranged orthogonally to each other.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 31, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Kenichi Ishikawa
  • Patent number: 8994068
    Abstract: An electrostatic discharge protection clamp adapted to limit a voltage appearing across protected terminals of an integrated circuit to which the electrostatic discharge protection clamp is coupled is presented. The electrostatic discharge protection clamp includes a substrate, and a first electrostatic discharge protection device formed over the substrate. The first electrostatic discharge protection device includes a buried layer formed over the substrate, the buried layer having a first conductivity type and defining an opening located over a region of the substrate, a first transistor formed over the opening of the buried layer, the first transistor having an emitter coupled to a first cathode terminal of the electrostatic discharge protection clamp, and a second transistor formed over the buried layer, the second transistor having an emitter coupled to a first anode terminal of the electrostatic discharge protection clamp.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 31, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai E Gill, Changsoo Hong
  • Patent number: 8987779
    Abstract: An ESD protection device including second P-type wells, first P+-type doped regions, first N+-type doped regions and a P-type substrate having a first P-type well, an N-type well and an N-type deep well is provided. The second P-type wells are disposed in the N-type deep well. The first P+-type doped regions and the first N+-type doped regions are respectively disposed in the first P-type well, the N-type well and the second P-type wells in alternation. The first P+-type doped region in the N-type well and the N-type deep well are electrically connected to the first connection terminal. The doped regions in the first P-type well and the P-type substrate are electrically connected to the second connection terminal. The second P-type wells and the first N+-type doped regions therein form a diode string connected in series between the first N+-type doped region of the N-type well and the second connection terminal.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: March 24, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Qi-An Xu, Chieh-Wei He
  • Patent number: 8987778
    Abstract: Embodiments of the invention provide increased ESD protection suitable for high-voltage devices. In one embodiment, an internal DMOS circuit is placed in parallel with a lateral NPN ESD clamp. The clamp has both a high holding voltage, above the operating voltage of the DMOS circuit, and a high maximum current before breakdown. The discharge path of the clamp includes a high-voltage lightly doped well containing a low-voltage higher doped well. The dopant of both wells is the same type, and the interface between the two defines a graded junction. The emitter of the entire circuit is grounded and the collector is coupled to the voltage of the DMOS circuit.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: March 24, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Yue Zu, Hoang Phung Nguyen, Thomas E. Harrington, III
  • Publication number: 20150076557
    Abstract: Signal IO protection devices referenced to a single supply are provided herein. In certain implementations, a protection device includes a first silicon controlled rectifier (SCR) and a first diode for providing protection between a signal node and a power supply network, such as a power low supply network or a power high supply network. The SCR and diode structures are integrated in a common circuit layout, such that certain wells and active regions are shared between structures. In other implementations, a protection device includes first and second SCRs for providing protection between the signal node and the power low supply network or between the signal node and the power high supply network, and the SCR structures are integrated in a common circuit layout. The protection devices are suitable for single cell data conversion interface protection to a single supply in sub 3V operation.
    Type: Application
    Filed: October 31, 2013
    Publication date: March 19, 2015
    Applicant: Analog Devices, Inc.
    Inventors: Javier Alejandro Salcedo, Srivatsan Parthasarathy
  • Patent number: 8981425
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate including a low-side steering diode, a high-side steering diode integrated with a main Zener diode for suppressing a transient voltage. The low-side steering diode and the high-side steering diode integrated with the Zener diode are disposed in the semiconductor substrate and each constituting a vertical PN junction as vertical diodes in the semiconductor substrate whereby reducing a lateral area occupied by the TVS device. In an exemplary embodiment, the high-side steering diode and the Zener diode are vertically overlapped with each other for further reducing lateral areas occupied by the TVS device.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 17, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Madhur Bobde
  • Patent number: 8981426
    Abstract: The invention discloses an ESD protection circuit, including a P-type substrate; an N-well formed on the P-type substrate; a P-doped region formed on the N-well, wherein the P-doped region is electrically connected to an input/output terminal of a circuit under protection; a first N-doped region formed on the P-type substrate, the first N-doped region is electrically connected to a first node, and the P-doped region, the N-well, the P-type substrate, and the first N-doped region constitute a silicon controlled rectifier; and a second N-doped region formed on the N-well and electrically connected to a second node, wherein a part of the P-doped region and the second N-doped region constitute a discharging path, and when an ESD event occurs at the input/output terminal, the silicon controlled rectifier and the discharging path bypass electrostatic charges to the first and second nodes respectively.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 17, 2015
    Assignee: Nanya Technology Corporation
    Inventor: Wei-Fan Chen
  • Patent number: 8982581
    Abstract: Electro-static discharge (“ESD”) protection for a die of a multi-chip module is described. A contact has an externally exposed surface after formation of the die and prior to assembly of the multi-chip module. The contact is for a die-to-die interconnect of the multi-chip module. The contact is for an internal node of the multi-chip module after the assembly of the multi-chip module. A driver circuit is coupled to the contact and has a first input impedance. A discharge circuit is coupled to the contact for electrostatic discharge protection of the driver circuit and has a first forward bias impedance associated with a first discharge path. The first forward bias impedance is a fraction of the first input impedance.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 17, 2015
    Assignee: Xilinx, Inc.
    Inventors: James Karp, Michael J. Hart, Mohammed Fakhruddin, Steven T. Reilly
  • Patent number: 8975661
    Abstract: An asymmetrical bidirectional protection component formed in a semiconductor substrate of a first conductivity type, including: a first implanted area of the first conductivity type; a first epitaxial layer of the second conductivity type on the substrate and the first implanted area; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the second layer having a doping level different from that of the first layer; a second area of the first conductivity type on the outer surface of the epitaxial layer, opposite to the first area; a first metallization covering the entire lower surface of the substrate; and a second metallization covering the second area.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 10, 2015
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Benjamin Morillon
  • Patent number: 8975099
    Abstract: An ESD protection device is manufactured such that its ESD characteristics are easily adjusted and stabilized. The ESD protection device includes an insulating substrate, a cavity provided in the insulating substrate, at least one pair of discharge electrodes each including a portion exposed in the cavity, the exposed portions being arranged to face each other, and external electrodes provided on a surface of the insulating substrate and connected to the at least one pair of discharge electrodes. A particulate supporting electrode material having conductivity is dispersed between the exposed portions of the at least one pair of discharge electrodes in the cavity.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 10, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Jun Adachi, Jun Urakawa, Issei Yamamoto
  • Publication number: 20150060941
    Abstract: A device comprises a high voltage N well and a high voltage P well over an N+ buried layer, a high voltage P-type implanted region in the high voltage N well, a first N+ region over the high voltage P-type implanted region and a P+ region and a second N+ region over the high voltage P well.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventor: Hsin-Yen Hwang
  • Patent number: 8969914
    Abstract: An integrated circuit including a first power rail, a second power rail, a power clamp connected between the first and second power rails; and a trigger circuit connected to the power clamp and the first second power rails. The trigger circuit includes an RC element formed on the basis of field effect transistors, first inverter stage connected to the RC element, a second inverter stage, and a third inverter stage. The first, second and third inverter stages are connected in series to a control input of the power clamp. The trigger circuit also included a feed back connection from an output of the second inverter stage to the first inverter stage.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sreenivasa Chalamala, Matthias Baer
  • Patent number: 8970004
    Abstract: A junction diode array is disclosed for use in protecting integrated circuits from electrostatic discharge. The junction diodes integrate symmetric and asymmetric junction diodes of various sizes and capabilities. Some of the junction diodes are configured to provide low voltage and current discharge via un-encapsulated interconnecting wires, while others are configured to provide high voltage and current discharge via encapsulated interconnecting wires. Junction diode array elements include p-n junction diodes and N+/N++ junction diodes. The junction diodes include implanted regions having customized shapes. If both symmetric and asymmetric diodes are not needed as components of the junction diode array, the array is configured with isolation regions between diodes of either type. Some junction diode arrays include a buried oxide layer to prevent diffusion of dopants into the substrate beyond a selected depth.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 3, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu
  • Publication number: 20150054027
    Abstract: Device structures and design structures for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A device region is formed in a trench and is coupled with a handle wafer of a semiconductor-on-insulator substrate. The device region extends through a buried insulator layer of the semiconductor-on-insulator substrate toward a top surface of a device layer of the semiconductor-on-insulator substrate. The device region is comprised of lightly-doped semiconductor material. The device structure further includes a doped region formed in the device region and that defines a junction. A portion of the device region is laterally positioned between the doped region and the buried insulator layer of the semiconductor-on-insulator substrate. Another region of the device layer may be patterned to form fins for fin-type field-effect transistors.
    Type: Application
    Filed: October 14, 2014
    Publication date: February 26, 2015
    Inventors: William F. Clark, JR., Robert J. Gauthier, JR., Terence B. Hook, Junjun Li, Theodorus E. Standaert, Thomas A. Wallner
  • Patent number: 8963202
    Abstract: A semiconductor ESD protection apparatus comprises a substrate; a first doped well disposed in the substrate and having a first conductivity; a first doped area having the first conductivity disposed in the first doped well; a second doped area having a second conductivity disposed in the first doped well; and an epitaxial layer disposed in the substrate, wherein the epitaxial layer has a third doped area with the first conductivity and a fourth doped area with the second conductivity separated from each other. Whereby a first bipolar junction transistor (BJT) equivalent circuit is formed between the first doped area, the first doped well and the third doped area; a second BJT equivalent circuit is formed between the second doped area, the first doped well and the fourth doped area; and the first BJT equivalent circuit and the second BJT equivalent circuit have different majority carriers.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 24, 2015
    Assignee: United Microelectronics Corporation
    Inventors: Chang-Tzu Wang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 8963253
    Abstract: A bi-directional electrostatic discharge (ESD) protection device may include a substrate, an N+ doped buried layer, an N-type well region and two P-type well regions. The N+ doped buried layer may be disposed proximate to the substrate. The N-type well region may encompass the two P-type well regions such that a portion of the N-type well region is interposed between the two P-type well regions. The P-type well regions may be disposed proximate to the N+ doped buried layer and comprise one or more N+ doped plates, one or more P+ doped plates, one or more field oxide (FOX) portions, and one or more field plates. A multi-emitter structure is also provided.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsin-Liang Chen, Shuo-Lun Tu
  • Patent number: 8963200
    Abstract: Methods and apparatus for increased holding voltage SCRs. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of the first conductivity type; a second well of a second conductivity type adjacent to the first well, an intersection of the first well and the second well forming a p-n junction; a first diffused region of the first conductivity type formed at the first well and coupled to a ground terminal; a first diffused region of the second conductivity type formed at the first well; a second diffused region of the first conductivity type formed at the second well and coupled to a pad terminal; a second diffused region of the second conductivity type formed in the second well; and a Schottky junction formed adjacent to the first diffused region of the second conductivity type coupled to a ground terminal. Methods for forming devices are disclosed.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Tzu-Heng Chang, Tsung-Che Tsai, Ming-Hsiang Song
  • Publication number: 20150048416
    Abstract: Silicon controlled rectifiers (SCR), methods of manufacture and design structures are disclosed herein. The method includes forming a common P-well on a buried insulator layer of a silicon on insulator (SOI) wafer. The method further includes forming a plurality of silicon controlled rectifiers (SCR) in the P-well such that N+ diffusion cathodes of each of the plurality of SCRs are coupled together by the common P-well.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Inventors: Michel J. ABOU-KHALIL, Kiran V. CHATTY, Robert J. GAUTHIER, JR., Junjun LI
  • Patent number: 8956924
    Abstract: A semiconductor device includes an SCR ESD device region disposed within a semiconductor body, and a plurality of first device regions of the first conductivity type disposed on a second device region of the second conductivity type, where the second conductivity type is opposite the first conductivity type. Also included is a plurality of third device regions having a sub-region of the first conductivity type and a sub-region of the second conductivity type disposed on the second device region. The first regions and second regions are distributed such that the third regions are not directly adjacent to each other. A fourth device region of the first conductivity type adjacent to the second device region and a fifth device region of the second conductivity type disposed within the fourth device region are also included.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: February 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Krzysztof Domanski, Cornelius C. Russ, Kai Esmark
  • Patent number: 8956925
    Abstract: Device structures and design structures for a silicon controlled rectifier, as well as methods for fabricating a silicon controlled rectifier. The device structure includes first and second layers of different materials disposed on a top surface of a device region containing first and second p-n junctions of the silicon controlled rectifier. The first layer is laterally positioned on the top surface in vertical alignment with the first p-n junction. The second layer is laterally positioned on the top surface of the device region in vertical alignment with the second p-n junction. The material comprising the second layer has a higher electrical resistivity than the material comprising the first layer.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kiran V. Chatty, Robert J. Gauthier, Jr., Junjun Li, Alain Loiseau
  • Patent number: 8952456
    Abstract: A representative electrostatic discharge (ESD) protection circuit includes a silicon-controlled rectifier comprising an alternating arrangement of a first P-type semiconductor material, a first N-type semiconductor material, a second P-type semiconductor material and a second N-type semiconductor material electrically coupled between an anode and a cathode. The anode is electrically coupled to the first P-type semiconductor material and the cathode is electrically coupled to the second N-type semiconductor material. The ESD protection circuit further includes an inductor electrically coupled between the anode and the second P-type semiconductor material or between the cathode and the first N-type semiconductor material.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Do Ker, Chun-Yu Lin
  • Publication number: 20150035007
    Abstract: In a silicon-controlled rectifier, an anode region includes p-type anode well regions which are laterally surrounded by an n-type well region. A length of a p-type anode well region, as measured in a first direction, is greater than a width of the p-type anode well region, as measured in a second direction perpendicular to the first direction. A p-type well region meets the n-type well region at a junction, wherein the junction extends between the p-type well region and n-type well region in the second direction. A cathode region includes a plurality of n-type cathode well regions which are formed in the p-type well region. A length of an n-type cathode well region, as measured in the first direction, is greater than a width of the n-type cathode well region, as measured in the second direction.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Yi-Feng Chang
  • Patent number: 8946770
    Abstract: The present invention has for its purpose to provide a technique capable of reducing planar dimension of the semiconductor device. An input/output circuit is formed over the semiconductor substrate, a grounding wiring and a power supply wiring pass over the input/output circuit, and a conductive layer for a bonding pad is formed thereover. The input/output circuit is formed of MISFET elements in the nMISFET forming region and the pMISFET forming region, resistance elements in the resistance element forming regions and diode elements in the diode element forming regions functioning as protective elements. A wiring connected to the protective elements and positioned under the grounding wiring and the power supply wiring is pulled out in a pulling-out region between the nMISFET forming region and the pMISFET forming region and between the grounding wiring and the power supply wiring to be connected to the conductive layer.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: February 3, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Takahiro Hayashi, Shunsuke Toyoshima, Kazuo Sakamoto, Naozumi Morino, Kazuo Tanaka
  • Publication number: 20150029622
    Abstract: A semiconductor device is disclosed that includes a first well of a first conductivity type, a second well of a second conductivity type, a plurality of first regions, a second region and a plurality of electrodes. The first regions are of the first conductivity type and are formed in the second well. The second region is of the second conductivity type and is formed in the first well. Each of the electrodes is formed upon the second well and between adjacent two first regions of the first regions.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Ti SU, Wun-Jie LIN, Tsung-Che TSAI, Jen-Chou TSENG
  • Patent number: 8941181
    Abstract: An integrated circuit with a shallow trench isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode in parallel with a shallow trench isolated, low capacitance, ESD protection diode.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Sunitha Venkataraman, David L. Catlett, Jr.
  • Publication number: 20150022921
    Abstract: A semiconductor structure for enhanced ESD protection is disclosed. The semiconductor structure includes a plurality of fingers, wherein each finger of the plurality of fingers includes a plurality of voltage clamps, and each voltage clamp of the plurality of voltage clamps includes at least a first well having a first conductivity type and a second well having a second conductivity type, and a connection between a well tie of the first well of a first voltage clamp of the plurality of voltage clamps and a well tie of the first well of a second voltage clamp of the plurality of voltage clamps, wherein the connection is enabled to couple a bias voltage associated with a current flow in the first voltage clamp to the second voltage clamp, and the first voltage clamp and the second voltage clamp are thereby enabled to trigger on substantially simultaneously.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 22, 2015
    Applicant: INTERSIL AMERICAS LLC
    Inventor: James Edwin Vinson
  • Patent number: 8933483
    Abstract: Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ? i = 1 n ? ( R Mi × k Mi ) - ? i = 1 n ? ( R Si × k Si ) ] / ? i = 1 n ? ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidefumi Takaya, Kimimori Hamada, Yuji Nishibe
  • Patent number: 8933513
    Abstract: A semiconductor device is disclosed with a protection device formed of a parasitic bipolar transistor, a parasitic diode and a parasitic resistance and operated at a lowered operating voltage to be capable of improving a blocking capability against an over voltage. The impurity concentration in a semiconductor layer as the base of a parasitic bipolar transistor is lower compared with the impurity concentration of a semiconductor layer of the same conduction type arranged adjacently to the semiconductor layer as the base and to be the anode of a parasitic diode. The lowered impurity concentration is determined to be the concentration for making the parasitic bipolar transistor have a snapback phenomenon occur.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 13, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Osamu Sasaki
  • Patent number: 8928033
    Abstract: A semiconductor device, including a substrate having an active region defined therein, a plurality of bit lines extending on the substrate in a first direction, a plurality of interconnection lines extending on the substrate in a second direction, a pad electrically connected to the plurality of interconnection lines and configured to apply an external voltage, a plurality of metal contacts electrically connecting the interconnection lines and the plurality of bit lines, and a plurality of bit line contacts that are in contact with the active region and electrically connect the plurality of bit lines and the active region, wherein a size of at least some of the bit line contacts and/or at least some of the metal contacts vary based on a distance of the respective bit line contact or the metal contact from the pad.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Jong Kim, Jae-Hyeon Park, Sung-Hoon Bae, Jong-Wan Ma