Avalanche Photodetection Structure Patents (Class 257/186)
  • Patent number: 10431720
    Abstract: A light emitting device includes: a light emitting element including: a semiconductor structure including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, each containing a nitride semiconductor, a p-electrode disposed on a portion of a surface of the p-type semiconductor layer on a side opposite to a surface provided with the active layer, and an n-electrode disposed on a surface of the n-type semiconductor layer on a side opposite to a surface provided with the active layer in a region other than a region facing the p-electrode; and a protective film continuously covering a surface of the n-electrode and a surface of the n-type semiconductor layer. The protective film includes a first metal oxide film and a second metal oxide film that are alternately layered, the first metal oxide film containing a first metal, and the second metal oxide film containing a second metal.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 1, 2019
    Assignee: NICHIA CORPORATION
    Inventors: Takaaki Tada, Takayoshi Wakaki
  • Patent number: 10367111
    Abstract: An avalanche photodiode (APD) array with reduced cross talk comprises, in the illustrative embodiment, a 2D array of Geiger-mode APDs, wherein a via is formed partially through the backside (substrate) of each APD in the array, wherein the via is offset from the active region of each said APD.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: July 30, 2019
    Assignee: ARGO AI, LLC
    Inventors: Brian Piccione, Mark Allen Itzler
  • Patent number: 10297705
    Abstract: To obtain high linearity without sacrificing light-receiving sensitivity and a high speed, an avalanche photodiode includes an avalanche layer (103) formed on a first light absorption layer (102), an n-field control layer (104) formed on the avalanche layer (103), and a second light absorption layer (105) formed on the field control layer (104). If a reverse bias voltage is applied, a donor impurity in the field control layer (104) ionizes, and a high electric field is induced in the avalanche layer (103). The n-type doping amount in the field control layer (104) is set such that the impurity concentration in the second light absorption layer (105) sufficiently depletes at the time of reverse bias application.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: May 21, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masahiro Nada, Yoshifumi Muramoto, Fumito Nakajima, Hideaki Matsuzaki
  • Patent number: 10224361
    Abstract: A light receiving region includes a plurality of light detecting sections 10. The light detecting sections 10 has a second contact electrode 4A. The second contact electrode 4A is arranged at a position overlapping a first contact electrode 3A, so as to contact the first contact electrode. Further, a resistive layer 4B is continued to the second contact electrode 4A.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 5, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Koei Yamamoto, Terumasa Nagano, Kazuhisa Yamamura, Kenichi Sato, Ryutaro Tsuchiya
  • Patent number: 10192923
    Abstract: A light receiving region includes a plurality of light detecting sections 10. The light detecting sections 10 has a second contact electrode 4A. The second contact electrode 4A is arranged at a position overlapping a first contact electrode 3A, so as to contact the first contact electrode. Further, a resistive layer 4B is continued to the second contact electrode 4A.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: January 29, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Koei Yamamoto, Terumasa Nagano, Kazuhisa Yamamura, Kenichi Sato, Ryutaro Tsuchiya
  • Patent number: 10134936
    Abstract: An avalanche photodiode (APD) array with reduced cross talk comprises, in the illustrative embodiment, a 2D array of Geiger-mode APDs, wherein a via is formed through the backside (substrate) of each APD in the array.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 20, 2018
    Assignee: ARGO AI, LLC
    Inventors: Brian Piccione, Mark Allen Itzler
  • Patent number: 10128303
    Abstract: A light absorption apparatus includes a substrate, a light absorption layer above the substrate on a first selected area, a silicon layer above the light absorption layer, a spacer surrounding at least part of the sidewall of the light absorption layer, an isolation layer surrounding at least part of the spacer, wherein the light absorption apparatus can achieve high bandwidth and low dark current.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 13, 2018
    Assignee: Artilux Inc.
    Inventors: Szu-Lin Cheng, Han-Din Liu, Shu-Lu Chen
  • Patent number: 10128397
    Abstract: A system, method, and apparatus for an avalanche photodiode with an enhanced multiplier layer are disclosed herein. In particular, the present disclosure teaches an avalanche photodiode having a multiplier with alternating layers of one or more quantum wells and one or more spacers. A method of making the avalanche photodiode includes growing the multiplier on a substrate.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 13, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Xiaogang Bai, Ping Yuan, Rengarajan Sudharsanan
  • Patent number: 10109754
    Abstract: Disclosed is at least one embodiment of an infrared (IR) photovoltaic (PV) detector, comprising a IV-VI Lead (Pb)-salt layer disposed on a substrate and a charge-separation-junction (CSJ) structure associated with the IV-VI Pb-salt layer, wherein the CSJ structure comprises a plurality of element areas disposed upon or within the IV-VI Pb-salt layer, wherein the plurality of element areas are spaced apart from each other. Each element area may be connected to a first Ohmic contact thereby forming a plurality of interconnected first Ohmic contacts, and a second Ohmic contact may be disposed upon a portion of the IV-VI Pb-salt layer. In another non-limiting embodiment, a PV detector, comprising a heterojunction region that comprises at least one IV-VI Pb-salt material layer coupled to at least one non-Pb-salt layer, wherein the at least one IV-VI Pb-salt layer and the at least one non-Pb-salt layer form a p-n junction or Schottky junction with a type II band gap alignment.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 23, 2018
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Zhisheng Shi
  • Patent number: 10050069
    Abstract: A photodiode array has a plurality of photodetector channels formed on an n-type substrate having an n-type semiconductor layer, with a light to be detected being incident to the photodetector channels. The array comprises: a p?-type semiconductor layer on the n-type semiconductor layer of the substrate; resistors is provided to each of the photodetector channels and is connected to a signal conductor at one end thereof; and an n-type separating part between the plurality of photodetector channels. The p?-type semiconductor layer forms a pn junction at the interface between the substrate, and comprises a plurality of multiplication regions for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 14, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhisa Yamamura, Kenichi Sato
  • Patent number: 10043936
    Abstract: The present disclosure relates to an avalanche photodiode comprising a substrate having an active area. A first dopant implant in the active area forms one of an anode and the cathode of the avalanche photodiode. A second dopant implant in the active area forming the other one of the anode and the cathode of the avalanche photodiode, wherein at least one of the first and second dopant implants defines a discontinuous formation having at least one interruption.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 7, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Kevin Michael O'Neill, John Carlton Jackson, Liam Wall
  • Patent number: 9992477
    Abstract: An optical system for collecting distance information within a field is provided. The optical system may include lenses for collecting photons from a field and may include lenses for distributing photons to a field. The optical system may include lenses that collimate photons passed by an aperture, optical filters that reject normally incident light outside of the operating wavelength, and pixels that detect incident photons. The optical system may further include illumination sources that output photons at an operating wavelength.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 5, 2018
    Assignee: Ouster, Inc.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 9984917
    Abstract: A method for manufacturing a semiconductor device in accordance with various embodiments may include: forming an opening in a first region of a semiconductor substrate, the opening having at least one sidewall and a bottom; implanting dopant atoms into the at least one sidewall and the bottom of the opening; configuring at least a portion of a second region of the semiconductor substrate laterally adjacent to the first region as at least one of an amorphous or polycrystalline region; and forming an interconnect over at least one of the first and second regions of the semiconductor substrate.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: May 29, 2018
    Assignee: Infineon Technologies AG
    Inventors: Christian Kuehn, Martin Bartels, Henning Feick, Dirk Offenberg, Anton Steltenpohl, Hans Taddiken, Ines Uhlig
  • Patent number: 9847441
    Abstract: An epitaxial grown avalanche photodiode (APD), the avalanche photodiode comprising an anode, a cathode, an absorber, and a doped multiplier. The absorber and the doped multiplier are about between the cathode and the anode. The doped multiplier has a multiplier dopant concentration. The doped multiplier substantially depleted during operation of the epitaxial grown photodiode. The doped multiplier may comprise of a plurality of multiplication regions, each of the multiplication regions substantially depleted during operation of the avalanche photodiode.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: December 19, 2017
    Assignee: Voxtel, Inc.
    Inventor: Andrew Huntington
  • Patent number: 9818893
    Abstract: Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more. Their thickness dimensions allow them to be conveniently integrated on the same Si chip with CMOS, BiCMOS, and other electronics, with resulting packaging benefits and reduced capacitance and thus higher speeds.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: November 14, 2017
    Assignee: W&WSENS DEVICES, INC.
    Inventors: Shih-Yuan Wang, Shih-Ping Wang
  • Patent number: 9812608
    Abstract: A deep UV LED chip includes a light-emitting unit, an electrode unit, an electron blocking layer, and an optical layer. The electron blocking layer is disposed between a multiple quantum well layer and a p-type aluminum gallium nitride layer of the light-emitting unit. The optical layer is formed on the light-emitting unit and has a refractive index ranging from 1.0 to 2.3. Another deep UV LED chip further includes a light-transmitting substrate. The optical layer is formed on the light-transmitting substrate and has a refractive index ranging from 1.0 to a refractive index of the light-transmitting substrate. A package structure containing the deep UV LED chip is also disclosed.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: November 7, 2017
    Assignees: Lite-On Opto Technology (Changzhou) Co., Ltd., Lite-On Technology Corp.
    Inventors: Kuo-Ming Chiu, Meng-Sung Chou, Hao-Chung Kuo, Che-Yu Liu
  • Patent number: 9806112
    Abstract: The present application provides an electrostatic discharge guard structure for photonic platform based photodiode systems. In particular this application provides a photodiode assembly comprising: a photodiode (such as a Si or SiGe photodiode); a waveguide (such as a silicon waveguide); and a guard structure, wherein the guard structure comprises a diode, extends about all or substantially all of the periphery of the Si or SiGe photodiode and allows propagation of light from the silicon waveguide into the Si or SiGe photodiode.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 31, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dritan Celo, Dominic John Goodwill, Eric Bernier
  • Patent number: 9748430
    Abstract: A staircase avalanche photodiode with a staircase multiplication region composed of an AlInAsSb alloy. The photodiode includes a buffer layer adjacent to a substrate and an avalanche multiplication region adjacent to the buffer layer, where the avalanche multiplication region includes a graded AlInAsSb alloy grown lattice-matched or psuedomorphically strained on either InAs or GaSb. The photodiode further includes a photoabsorption layer adjacent to the avalanche multiplication region, where the photoabsorption layer is utilized for absorbing photons. By utilizing AlInAsSb in the multiplication region, the photodiode exhibits a direct bandgap over a wide range of compositions as well as exhibits large conduction band offsets much larger than the smallest achievable bandgap and small valance band offsets. Furthermore, the photodiode is able to detect extremely weak light with a high signal-to-noise ratio.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: August 29, 2017
    Assignees: Board of Regents, The University of Texas System, University of Virginia Patent Foundation
    Inventors: Seth Bank, Scott Maddox, Wenlu Sun, Joe Campbell
  • Patent number: 9691934
    Abstract: The present invention is a photodiode or photodiode array having improved ruggedness for a shallow junction photodiode which is typically used in the detection of short wavelengths of light. In one embodiment, the photodiode has a relatively deep, lightly-doped P zone underneath a P+ layer. By moving the shallow junction to a deeper junction in a range of 2-5 ?m below the photodiode surface, the improved device has improved ruggedness, is less prone to degradation, and has an improved linear current.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: June 27, 2017
    Assignee: OSI Optoelectronics, Inc.
    Inventor: Peter Steven Bui
  • Patent number: 9640948
    Abstract: One embodiment is a wide stripe semiconductor waveguide, which is cleaved at a Talbot length thereof, the wide stripe semiconductor waveguide having facets with mirror coatings. A system provides for selective pumping the wide stripe semiconductor waveguide to create and support a Talbot mode. In embodiments according to the present method and apparatus the gain is patterned so that a single unique pattern actually has the highest gain and hence it is the distribution that oscillates.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: May 2, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Robert R. Rice, Elizabeth T. Kunkee
  • Patent number: 9640676
    Abstract: A method for manufacturing solar cells is disclosed. The method includes forming an insulating material in a printable suspension along the at least one side edge of a solar cell, the insulating material in a printable suspension further adapted to form a protective film which reduces cracking near at least one side edge of the solar cell and improve structural integrity against mechanical stress. The protective film has an elastic modulus of at least 3 GPa, an elongation break point of at least 13 percent and a glass transition temperature of at least 250 degrees Celsius which provides additional structural support along the side edges, increasing the overall structural integrity, providing electrical insulation along the edges and improve the flexure strength of the solar cell.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: May 2, 2017
    Assignee: SunPower Corporation
    Inventor: Charles Norman Stone
  • Patent number: 9584744
    Abstract: An image sensor with an array of image sensor pixels is provided. Each pixel may include a photodiode, a storage diode, and associated circuitry formed in a semiconductor substrate. Buried light shields may be formed on the substrate to prevent regions between two adjacent photodiodes from being exposed to incoming light. In one embodiment, a shallow trench isolation (STI) structure may be formed between the photodiode and the storage diode, and a conductive layer formed from optically absorptive material may be constructed at the bottom of the STI structure. A via may be formed through the STI structure to help bias the conductive layer using a ground or negative voltage. In another embodiment, an isolation ring structure may be formed at the base of the buried light shields. The isolation ring structure may be formed from optically absorptive material and can optionally be biased using a ground or negative voltage.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 28, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor Lenchenkov, Hamid Soleimani
  • Patent number: 9577007
    Abstract: An LED module is disclosed containing an integrated driver transistor (e.g, a MOSFET) in series with an LED. In one embodiment, LED layers are grown over a substrate. The transistor regions are formed over the same substrate. After the LED layers, such as GaN layers, are grown to form the LED portion, a central area of the LED is etched away to expose a semiconductor surface in which the transistor regions are formed. A conductor connects the transistor in series with the LED. Another node of the transistor is electrically coupled to an electrode on the bottom surface of the substrate. In one embodiment, an anode of the LED is connected to one terminal of the module, one current carrying node of the transistor is connected to a second terminal of the module, and the control terminal of the transistor is connected to a third terminal of the module.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 21, 2017
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard Austin Blanchard, Bradley Steven Oraw
  • Patent number: 9559257
    Abstract: A light emitting device may include a first conductive type semiconductor layer, an active layer including a quantum well and a quantum wall on the first conductive type semiconductor layer, an undoped last barrier layer on the active layer; an AlxInyGa(1-x-y)N (0?x?1, 0?y?1)-based layer on the undoped last barrier layer; and a second conductive type semiconductor layer on the AlxInyGa(1-x-y)N-based layer. The undoped last barrier layer may be provided between the AlxInyGa(1-x-y)N (0?x?1, 0?y?1)-based layer and a last quantum well which is closest to the second conductive type semiconductor layer among the quantum well and may include a first Inp1Ga1-p1N (0<p1<1) layer, an Alq1Inq2Ga1-q1-q2N (0<q1, q2<1) layer on the first Inp1Ga1-p1N layer, and a second Inp2Ga1-p2N (0<p2<1) layer on the Alq1Inq2Ga1-q1-q2N layer.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: January 31, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Yong Tae Moon, Hyun Chul Lim
  • Patent number: 9553216
    Abstract: A method of operating an avalanche photodiode includes providing an avalanche photodiode having a multiplication region capable of amplifying an electric current when subject to an electric field. The multiplication region, in operation, has a first ionization rate for electrons and a second, different, ionization rate for holes. The method also includes applying the electric field to the multiplication region, receiving a current output from the multiplication region, and varying the electric field in time, whereby a portion of the current output is suppressed.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: January 24, 2017
    Assignee: Voxtel, Inc.
    Inventors: George Williams, Andrew S. Huntington
  • Patent number: 9553224
    Abstract: A semiconductor photodetector element includes a semiconductor substrate having a first conductivity type; a columnar structure formed on a first surface of the semiconductor substrate, the columnar structure being composed of a semiconductor of the first conductivity type; a light absorption layer formed so as to surround the columnar structure; and a semiconductor layer formed so as to surround the light absorption layer.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: January 24, 2017
    Assignee: FUJITSU LIMITED
    Inventors: Kenichi Kawaguchi, Nami Yasuoka, Hiroyasu Yamashita, Yoshiaki Nakata
  • Patent number: 9525084
    Abstract: Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as holes, effectively increase the absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more. Their thickness dimensions allow them to be conveniently integrated on the same Si chip with CMOS, BiCMOS, and other electronics, with resulting packaging benefits and reduced capacitance and thus higher speeds.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: December 20, 2016
    Assignee: W&Wsens Devices, Inc.
    Inventors: Shih-Yuan Wang, Shih-Ping Wang
  • Patent number: 9482578
    Abstract: A method for detecting photons includes subjecting a photodiode formed in a semi-conductive material, to a bias voltage such that an avalanche phenomenon can appear when a photon enters the photodiode in an avalanche layer extending into the semi-conductive material down to minimum and maximum depths so that it can be reached by photons having a wavelength between minimum and maximum wavelengths. The method also includes comparing the amplitude of a signal supplied by the photodiode with two threshold values, and deducing that the photodiode received a photon having a wavelength between two threshold wavelengths ranging between the minimum and maximum wavelengths, if the amplitude of the signal is between the two threshold values.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 1, 2016
    Assignee: Universite d'Aix-Marseille
    Inventor: Jean-Luc Gach
  • Patent number: 9324759
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode and a second photodiode. The first photodiode include a first doped region, a first lightly doped region, and a first highly doped region disposed between the first doped region and the first lightly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode. The second photodiode includes a second doped region, a second lightly doped region, and a second highly doped region disposed between the second doped region and the second lightly doped region. The first photodiode can be used to for measuring low light and the second photodiode can be used for measuring bright light.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 26, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jeong-Ho Lyu, Sohei Manabe
  • Patent number: 9276162
    Abstract: In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector comprises a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: March 1, 2016
    Assignees: FUJITSU LIMITED, SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventors: Nami Yasuoka, Haruhiko Kuwatsuka, Toru Uchida, Yoshihiro Yoneda
  • Patent number: 9257588
    Abstract: The invention is directed to an avalanche photodiode containing a substrate and semiconductor layers with various electro-physical properties having common interfaces both between themselves and with the substrate. The avalanche photodiode may be characterized by the presence in the device of at least one matrix consisting of separate solid-state areas with enhanced conductivity surrounded by semiconductor material with the same type of conductivity. The solid-state areas are located between two additional semiconductor layers, which have higher conductivity in comparison to the semiconductor layers with which they have common interfaces. The solid-state areas are generally made of the same material as the semiconductor layers surrounding them but with conductivity type that is opposite with respect to them. The solid-state areas may be made of a semiconductor with a narrow forbidden zone with respect to the semiconductor layers with which they have common interfaces.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 9, 2016
    Assignee: Zecotek Imaging Systems Singapore Pte Ltd.
    Inventors: Ziraddin Yegub-Ogly Sadygov, Abdelmounaime Faouzi Zerrouk
  • Patent number: 9166091
    Abstract: A PIN structure semiconductor optical receiver includes first and second electrical contact layers and an intrinsic layer disposed between them. The intrinsic layer includes a stud having a stud axis and a stud cross-section. The first and second contact layers have dimensions in a plane perpendicular to the stud axis that are greater than the stud's cross-section. These layers are also elongated and have longitudinal axes offset angularly relative to each other to minimize facing areas of said electrical contact layers.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: October 20, 2015
    Assignee: COMMISSARIAT A L'ÉNERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Christophe Kopp, Jean-Marc Fedeli, Sylvie Menezo
  • Patent number: 9153726
    Abstract: A photodetector detects the absence or presence of light by detecting a change in the inductance of a coil. The magnetic field generated when a current flows through the coil passes through an electron-hole generation region. Charged particles in the electron-hole generation region come under the influence of the magnetic field, and generate eddy currents whose magnitudes depend on whether light is absent or present. The eddy currents generate a magnetic field that opposes the magnetic field generated by current flowing through the coil.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: October 6, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ann Gabrys, Peter Hopper, William French
  • Patent number: 9105790
    Abstract: An apparatus comprises a substrate having a type of conductivity, an intrinsic region above the substrate, and a metal layer on a portion of the surface of the intrinsic region. The intrinsic region has a surface. The metal layer may have a thickness that is configured to allow a plurality of photons to pass through the metal layer into the intrinsic region and form a rectifying contact with the intrinsic region.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: August 11, 2015
    Assignee: THE BOEING COMPANY
    Inventor: Eric Yuen-Jun Chan
  • Patent number: 9105804
    Abstract: A method for manufacturing a light-receiving device includes the steps of forming a stacked semiconductor layer including a non-doped light-receiving layer, the light-receiving layer having an n-type conductivity; forming a selective growth mask made of an insulating film on the stacked semiconductor layer, the selective growth mask having a pattern including a plurality of openings; selectively growing a selective growth layer doped with a p-type impurity on each portion of the stacked semiconductor layer by using the selective growth mask; and forming a p-n junction in each of plural regions of the light-receiving layer by diffusing the p-type impurity doped in each selective growth layer into the light-receiving layer during growing the selective growth layers. Each of the regions including one of the p-n junctions corresponds to one of the selective growth layers. The p-n junction in one of the regions is formed separately from the p-n junctions in the other regions.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 11, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yasuhiro Iguchi
  • Patent number: 9082892
    Abstract: A device having a carrier, a light-emitting structure, and first and second electrodes is disclosed. The light-emitting structure includes an active layer sandwiched between a p-type GaN layer and an n-type GaN layer, the active layer emitting light of a predetermined wavelength in the active layer when electrons and holes from the n-type GaN layer and the p-type GaN layer, respectively, combine therein. The first and second electrodes are bonded to the surfaces of the p-type and n-type GaN layers that are not adjacent to the active layer. The n-type GaN layer has a thickness less than 1.25 ?m. The carrier is bonded to the light emitting structure during the thinning of the n-type GaN layer. The thinned light-emitting structure can be transferred to a second carrier to provide a device that is analogous to conventional LEDs having contacts on the top surface of the LED.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 14, 2015
    Assignee: Manulius IP, Inc.
    Inventors: Steven D. Lester, Frank T. Shum
  • Patent number: 9024402
    Abstract: Devices comprised of end-on waveguide-coupled photodetectors are described. In embodiments of the invention, the photodetectors are avalanche photodiodes coupled end-on to a waveguide. The waveguide includes an insulating trench proximate to the coupled photodetector. In embodiments of the invention, the avalanche photodiodes are silicon/germanium avalanche photodiodes.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 5, 2015
    Assignee: Intel Corporation
    Inventors: Yimin Kang, Zhihong Connie Huang, Han-Din Dean Liu, Yuval Saado, Yun-Chung Neil Na
  • Patent number: 9024362
    Abstract: An organic image sensor includes a first organic photoelectric conversion pixel circuit on an active region of a substrate and a second organic photoelectric conversion pixel circuit on an optical black region of the substrate. The first organic photoelectric conversion pixel circuit includes a first organic photoelectric conversion element configured to generate charges responding to incident light and a first readout circuit configured to receive a first input signal including the charges generated in the first organic photoelectric conversion element. The second organic photoelectric conversion pixel circuit includes a second organic photoelectric conversion element and a second readout circuit configured to receive a second input signal generated irrespective of the incident light.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sae-Young Kim, Ji-Yong Park, Sang-Chul Sul
  • Publication number: 20150115319
    Abstract: An avalanche photodiode includes a first semiconductor layer, a multiplication layer, a charge control layer, a second semiconductor layer, a graded absorption layer, a blocking layer and a second contact layer. The multiplication layer is located between the charge control layer and the first semiconductor layer. The charge control layer is located between the second semiconductor layer and the multiplication layer. The second semiconductor layer is located between the charge control later and the graded absorption layer. The graded absorption layer is located between the second semiconductor layer and the blocking layer.
    Type: Application
    Filed: May 17, 2013
    Publication date: April 30, 2015
    Inventor: Barry Levine
  • Patent number: 8987724
    Abstract: A photodiode including at least one active zone located between a first electrode and a second electrode, the active zone including elongated conducting or semiconducting elements extending between the electrodes and configured to promote collection and transport of charge carriers in the active zone.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 24, 2015
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, ISORG
    Inventor: Mohammed Benwadih
  • Patent number: 8963169
    Abstract: Photonic devices monolithically integrated with CMOS are disclosed, including sub-100 nm CMOS, with active layers comprising acceleration regions, light emission and absorption layers, and optional energy filtering regions. Light emission or absorption is controlled by an applied voltage to deposited films on a pre-defined CMOS active area of a substrate, such as bulk Si, bulk Ge, Thick-Film SOI, Thin-Film SOI, Thin-Film GOI.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 24, 2015
    Assignee: Quantum Semiconductor LLC
    Inventor: Carlos J. R. P. Augusto
  • Patent number: 8928036
    Abstract: A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: David Z. Ting, Cory J. Hill, Alexander Seibel, Sumith Y. Bandara, Sarath D. Gunapala
  • Publication number: 20150001581
    Abstract: An APD in which a first undoped semiconductor region and a second undoped semiconductor region having different semiconductor materials and arranged on an insulating film configure a photo-absorption layer and a multiplying layer, respectively, is employed, whereby crystalline of an interface between the photo-absorption layer and the multiplying layer becomes favorable, and a dark current caused by crystal defects can be decreased. Accordingly, light-receiving sensitivity of an avalanche photodiode can be improved. Further, doping concentration of the light-receiving layer and the multiplying layer can be made small. Therefore, a junction capacitance of the diode can be decreased, and a high-speed operation becomes possible.
    Type: Application
    Filed: January 23, 2012
    Publication date: January 1, 2015
    Applicant: HITACHI, LTD.
    Inventors: Katsuya Oda, Shinichi Saito, Kazuki Tani
  • Patent number: 8916947
    Abstract: In various embodiments, a photodetector includes a semiconductor substrate and a plurality of pixel regions. Each of the plurality of pixel regions comprises an optically sensitive layer over the semiconductor substrate. A pixel circuit is formed for each of the plurality of pixel regions. Each pixel circuit includes a pinned photodiode, a charge store, and a read out circuit for each of the plurality pixel regions. The optically sensitive layer is in electrical communication with a portion of a silicon diode to form the pinned photodiode. A potential difference between two electrodes in communication with the optically sensitive layer associated with a pixel region exhibits a time-dependent bias; a biasing during a first film reset period being different from a biasing during a second integration period.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: December 23, 2014
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Rajsapan Jain, Igor Constantin Ivanov, Michael R. Malone, Michael Charles Brading, Hui Tian, Pierre Henri Rene Della Nave, Jess Jan Young Lee
  • Patent number: 8916905
    Abstract: It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency that improves reliability by increasing contact force between a light absorbing layer and an electrode layer. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer contains a compound semiconductor. The light absorbing layer comprises a first layer close to the electrode layer and a second layer located on the first layer. The first layer has a void ratio lower than that of the second layer.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 23, 2014
    Assignee: KYOCERA Corporation
    Inventors: Shintaro Kubo, Shuji Nakazawa, Rui Kamada, Seiji Oguri, Shinnosuke Ushio, Shuichi Kasai, Seiichiro Inai
  • Publication number: 20140367740
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Micheal T. Morse, Olufemi I. Dosunmu, Ansheng Liu, Mario J. Paniccia
  • Patent number: 8859944
    Abstract: A method and apparatus of coordinated in-pixel light detection is provided. In one aspect, the method includes implementing an N-number of avalanche photodiodes inside a pixel circuit of a light detection circuit. The method also includes coordinating an output of the N-number of avalanche photodiodes through a counter circuit. The method further includes reducing a deadtime of the light detection circuit by a factor of ‘N’ through the N-number of avalanche photodiodes and the counter circuit operating in concert. The method furthermore includes measuring an intensity of a light through the light detection circuit. N-number of avalanche photodiodes is in a common well of a semiconductor technology. N-number of avalanche photodiodes is fabricated on a deep submicron semiconductor technology. A fill factor of the pixel circuit improves and a deadtime reduces through fabrication of the avalanche photodiodes in a common well. Also, a photon count rate increases through reducing the deadtime.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 14, 2014
    Assignee: King Abdulaziz City Science and Technology
    Inventors: Munir Eldesouki, Mohamed Jamal Deen, Qiyin Fang
  • Patent number: 8860164
    Abstract: A light receiving element includes a core configured to propagate a signal light, a first semiconductor layer having a first conductivity type, the first semiconductor layer being configured to receive the signal light from the core along a first direction in which the core extends, an absorbing layer configured to absorb the signal light received by the first semiconductor layer, and a second semiconductor layer having a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: October 14, 2014
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Publication number: 20140252411
    Abstract: A low voltage APD is disposed at an end of a waveguide extending laterally within a silicon device layer of a PIC chip. The APD is disposed over an inverted re-entrant mirror co-located at the end of the waveguide to couple light by internal reflection from the waveguide to an under side of the APD. In exemplary embodiments, a 45°-55° facet is formed in the silicon device layer by crystallographic etch. In embodiments, the APD includes a silicon multiplication layer, a germanium absorption layer over the multiplication layer, and a plurality of ohmic contacts disposed over the absorption layer. An overlying optically reflective metal film interconnects the plurality of ohmic contacts and returns light transmitted around the ohmic contacts to the absorption layer for greater detector responsivity.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Inventors: Yimin Kang, Han-Din D. Liu, Ansheng Liu
  • Patent number: 8829566
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 9, 2014
    Assignee: Intel Corporation
    Inventors: Michael T. Morse, Olufemi I. Dosunmu, Ansheng Liu, Mario J. Paniccia