With Particular Chip Input/output Means Patents (Class 257/203)
  • Patent number: 8115325
    Abstract: A semiconductor integrated circuit includes a plurality of bonding pads formed along an edge of a semiconductor substrate; a plurality of I/O cells arranged along the edge under the plurality of bonding pads; an upper layer wire mesh including a plurality of upper layer wirings; and a core region formed on the semiconductor substrate. In the semiconductor integrated circuit, the core region has an area larger than an area occupied by the upper layer wire mesh in a plane parallel to a surface of the semiconductor substrate.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Kenichi Ishikawa
  • Patent number: 8115257
    Abstract: A semiconductor apparatus includes an internal circuit, a CMOS composed of a P-channel MOS transistor with a source connected to a high-potential power supply line and a gate connected to the internal circuit, and an N-channel MOS transistor with a source connected to a low-potential power supply line and a gate connected to the internal circuit, an output terminal connected to a drain of the P-channel MOS transistor and a drain of the N-channel MOS transistor and a protection transistor with a source and a gate connected to one power supply line of the high-potential power supply line and the low-potential power supply line and a drain connected to the output terminal, a conductivity type of the protection transistor being the same as a conductivity type of one MOS transistor of the P-channel MOS transistor and the N-channel MOS transistor, the source of the one MOS transistor being connected to the one power supply line.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideaki Sai
  • Patent number: 8110907
    Abstract: A semiconductor device includes a semiconductor chip, a first substrate, and a second substrate. The first substrate includes a plurality of wires and a plurality of first electrodes, each first electrode being connected with each wire. The second substrate includes the semiconductor chip that is mounted thereon, and a plurality of second electrodes with, each second electrode being connected with the each first electrode of the first substrate. The widths of the wires of the first substrate are different depending on the lengths of the wires. By changing the widths of the wires depending on their lengths, it is possible to reduce variation in stiffness of the electrodes and vicinities of electrodes, whereby variation in ultrasonic bonding strength can be reduced.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: February 7, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Masahiro Yamaguchi, Emi Sawayama, Hiroshi Oyama, Shigeharu Tsunoda, Yasuo Amano, Naoki Matsushima
  • Publication number: 20120025272
    Abstract: A semiconductor integrated circuit chip mounted on a substrate by flip chip bonding includes: a plurality of electrode pads; a corner portion of a flat periphery of an inner layer; a first linear region adjoining one side of the corner portion; a second linear region adjoining another side of the corner portion; and a third linear region adjoining a side of the first linear region opposite to the side adjoining the corner portion. A circuit core placeable region is provided in at least part of the corner portion and the first linear region. A plurality of IO cells connected to the electrode pads are arranged in the second and third linear regions. The IO cells in the second linear region are connected to the electrode pads arranged inwardly in n rows×n columns from a corner of the chip above the corner portion.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Applicant: Panasonic Corporation
    Inventor: Shiro USAMI
  • Patent number: 8093629
    Abstract: The present invention comprises a semiconductor chip, and a semiconductor device having a plurality of semiconductor chips, that enables ESD protection from another semiconductor chip without increasing the chip area in case the semiconductor chip is Multi-Chip-Packaged, without wasting chip area in case the semiconductor chip is not Multi-Chip-Packaged. The exemplary semiconductor chip of the present invention includes an internal circuit and a first electrode pad electrically connected to a ground bus line of the first semiconductor chip in a region where an electrode pad, which gives and receives electric signals required for an operation of the internal circuit, cannot be provided.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: January 10, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Katsuhiro Kato
  • Patent number: 8067789
    Abstract: To provide a semiconductor integrated circuit device advantageous against EM and ESD. A plurality of I/O cells; a power wire formed of a plurality of interconnect layers over the above-described I/O cells; a bonding pad formed in an upper layer of the power wire and in a position corresponding to the I/O cell; and lead-out areas capable of electrically coupling the I/O cell to the bonding pad are provided. The above-described power wire includes a first power wire and a second power wire, and the above-described I/O cell includes first elements coupled to the first power wire and second elements coupled to the second power wire. The first element is placed on the first power wire side, and the second element is placed on the second power wire side. The first power wire and the second power wire can allow for a high current due to the interconnect layers over the I/O cells, thus having robustness against EM and ESD.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 29, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shunsuke Toyoshima, Kazuo Tanaka, Masaru Iwabuchi
  • Patent number: 8053346
    Abstract: A gate in a semiconductor device is formed to have a dummy gate pattern that protects a gate. Metal lines are formed to supply power for a semiconductor device and transfer a signal. A semiconductor device includes a quad coupled receiver type input/output buffer. The semiconductor device is formed with a gate line that extends over an active region, and a gate pad located outside of the active region. The gate line and the gate pad are adjoined such that the gate line and a side of the gate pad form a line. Dummy gates may also be applied. The semiconductor device includes a first metal line patterns supplying power to a block having a plurality of cells, a second metal line pattern transferring a signal to the cells, and dummy metal line patterns divided into in a longitudinal direction.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam Gyu Ryu, Ho Ryong Kim, Won John Choi, Jae Hwan Kim, Seoung Hyun Kang, Young Hee Yoon
  • Patent number: 8035134
    Abstract: In a first functional block, a source voltage input terminal of a PMOS transistor and a substrate voltage input terminal of an NMOS transistor are connected to their voltage supply terminals, respectively. The substrate voltage input terminal of the PMOS transistor in the ith (1?i?n?1) functional block and the source voltage input terminal of the NMOS transistor therein are connected bijectively with the source voltage input terminal of the PMOS transistor in the i+1th functional block and the substrate voltage input terminal of the NMOS transistor therein. In the nth functional block, the substrate voltage input terminal of the PMOS transistor and the source voltage input terminal of the NMOS transistor are connected to their voltage supply terminals, respectively.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: October 11, 2011
    Assignee: Panasonic Corporation
    Inventor: Masaya Sumita
  • Patent number: 8017943
    Abstract: A semiconductor device includes a first pad, a second pad and a third pad. The first pad and the third pad are electrically connected to each other. The first pad and the second pad are used for bonding. The second pad and the third pad are used for probing. According to this structure, Small size semiconductor device having high reliability even after a probing test can be provided.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: September 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Tsukasa Ojiro
  • Patent number: 8020137
    Abstract: A design structure for a circuit that selectively connects an integrated circuit to elements external to the integrated circuits. The circuit includes and input/output element that selectively connects an input/output pin as a function of a power requirement or a signal bandwidth requirement of the integrated circuit. The input/output element includes one or more switching devices that connect the input/output pin to an external element, such as a power supply or external signal path. The input/output element also includes one or more switching devices that connect the input/output pin to an internal element, such as a power network or internal signal line.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Corey K. Barrows, Kenneth J. Goodnow, Stephen G. Shuma, Peter A. Twombly, Paul S. Zuchowski
  • Patent number: 8013362
    Abstract: In a semiconductor integrated circuit requiring a large number of pads, an internal circuit is arranged in the center portion, and a plurality of two kinds of I/O circuits for inputting and outputting signals from and to the outside and many pads are arranged along four sides of the semiconductor integrated circuit. The plurality of I/O circuits that are of one of the foregoing two kinds are one-pad I/O circuits on which one pad is arranged in a direction toward the internal circuit, whereas the plurality of I/O circuits that are of the other of the foregoing two kinds are two-pad I/O circuits on which two pads are arranged in zigzag relationship in a direction toward the internal circuit. The number of arranged pads equals to the number of pads required for the semiconductor integrated circuit. The one-pad I/O circuits and the two-pad I/O circuits are provided with power source wirings for supplying power thereto.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 6, 2011
    Assignee: Panasonic Corporation
    Inventor: Daisuke Matsuoka
  • Publication number: 20110193086
    Abstract: A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
    Type: Application
    Filed: September 27, 2010
    Publication date: August 11, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-Cheol LEE, Chi-Sung OH, Jin-Kuk KIM
  • Patent number: 7977762
    Abstract: An integrated circuit (IC) is disclosed to include a central area of the IC that is partitioned into a first section containing at least one digital circuit and a second section containing at least one analog circuit; and a guard strip (or shield) that is within the central area and that is positioned within between the digital circuit and the analog circuit. The shield or guard strip comprises of n-well and p-tap regions that separate digital and analog circuits.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Alvand Technologies, Inc.
    Inventors: Mansour Keramat, Mehrdad Heshami, Syed S. Islam
  • Publication number: 20110156101
    Abstract: A semiconductor device may include a plurality of logic circuits connected to each other through input and output terminals thereof. The plurality of logic circuits comprising a first sub-plurality of logic circuits coupled to a first one of different power systems. The first sub-plurality of logic circuits is laid out and adjacent to each other in a first direction. The first sub-plurality of logic circuits includes a first logic circuit and a second logic circuit. The second logic circuit is adjacent to the first logic circuit. The first logic circuit includes a first element comprising a first diffusion layer. The second logic circuit includes a second element comprising the first diffusion layer.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 30, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Yoshiaki Shimizu, Kazuhiko Matsuki
  • Patent number: 7968916
    Abstract: Signals are routed to and from identical stacked integrated circuit dies by selectively coupling first and second bonding pads on each of the dies to respective circuits fabricated on the dies through respective transistors. The transistors connected to the first bonding pads of an upper die are made conductive while the transistors connected to the second bonding pads of the upper die are made non-conductive. The transistors connected to the second bonding pads of a lower die are made conductive while the transistors connected to the first bonding pads of the lower die are made non-conductive. The second bonding pads of the upper die are connected to the second bonding pads of the lower die through wafer interconnects extending through the upper die. Signals are routed to and from the circuits on the first and second dies through the first and second bonding pads, respectively.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Jacob Robert Anderson, William Jones
  • Publication number: 20110133252
    Abstract: Methods and devices yielding an improved semiconductor device with interface circuit are disclosed. Configuring a semiconductor with parallel device features reduces process variation (e.g., lithographically-induced process variation or other defects). Embodiments of the present invention provide semiconductor devices with I/O cell device features (e.g., I/O gates or core gates) laid out in parallel. Additionally, embodiments of the present invention can allow patterning devices to be made to more exacting tolerances because some patterning devices may have a higher capability along one axis than another. Embodiments of the present invention also include a semiconductor device having like-functioned I/O cells arranged such that their layouts and rotational orientations with respect to their corresponding core remain constant.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 9, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Eiichi Hosomi
  • Patent number: 7956384
    Abstract: A semiconductor power device supported on a semiconductor substrate that includes a plurality of transistor cells, each cell has a source and a drain region disposed on opposite sides of a gate region in the semiconductor substrate. A gate electrode is formed as an electrode layer on top of the gate region for controlling an electric current transmitted between the source and the drain regions. The gate electrode layer disposed on top of the semiconductor substrate is patterned into a wave-like shaped stripes for substantially increasing an electric current conduction area between the source and drain regions across the gate.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: June 7, 2011
    Assignee: Alpha & Omega Semiconductor Ltd.
    Inventor: Shekar Mallikararjunaswamy
  • Patent number: 7952201
    Abstract: A semiconductor device comprising a plurality of semiconductor chips and a plurality of through-line groups is disclosed. Each of the through-line groups consists of a unique number of through-lines. The numbers associated with the through-line groups are mutually coprime to each other. When one of the through-lines is selected for the each through-line group, one of the semiconductor chip is designated by a combination of the selected through-lines of the plurality of the through-line groups.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 31, 2011
    Assignee: Elpida Memory, Inc.
    Inventors: Kayoko Shibata, Hiroaki Ikeda
  • Patent number: 7939856
    Abstract: An area efficient distributed device for integrated voltage regulators comprising at least one filler cell connected between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size replica of said device is coupled to said I/O rails for distributing replicas of said device on the periphery of said chip. The device is connected as small size replica on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: May 10, 2011
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Joshipura Jwalant, Nitin Bansal, Amit Katyal, Massimiliano Picca
  • Patent number: 7932609
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 26, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Publication number: 20110089470
    Abstract: In a semiconductor device, a plurality of interface cells is disposed on four sides of an LSI chip in connection with a logic circuit area including a plurality of logic cells. Each interface cell may include four functional blocks which are vertically or horizontally aligned without being rotated, thus forming an I/O buffer. The left I/O buffer has a vertical layout in which functional blocks are vertically aligned, whilst the upper I/O buffer has a horizontal layout in which functional blocks are horizontally aligned. This makes it possible to fix the same length direction of gates of transistors with respect to both the functional blocks of I/O buffers and the logic cells, so that engineers do not need to consider characteristic variations of transistors due to positional differences of transistors when designing the circuitry of an LSI chip.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 21, 2011
    Inventor: MUTSUMI AOKI
  • Patent number: 7919819
    Abstract: Embodiments comprise an adjusted polysilicon gate pitch to metal wire pitch relationship to improve area scalars while increasing ACLV tolerance with a fixed polysilicon gate pitch. In some embodiments, the wire pitch for at least one metallization layer is adjusted to match the pitch for the polysilicon gate. In one embodiment, the next to the lowest metallization layer running in the same orientation as the polysilicon gate, utilized to access the input or output of the interconnected cell structures is relaxed to match the minimum contacted gate pitch and the metal is aligned above each polysilicon gate. In another embodiment, the polysilicon gate pitch may be relaxed to attain a smaller lowest common multiple with the wire pitch for an integrated circuit to reduce the minimum step off.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: April 5, 2011
    Assignee: International Business Machines Corporation
    Inventor: Anthony Correale, Jr.
  • Publication number: 20110073915
    Abstract: A semiconductor integrated circuit according to the present invention includes an I/O cell, a first PAD connected to the I/O cell, first and second PADs, a package wire which is connected to the first PAD and allows connection between the first PAD and an outside of the semiconductor integrated circuit, and a second package wire which is connected to the second PAD and allows connection between the second PAD and an outside of the semiconductor integrated circuit. A connection point between the first PAD and the fist package wire is located in an area where the I/O cell is placed. A connection point between the second PAD and the second package wire is located outside an area where the I/O cell is placed.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Tatsuya NARUSE
  • Publication number: 20110073914
    Abstract: To provide a semiconductor integrated circuit device advantageous against EM and ESD. A plurality of I/O cells; a power wire formed of a plurality of interconnect layers over the above-described I/O cells; a bonding pad formed in an upper layer of the power wire and in a position corresponding to the I/O cell; and lead-out areas capable of electrically coupling the I/O cell to the bonding pad are provided. The above-described power wire includes a first power wire and a second power wire, and the above-described I/O cell includes first elements coupled to the first power wire and second elements coupled to the second power wire. The first element is placed on the first power wire side, and the second element is placed on the second power wire side. The first power wire and the second power wire can allow for a high current due to the interconnect layers over the I/O cells, thus having robustness against EM and ESD.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 31, 2011
    Inventors: Shunsuke TOYOSHIMA, Kazuo Tanaka, Masaru Iwabuchi
  • Patent number: 7910956
    Abstract: Methods and devices yielding an improved semiconductor device with interface circuit are disclosed. Configuring a semiconductor with parallel device features reduces process variation (e.g., lithographically-induced process variation or other defects). Embodiments of the present invention provide semiconductor devices with I/O cell device features (e.g., I/O gates or core gates) laid out in parallel. Additionally, embodiments of the present invention can allow patterning devices to be made to more exacting tolerances because some patterning devices may have a higher capability along one axis than another. Embodiments of the present invention also include a semiconductor device having like-functioned I/O cells arranged such that their layouts and rotational orientations with respect to their corresponding core remain constant.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiichi Hosomi
  • Patent number: 7906430
    Abstract: A peeling prevention layer for preventing an insulation film and a protection layer from peeling is formed in corner portions of a semiconductor device. The peeling prevention layer can increase its peeling prevention effect more when formed in a vacant space of the semiconductor device other than the corner portions, for example, between ball-shaped conductive terminals. In a cross section of the semiconductor device, the peeling prevention layer is formed on the insulation film on the back surface of the semiconductor substrate, and the protection layer formed of a solder resist or the like is formed covering the insulation film and the peeling prevention layer. The peeling prevention layer has a lamination structure of a barrier seed layer and a copper layer formed thereon when formed by an electrolytic plating method.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 15, 2011
    Assignees: Sanyo Electric Co., Ltd., Kanto Sanyo Semiconductors Co., Ltd.
    Inventors: Mitsuo Umemoto, Kojiro Kameyama, Akira Suzuki
  • Patent number: 7902656
    Abstract: A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 8, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shinji Moriyama, Tomio Yamada
  • Publication number: 20110031535
    Abstract: A finger length al of a transistor P11 is longer than a finger length Al of a transistor P1, and a finger length b1 of a transistor N11 is longer than a finger length B1 of a transistor N1. The finger length b1 of the transistor N11 is shorter than the finger length A1 of the transistor P1, and the relation: a1>A1>b1>B1 is established. In a relation between an I/O section and a logic circuit section, as for MOS transistor of the same conductive type, a finger length of a MOS transistor constituting the logic circuit section is set so as to be longer than a finger length of a MOS transistor constituting the I/O section.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: Renesas Electronics Corporation
    Inventor: Toshiaki IWAMATSU
  • Patent number: 7880284
    Abstract: With embodiments disclosed herein, the distribution of gated power is done using on-die layers without having to come back out and use package layers.
    Type: Grant
    Filed: September 29, 2007
    Date of Patent: February 1, 2011
    Assignee: Intel Corporation
    Inventors: Michael Zelikson, Alex Waizman
  • Patent number: 7872283
    Abstract: In a semiconductor integrated circuit requiring a large number of pads, an internal circuit is arranged in the center portion, and a plurality of two kinds of I/O circuits for inputting and outputting signals from and to the outside and many pads are arranged along four sides of the semiconductor integrated circuit. The plurality of I/O circuits that are of one of the foregoing two kinds are one-pad I/O circuits on which one pad is arranged in a direction toward the internal circuit, whereas the plurality of I/O circuits that are of the other of the foregoing two kinds are two-pad I/O circuits on which two pads are arranged in zigzag relationship in a direction toward the internal circuit. The number of arranged pads equals to the number of pads required for the semiconductor integrated circuit. The one-pad I/O circuits and the two-pad I/O circuits are provided with power source wirings for supplying power thereto.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Daisuke Matsuoka
  • Patent number: 7868358
    Abstract: A device includes a coiling layer, a circuit device layer and active microelectronic circuitry fabricated on the circuit device layer. The coiling layer is formed onto a surface of and coupled to the circuit device layer. The coiling layer having intrinsic stresses which cause coiling of the coiling layer and the circuit device layer including the microelectronic circuitry as the circuit device layer is released from an underlying substrate. A coiled circuit device is formed.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: January 11, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Joseph Smith, Harvey C. Nathanson, Robert S. Howell, Christopher F. Kirby, Garrett A. Storaska
  • Patent number: 7863687
    Abstract: A semiconductor apparatus includes an internal circuit, a CMOS composed of a P-channel MOS transistor with a source connected to a high-potential power supply line and a gate connected to the internal circuit, and an N-channel MOS transistor with a source connected to a low-potential power supply line and a gate connected to the internal circuit, an output terminal connected to a drain of the P-channel MOS transistor and a drain of the N-channel MOS transistor and a protection transistor with a source and a gate connected to one power supply line of the high-potential power supply line and the low-potential power supply line and a drain connected to the output terminal, a conductivity type of the protection transistor being the same as a conductivity type of one MOS transistor of the P-channel MOS transistor and the N-channel MOS transistor, the source of the one MOS transistor being connected to the one power supply line.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideaki Sai
  • Patent number: 7863737
    Abstract: An integrated circuit package system including providing a plurality of substantially identical package leads formed in a single row, and attaching bond wires having an offset on adjacent locations of the package leads.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byoung Wook Jang, Hun Teak Lee, Kwang Soon Hwang
  • Patent number: 7863652
    Abstract: To provide a semiconductor integrated circuit device advantageous against EM and ESD. A plurality of I/O cells; a power wire formed of a plurality of interconnect layers over the above-described I/O cells; a bonding pad formed in an upper layer of the power wire and in a position corresponding to the I/O cell; and lead-out areas capable of electrically coupling the I/O cell to the bonding pad are provided. The above-described power wire includes a first power wire and a second power wire, and the above-described I/O cell includes first elements coupled to the first power wire and second elements coupled to the second power wire. The first element is placed on the first power wire side, and the second element is placed on the second power wire side. The first power wire and the second power wire can allow for a high current due to the interconnect layers over the I/O cells, thus having robustness against EM and ESD.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shunsuke Toyoshima, Kazuo Tanaka, Masaru Iwabuchi
  • Publication number: 20100327324
    Abstract: In a semiconductor chip in which external connection pads are arranged in three or more rows in a staggered configuration at the peripheral portion thereof, a first pad which is arranged in the outermost row is used as a power supply pad or a ground pad for an internal core circuit. To the first pad, a second pad which is arranged in the second outermost row is connected with a metal in the same layer as a pad metal. The resistance of a power supply line to the internal core circuit has a value of the parallel resistance of a resistance from the first pad and a resistance from the second pad, which is by far lower than the resistance from the first pad. Therefore, it is possible to prevent circuit misoperation resulting from an IR drop in the power supply of the internal core circuit.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 30, 2010
    Applicant: PANASONIC CORPORATION
    Inventor: Masato Maede
  • Patent number: 7851273
    Abstract: In the present invention, a method of testing an unpackaged integrated circuit die is disclosed. The die has a plurality of first input/output pads. A serial electrical connection is fabricated in the die between all of the input/output pads of the die which are not of the first plurality (hereinafter: “second plurality”). The second plurality has a start input and an end output. The start input of the second plurality is connected to the output of one selected input buffer of the input pad of the first plurality and the end output of the second plurality is also connected to the input of one selected output pad of the first plurality. The second plurality of input/output pads are tested through selected input pad and selected output pad of the first plurality without electrical probes making contact during the wafer sort. The present invention also relates to an integrated circuit die so fabricated as to facilitate testing.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 14, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Kangping Zhang, Fong Long Lin
  • Patent number: 7821050
    Abstract: A transistor fabricated on a semiconductor substrate includes a source and a drain in the substrate; a gate on the substrate, the gate being insulated from the substrate by gate dielectric; barrier layers covering two sides of the gate and the gate dielectric; spacers of high-k material covering the barrier layers; and nitride spacers covering the spacers of high-k material. The spacers of high-k material significantly increase the node capacitance of the transistor and therefore reduce the transistor's soft error rate.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Altera Corporation
    Inventors: Yowjuang (Bill) Liu, Cheng-Hsiung Huang, Chih-Ching Shih
  • Patent number: 7816708
    Abstract: In a semiconductor chip in which external connection pads are arranged in three or more rows in a staggered configuration at the peripheral portion thereof, a first pad which is arranged in the outermost row is used as a power supply pad or a ground pad for an internal core circuit. To the first pad, a second pad which is arranged in the second outermost row is connected with a metal in the same layer as a pad metal. The resistance of a power supply line to the internal core circuit has a value of the parallel resistance of a resistance from the first pad and a resistance from the second pad, which is by far lower than the resistance from the first pad. Therefore, it is possible to prevent circuit misoperation resulting from an IR drop in the power supply of the internal core circuit.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 19, 2010
    Assignee: Panasonic Corporation
    Inventor: Masato Maede
  • Publication number: 20100230725
    Abstract: In a semiconductor integrated circuit device, a plurality of electrode pads for external connection are arranged in a zigzag pattern. Some electrode pads of the electrode pads of the plurality of I/O cells which are closer to a side of the semiconductor chip, each have an end portion closer to the side of the semiconductor chip, the end portion being set at the same position as that of an end portion of the corresponding I/O cell. A power source-side protective circuit and a ground-side protective circuit against discharge of static electricity are provided with the power source-side protective circuit being closer to the scribe region. A distance between a center position of one of the electrode pads and the ground-side protective circuit of the corresponding I/O cell and a distance between a center position of the other one electrode pad and the ground-side protective circuit of the corresponding I/O cell are both short and are substantially equal between each I/O cell.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: Panasonic Corporation
    Inventors: Koichi TANIGUCHI, Masato Maede
  • Patent number: 7786513
    Abstract: In a semiconductor integrated circuit device, from a first power source strap supplying a potential to a first standard cell receiving a supply of the potential, the potential is supplied via a first cell power source line having a constant width. The width of the first cell power source line is determined in accordance with power consumed by the first standard cell and with the number of standard cells that can be placed between the first power source strap and a third power source strap.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 31, 2010
    Assignee: Panasonic Corporation
    Inventor: Masanori Tsutsumi
  • Publication number: 20100207169
    Abstract: A semiconductor integrated circuit includes a group of wirings routed at first to Nth (N being an integer not less than two) wiring positions sequentially arranged in parallel, each of the wirings being divided into two portions comprising a starting end side and a terminating end side; and an Mth buffer circuit that connects the starting end side of the wiring at the Mth wiring position (M being an integer that satisfies 1?M?K, wherein K is an integer that satisfies K?N/2) as an input and the terminating end side of the wiring at the (M+N?K)th wiring position as an output. The group of the wirings has a structure in which connection is switched so that the starting end side of the wiring at a Jth (J being an integer that satisfies K<J?N) wiring position is routed to the terminating end side of the wiring at a (J?K)th wiring position on a wiring layer above a placement region of the buffer circuit(s). Chip occupying area of the group of wirings and the buffer circuit is reduced.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Junichi Yamada
  • Patent number: 7768117
    Abstract: A microelectronic unit has a structure including a microelectronic element such as a semiconductor chip with a first contact disposed remote from the periphery of the structure. The unit further includes first and second redistribution conductive pads disposed near a periphery of the structure and a conductive path incorporating first and second conductors extending toward the first contact, these conductors being connected to one another adjacent the first contact. The conductive path is connected to the first contact, and can provide signal routing from the periphery of the unit to the contact without the need for long stubs. A package may include a plurality of such units, which may be stacked on one another with the redistribution conductive pads of the various units connected to one another.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: August 3, 2010
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Richard Dewitt Crisp, Masud Beroz
  • Patent number: 7759668
    Abstract: A memory device includes first and second electrodes and a phase-changeable material region disposed between the first and second electrodes and including first and second portions contacting respective ones of the first and second electrodes and a third portion interconnecting the first and second portions and configured to preferentially heat with respect to the first and second portions responsive to a current passing between the first and second electrodes. The first and second portions of the phase-changeable material region may contact respective ones of the first and second electrodes at respective first and second electrode contact surfaces and the third portion may have a cross-sectional area that is less than areas of each of the first and second contact surfaces. For example, the third portion may include a filament portion extending between the first and second portions.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Ho Ahn
  • Patent number: 7755182
    Abstract: A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 13, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Shinji Moriyama, Tomio Yamada
  • Patent number: 7755147
    Abstract: A semiconductor device is provided with a first conductivity type semiconductor substrate (10); a voltage supplying terminal (26) arranged on the semiconductors substrate (10); one or more elements (6) which include a second conductivity type well section (22) and are arranged on the semiconductor substrate (10); a second conductivity type first conductive layer (21), which is a lower layer of the one or more elements (6), is in contact with the second conductivity type well section (22), and connects the second conductivity type well section (22) of the one or more elements (6) with the voltage supplying terminal (26); and a first conductivity type second conductive layer (11) formed in contact with a lower side of the first conductive layer (21).
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: July 13, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Shigeo Satoh
  • Patent number: 7750373
    Abstract: In a semiconductor integrated circuit device, a plurality of electrode pads for external connection are arranged in a zigzag pattern. Some electrode pads of the electrode pads of the plurality of I/O cells which are closer to a side of the semiconductor chip, each have an end portion closer to the side of the semiconductor chip, the end portion being set at the same position as that of an end portion of the corresponding I/O cell. A power source-side protective circuit and a ground-side protective circuit against discharge of static electricity are provided with the power source-side protective circuit being closer to the scribe region. A distance between a center position of one of the electrode pads and the ground-side protective circuit of the corresponding I/O cell and a distance between a center position of the other one electrode pad and the ground-side protective circuit of the corresponding I/O cell are both short and are substantially equal between each I/O cell.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventors: Koichi Taniguchi, Masato Maede
  • Patent number: 7745919
    Abstract: A semiconductor device comprising a plurality of semiconductor chips and a plurality of through-line groups is disclosed. Each of the through-line groups consists of a unique number of through-lines. The numbers associated with the through-line groups are mutually coprime to each other. When one of the through-lines is selected for the each through-line group, one of the semiconductor chip is designated by a combination of the selected through-lines of the plurality of the through-line groups.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kayoko Shibata, Hiroaki Ikeda
  • Patent number: 7741659
    Abstract: A semiconductor device is provided. An isolation structure is formed in a substrate to define a first and a second active region, and a channel active region therebetween. A field implant region is formed below a portion of the isolation structure around the first, second, and channel active regions. A channel active region includes two first sides defining a channel width. The distance from each first side to a second side of a neighboring field implant region is d1. The shortest distance from a third side of each first or second active region to an extension line of each second side of the field implant region is d2. R=d1/d2, where 0.15?R?0.85. A gate structure covers the channel active region and extends over a portion of the isolation structure. Source/drain doped regions are formed in the first and the second active regions.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: June 22, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Ho Yang, Jung-Ching Chen, Shyan-Yhu Wang, Shang-Chi Wu
  • Patent number: 7741717
    Abstract: A metal line of a semiconductor device comprising contact plugs, a plurality of first trenches, first metal lines, a plurality of second trenches, and second metal lines. The contact plugs are formed over a semiconductor substrate and are insulated from each other by a first insulating layer. The plurality of first trenches are formed in the first insulating layer and are connected to first contact plugs of the contact plugs. The first metal lines are formed within the first trenches and are connected to the first contact plugs. The plurality of second trenches are formed over the first metal lines and the first insulating layer and comprise a second insulating layer connected to second contact plugs of the contact plugs. The second metal lines are formed within the second trenches and are connected to the second contact plugs.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Young Ok Hong, Dong Hwan Lee
  • Publication number: 20100148218
    Abstract: The layout of an LSI is previously designed so that cells below pads which will be affected by stress are arranged so that the occurrence of a malfunction of the LSI which will be caused by the influence of stress is reduced or prevented. In addition to or instead of the cell arrangement, the arrangement of pads, bumps or the like may be adjusted.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Applicant: PANASONIC CORPORATION
    Inventor: Kenji YOKOYAMA