With Bipolar Transistors Or With Fets Of Only One Channel Conductivity Type (e.g., Enhancement-depletion Fets) Patents (Class 257/205)
  • Patent number: 6835969
    Abstract: A transistor structure having an gallium arsenide (GaAs) semiconductor substrate; a lattice match layer; an indium aluminum arsenide (InAlAs) barrier layer disposed over the lattice match layer; an InyGa1-yAs lower channel layer disposed on the barrier layer, where y is the mole fraction of In content in the lower channel layer; an InxGa1-xAs upper channel layer disposed on the lower channel layer, where x is the mole fraction of In content in the upper channel layer and where x is different from y; and an InAlAs Schottky layer on the InxGa1-xAs upper channel layer. The lower channel layer has a bandgap greater that the bandgap of the upper channel layer. The lower channel layer has a bulk electron mobility lower than the bulk electron mobility of the upper channel layer where.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: December 28, 2004
    Assignee: Raytheon Company
    Inventors: Philbert F. Marsh, Colin S. Whelan, William E. Hoke
  • Publication number: 20040222444
    Abstract: A multiple supply gate array structure facilitated by the provision of a shared n-well and an isolated n-well is described. The gate array structure allows implementation of a single voltage circuit or a multiple voltage circuit. In addition, the gate array structure allows metal reprogram to provide standard logic functions, or special logic functions such as a buffer function for a signal crossing a voltage island boundary. Other special logic functions may include, for example, a level-shifter function or a fence-hold function.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Applicant: International Business Machines Corporation
    Inventors: John M. Cohn, Kevin M. Grosselfinger, William F. Smith, Paul S. Zuchowski
  • Patent number: 6803634
    Abstract: In the manufacturing process of a Bi-CMOS semiconductor device, which includes a CMOSFET and a bipolar transistor, the steps for forming a well region, source regions, and drain regions of the CMOSFET are also used for forming the bipolar transistor. One of the steps is used for introducing impurities of the same conductivity type in a surface of a base region of the bipolar transistor in order to form a high impurity concentration region in the surface. The high impurity concentration region is formed such that the distance between an emitter region of the bipolar transistor and the high impurity concentration region becomes 1 to 2 &mgr;m. The shift in device characteristics of the bipolar transistor is improved by the high impurity concentration region even if the impurity concentration is relatively low at the surface of the base region of the bipolar transistor.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: October 12, 2004
    Assignee: Denso Corporation
    Inventors: Takuya Okuno, Shoji Mizuno, Toshitaka Kanemaru
  • Patent number: 6784063
    Abstract: The present invention discloses a method for fabricating a BiCMOS transistor, which improves the high frequency characteristics of a bipolar transistor by reducing base resistance and a parasitic capacitance between the base and collector.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: August 31, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae-han Cha
  • Patent number: 6774411
    Abstract: According to a disclosed embodiment, a base region is grown on a transistor region. A dielectric layer is next deposited over the base region. The dielectric layer can comprise, for example, silicon dioxide, silicon nitride, or a suitable low-k dielectric. Subsequently, an opening is fabricated in the dielectric layer, and an emitter layer is formed on top of the dielectric layer and in the opening. Thereafter, an anisotropic polymerizing etch chemistry is utilized to etch the emitter layer down to a first depth, forming an emitter region in the opening. Next, a non-polymerizing etch chemistry having isotropic components is used to create a notch in the dielectric layer below the emitter region. The formation of the notch reduces the overlap area of a capacitor that forms between the emitter region and the base region, which translates to a lower level of emitter to base capacitance.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: August 10, 2004
    Assignee: Newport Fab, LLC
    Inventor: Klaus F. Schuegraf
  • Patent number: 6768143
    Abstract: An integrated circuit including a field effect transistor (FET) is provided in which the gate conducter has an even number of fingers disposed between alternating source and drain regions of a substrate. The fingers are disposed in a pattern over an area of the substrate having a length in a horizontal direction, the area equaling the length multiplied by a width in a vertical direction that is occupied by an odd number of the fingers.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: July 27, 2004
    Assignee: International Business Machines Corporation
    Inventors: Gregory J. Fredeman, John W. Golz, David R. Hanson, Hoki Kim
  • Patent number: 6747322
    Abstract: A semiconductor device having a memory cell including first and second load transistors, first and second driver transistors, and first and second transfer transistors. The semiconductor device includes first and second gate—gate electrode layers, first and second drain—drain wiring layers, and first and second drain-gate wiring layers. The first drain-gate wiring layer and the second drain-gate wiring layer are located in different layers. The first drain-gate wiring layer is located below the first drain—drain wiring layer, and the second drain-gate wiring layer is located in above the first drain—drain wiring layer. This structure provides a semiconductor device that has reduced cell area. The invention also provides a memory system and electronic apparatus that include the above semiconductor device.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 8, 2004
    Assignee: Seiko Epson Corporation
    Inventors: Junichi Karasawa, Kunio Watanabe
  • Publication number: 20040075118
    Abstract: The invention relates to layers in substrate wafers. The aim of the invention is to provide layers in substrate wafers with which the drawbacks of conventional assemblies are overcome in order to achieve, on the one hand, an adequate resistance to latch-up in highly scaled, digital CMOS circuits with comparatively low costs and, on the other hand, to ensure low substrate losses/couplings for analog high-frequency circuits and, in addition, to influence the component behavior in a non-destructive manner.
    Type: Application
    Filed: November 17, 2003
    Publication date: April 22, 2004
    Inventors: Bernd Heinemann, Karl-Ernst Ehwald, Dieter Knoll, Bernd Tillack, Dirk Wolansky, Peter Schley
  • Patent number: 6703670
    Abstract: A semiconductor circuit with a depletion-mode transistor is formed with a method that eliminates the need for a separate mask and implant step to set the threshold voltage of the depletion-mode transistor. As a result, the method of the present invention reduces the cost and complexity associated with the fabrication of a semiconductor circuit that includes a depletion-mode transistor.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: March 9, 2004
    Assignee: National Semiconductor Corporation
    Inventor: Terry Lines
  • Publication number: 20040036089
    Abstract: A multi-resolution charge-coupled device (CCD) sensing device is provided. The multi-resolution CCD sensing device achieves the object of the invention by using more than two CCD shift registers. The purpose of the invention is to combine and store the charge signals from a longer CCD shift register to a shorter CCD shift register, and then to shift out the charge signals, so as to attain transmission functions with different resolutions. It can achieve the economy of smaller size and lower cost by using the multi-resolution CCD sensing device according to the invention, thereby increasing scanning speeds at lower resolutions.
    Type: Application
    Filed: August 13, 2003
    Publication date: February 26, 2004
    Inventor: Yen-Cheng Chen
  • Patent number: 6657242
    Abstract: In order to produce an electrical connection to an inner layer such as a bottom diffusion (103), which has a good electrical conductivity and is located inside a bipolar semiconductor device isolated by trenches (119) and which for example forms a subcollector of a NPN-transistor, a hole (157) in a trench is used. The hole is filled with electrically conducting material and extends from the surface of the device to the bottom diffusion (103), so that the electrically conducting material in the hole is in contact therewith. The hole (157) is made aligned with a sidewall of the trench (119) by using selective etching. The hole can be made at the same time as contact holes for metallization are made and then also be filled in the metallization step, to contact the bottom diffusion. For a lateral PNP-transistor the hole can be made as a closed groove constituting the outer confinement of the base area, passing all around the transistor.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: December 2, 2003
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Hans Norström, Ola Knut Tylstedt, Anders Lindgren
  • Patent number: 6611043
    Abstract: A bipolar transistor is provided with a collector layer of a first conductive type, a base layer of a second conductive type formed at a surface of the collector layer, and an emitter layer of the first conductive type formed at a surface of the base layer. An emitter electrode is connected to the emitter layer. Base electrodes are connected to the base layer and surround the emitter electrode. Emitter electrodes are connected to the collector layer and surround the base electrodes.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: August 26, 2003
    Assignee: NEC Corporation
    Inventor: Tomio Takiguchi
  • Patent number: 6605833
    Abstract: An integrated circuit includes first circuit elements with a supply voltage which is equal to the external supply voltage of the IC, and second circuit elements with a supply voltage which is smaller than the external supply voltage and is derived as an internal supply voltage from the first supply voltage. An active voltage divider supplies the internal supply voltage and includes a first resistance voltage divider connected between the supply voltage terminal and the reference potential, an impedance transformer connected after the first resistance voltage divider, and a circuit for controlling the scaled voltage at the tap of the first resistance voltage divider as a function of the load of the second circuit elements.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: August 12, 2003
    Assignee: Dialog Semiconductor GmbH
    Inventor: Paul Zehnich
  • Patent number: 6603158
    Abstract: A base cell is configured such that P-type regions 11 to 13 are arrayed in a column direction in an N-type well 10, N-type regions 21 to 23 are arrayed in a column direction in a P-type well 20 next to the N-type well, gate lines 34A and 35B passing above a channel between the P-type regions and further between the N-type regions are formed in a row direction, and well contact regions 16C and 26C are formed in the wells 10 and 20 at outer ends thereof, respectively, while no gate contacts are formed at the outer ends. Power supply lines VDD and VSS connected to the well contact regions are formed in the column direction in a second wiring layer above a first wiring layer.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: August 5, 2003
    Assignee: Fujitsu Limited
    Inventors: Yoshio Kajii, Toru Osajima
  • Patent number: 6600180
    Abstract: A semiconductor device suppressing increase of the number of types of exposure mask for implantations, preventing complication of manufacturing steps and suppressing the manufacturing cost and manufacturing steps therefor are provided. An impurity implantation region (R81) is formed by first implantation with an exposure mask for implantation having an opening at the lower right and this exposure mask for implantation is turned over for forming another impurity implantation region (R82) by second implantation, thereby forming three types of impurity implantation regions including the impurity implantation region (R81) formed through the first implantation, the impurity implantation region (R82) formed through the second implantation and still another impurity implantation region (R83) formed through the first implantation and the second implantation. Four types of regions inclusive of a region (R84) not subjected to impurity implantation can be formed with a single type of exposure mask for implantation.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: July 29, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Syuuichi Ueno, Tomohiro Yamashita, Hirokazu Sayama
  • Patent number: 6593191
    Abstract: A method of fabricating a buried channel FET including providing a relaxed SiGe layer on a substrate, providing a channel layer on the relaxed SiGe layer, providing a SiGe cap layer on the channel layer, and ion implanting a dopant supply. The dopant supply can be ion implanted in either the SiGe cap layer or the relaxed SiGe layer. In another embodiment, there is provided a method of fabricating a circuit including providing at least one strained channel, enhancement mode FET, and at least one strained channel, depletion mode FET on a substrate, and ion implanting a dopant supply in the depletion mode FET.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: July 15, 2003
    Assignee: Amberwave Systems Corporation
    Inventor: Eugene A. Fitzgerald
  • Publication number: 20030122181
    Abstract: A contactless NOR-type memory array of the present invention comprises a plurality of integrated floating-gate layers formed on a shallow-trench isolation structure, a plurality of word lines having an interlayer dielectric layer formed on an elongated control-gate layer for each word line, a plurality of common-source bus lines having a silicided conductive layer formed over a flat bed for each common-source line and, a plurality of bit lines with each bit line being integrated with a plurality of silicided conductive islands formed on the common-drain diffusion regions. The contactless NOR-type memory array of the present invention may offer: a cell size of 4F2, no contact problems for shallow source/drain junction of the cell, lower common-source bus line resistance and capacitance, and better density*speed*power product as compared to existing NAND-type memory array.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 3, 2003
    Inventor: Ching-Yuan Wu
  • Patent number: 6580104
    Abstract: According to the disclosed method, the surface of a semiconductor wafer is covered by a protective oxide. The semiconductor wafer is then placed in a CVD reactor at a first temperature. Contaminants and the protective oxide are then removed from the surface of the semiconductor wafer at the first temperature. While contaminants and the protective oxide are being removed by the action of HCl and DCS, any silicon being removed from the surface of the silicon wafer, is being replenished so that there is no net change in the amount of silicon on the surface of the water. After removal of the contaminants and the protective oxide, epitaxial growth is performed on the surface of the semiconductor wafer at the first temperature. A structure comprising an epitaxially grown region can be fabricated according to the disclosed method.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: June 17, 2003
    Assignee: Newport Fab, LLC
    Inventor: Gregory D. U'Ren
  • Publication number: 20030102494
    Abstract: The present invention provides a semiconductor device comprising a semiconductor substrate, and transistors formed on the semiconductor substrate, wherein control electrode terminals constituting external electrode terminals of the transistors, and first electrode terminals which transmit output signals, are provided on a main surface of the semiconductor substrate, wherein the control electrode terminals are provided at least one, and a plurality of the first electrode terminals are arranged on one side and a plurality of the first electrode terminals are arranged on the other side with the control electrode terminals being interposed therebetween, wherein a portion including the control electrode terminals and a plurality of the first electrode terminals located on one side of the control electrode terminals constitute a first transistor portion, and wherein a portion including the control electrode terminals and a plurality of the first electrode terminals located on the other side of the control electrode
    Type: Application
    Filed: November 12, 2002
    Publication date: June 5, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Hitoshi Akamine, Masashi Suzuki, Masao Yamane, Tetsuaki Adachi
  • Publication number: 20030075737
    Abstract: This invention provides a new configuration and manufacturing method of the hetero-junction bipolar transistor. According to the invention, the HBT comprises a semi-insulating InP substrate, a buffer layer on the substrate, a sub-collector layer, a collector layer, a base layer, an emitter layer, and an emitter contact layer These layers are sequentially grown on the buffer layer. Since a pre-processing of forming two depressions in the sub-collector layer before growing the collector layer, the top surface of the emitter layer becomes planar surface. This results on the reduction of pits induced in the etching of the emitter contact layer, thus enhances the reliability and the high frequency performance of the HBT.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 24, 2003
    Inventors: Takeshi Kawasaki, Kenji Kotani, Masaki Yanagisawa, Seiji Yaegashi, Hiroshi Yano
  • Patent number: 6542005
    Abstract: A semiconductor integrated circuit is provided with logic circuits having transistors. The semiconductor integrated circuit is also provide with a clock tree including clock drivers which have transistors to distribute a clock signal to the logic circuits. Gate lengths of the transistors provided in the clock drivers are longer than that of the transistors provided in the logic circuits.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: April 1, 2003
    Assignee: NEC Corporation
    Inventor: Hiroshi Yamamoto
  • Patent number: 6479845
    Abstract: A method of routing power supply voltage electrodes and reference voltage electrodes which makes efficient use of chip area, maximizes decoupling capacitance, and reduces voltage drops due to electrode resistance is described. The two top wiring layers of an integrated circuit chip are used as power distribution layers to distribute the power supply voltage and reference voltage so that the power supply voltage bus electrode and reference voltage bus electrode are in separate wiring layers. The chip is partitioned into a number of sub-blocks with spaces between the sub-blocks. In a first wiring layer the power supply voltage bus electrode is routed so as to surround each of the sub-blocks. In a second wiring layer the reference voltage bus electrode is routed so as to surround each of the sub-blocks.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: November 12, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Ker-Min Chen
  • Publication number: 20020158273
    Abstract: The present invention aims to provide high integration of a nonvolatile semiconductor memory device having lots of flash memory cells without causing a reduction in its operating speed. A width taken along a gate-width direction, of a lower conductor film for a floating gate electrode is made thinner than a minimum processing size F, and a width taken along the gate-width direction, of an upper conductor film for the floating gate electrode, which is provided with an insulating film disposed on source and drain regions interposed therebetween, is made thicker than the minimum processing size F, whereby a reduction in the ratio of coupling between a control gate electrode and a floating gate electrode due to the scaling down of a unit cell area is restrained.
    Type: Application
    Filed: October 10, 2001
    Publication date: October 31, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Akihiko Satoh, Masahito Takahashi, Takayuki Yoshitake
  • Patent number: 6441391
    Abstract: An object of the present invention is to improve, in a group III nitride semiconductor device, the productivity, heat radiation characteristic and performance in the element high speed operation; upon a sapphire substrate in which an A plane (an (11-20) plane) is set to be the basal plane, an epitaxial growth layer of a group III nitride semiconductor is formed and, thereon, a gate electrode 16, a source electrode 15 and a drain electrode 17 are formed; these electrodes are disposed in such a way that a direction along which they are laid makes an angle within 20° with respect to a C axis of sapphire.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: August 27, 2002
    Assignee: NEC Corporation
    Inventors: Yasuo Ohno, Nobuyuki Hayama, Kensuke Kasahara, Tatsuo Nakayama, Hironobu Miyamoto, Yuji Takahashi, Yuji Ando, Kohji Matsunaga, Masaaki Kuzuhara
  • Publication number: 20020084472
    Abstract: Performance matching devices in SOI are improved by thermally isolating matched devices within a continuous body of active material. Matched devices are isolated by an insulating wall of silicon dioxide (which surrounds the devices) and the oxide layer beneath, and are arranged to minimize effects from external thermal sources.
    Type: Application
    Filed: November 8, 2001
    Publication date: July 4, 2002
    Inventor: Andrew Marshall
  • Publication number: 20010045573
    Abstract: An opto-electronic semiconductor element has a radiation emitting or receiving, that is, radiation active semiconductor chip secured to an electrically conductive base frame. One, or a plurality of chips, are surrounded by a housing which may be integral with or have, separately, a cover. All materials of the housing, as well as of the conductive base frame, have mutually matching thermal coefficients of expansion within the temperature ranges which arise during manufacture and in application of the semiconductive element, singly or as a plurality in a common housing. Glass, quartz glass, ceramic or glass ceramic are suitable for the housing or parts thereof; the conductive base frame is preferably made of cladded or jacketed copper wire or strip with an iron-nickel core. Assembling a plurality of chips in a housing which has a luminescence conversion layer, e.g. a phosphor applied thereto, permits construction of a flat light source.
    Type: Application
    Filed: January 26, 1999
    Publication date: November 29, 2001
    Inventors: GUENTER WAITL, ALFRED LANGER, REINHARD WEITZEL
  • Publication number: 20010045574
    Abstract: A read amplifier circuit includes an equalize start circuit. Based on a preamp enable signal PAE and an equalize signal IOEQ, the equalize start circuit generates an equalize start signal EQ for starting equalization at the timing when the preamp enable signal PAE is activated. Simultaneously with activation of a preamplifier by the preamp enable signal PAE, a pair of read lines GIOR and /GIOR is cut off from the preamplifier, and a P channel MOS transistor starts equalization of the pair of read lines GIOR and /GIOR. In this way, it is possible to start equalization of the paired read lines at the same time that the output signal is supplied to the preamplifier.
    Type: Application
    Filed: February 26, 2001
    Publication date: November 29, 2001
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Mitsue Takahashi, Hiroaki Tanizaki
  • Patent number: 6198117
    Abstract: A transistor formed in a master slice manner is disclosed for use in radio frequency range, the transistor includes a main transistor cell operating as a smallest transistor in scale among a product group of transistors, and sub-transistor cells are arranged at symmetrical positions with the main transistor cell as the center. The sub-transistor cells are connected in common or not to the main transistor in a master slice manner in accordance with the required characteristics.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: March 6, 2001
    Assignee: NEC Corporation
    Inventor: Hiroshi Kohno
  • Patent number: 6110804
    Abstract: A semiconductor device (10) uses a plurality of floating field conductors (26, 28) to provide a substantially uniform electric field along the surface of the drift region (17) of the device (10). This substantially uniform electric field increases the breakdown voltage per unit length of the drift region (17).
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: August 29, 2000
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Vijay Parthasarathy, Michael J. Zunino, William R. Peterson, Shang-Hui Tu
  • Patent number: 6081004
    Abstract: A repeating cell structure in a semiconductor substrate for a BiCMOS logic gate array. The cell structure has three regions shaped as columns. The first columnar region is a P-well and has four vertically aligned active areas of N-type material formed within the columnar region. Each of the active areas has two gate electrodes to form two NMOS transistors. Similarly the second columnar region is a N-well and has four vertically aligned active areas of P-type material. Each such active region forms two PMOS transistors. The third column has two bipolar transistors, each with collector, base and emitter regions vertically aligned. The resulting BiCMOS logic array permits a flexible location of macrocells, which results in a compact implementation of the resulting integrated circuit.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: June 27, 2000
    Assignee: LSI Logic Corp.
    Inventors: Anthony Y. Wong, Anna Tam, Daniel Wong
  • Patent number: 6034383
    Abstract: A heterojunction bipolar transistor power cell consisting of a plurality of parallel connected sub-cells arranged in a chevron type of configuration wherein the sub-cells are staggered relative to one another so that the base feed for an input signal can have an equal electrical distance to all of the base contacts while keeping the orientation of the respective emitter fingers of the sub-cells in the same direction. By offsetting the sub-cells in a first or vertical direction, the number of sub-cells that can be arranged in a second or horizontal direction can be increased for the same horizontal distance as a conventional "in-line" design while overcoming the signal distribution limitation of a "fish-bone" design.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: March 7, 2000
    Assignee: Northrop Grumman Corporation
    Inventor: Burhan Bayraktaroglu
  • Patent number: 6011283
    Abstract: A monolithic semiconductor device includes a field effect transistor and a bipolar junction transistor with a pillar emitter structure. The pillar structure raises the BJT emitter above the surface of a trenched base. Ions implanted into the base trench diffuses into an extrinsic base contact region. The pillar elevation structure increases travel distance between the trench and the emitter and protects against encroachment without increasing the total emitter area allocated to the BJT device. A spacer oxide adjacent to the pillar separates the pillar from the trench-region implanted with ions.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: January 4, 2000
    Assignees: Hyundai Electronics America, NCR Corporation
    Inventors: Steven Lee, Gayle Miller
  • Patent number: 5898636
    Abstract: A semiconductor integrated circuit device having a memory portion and a logic circuit portion formed with a same semiconductor substrate comprising a first logic circuit block, a second logic circuit block disposed in an area different from an area in which the first logic circuit block is disposed, and a pair of memory blocks oppositely disposed so that the second logic circuit block comes in between. Data stored in the pair of memory blocks are transmitted to the second logic circuit block for processing via a memory peripheral circuit provided on the second logic circuit block. A result of the data processing is transmitted to the first logic circuit block or an external device via an input/output circuit provided in the second logic circuit block.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: April 27, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Satoru Isomura, Atsushi Shimizu, Keiichi Higeta, Tohru Kobayashi, Takeo Yamada, Yuko Ito, Kengo Miyazawa, Kunihiko Yamaguchi
  • Patent number: 5886387
    Abstract: Disclosed are a semiconductor integrated circuit device capable of including both a bipolar transistor and a MOS transistor while maintaining high performances of then both and a method of fabricating the device. On a p-type silicon substrate a plurality of n.sup.+ -type regions are formed below the buried collector region of a bipolar transistor and the n-type well region of a MOS transistor. A plurality of p-type regions are formed below the isolation region of the bipolar transistor and the p-type well region of the MOS transistor. An epitaxial layer is formed on the substrate including these n.sup.+ -type and p-type regions. This epitaxial layer forms element region layers having a bipolar transistor region and a MOS transistor region. The thickness of the layer of the bipolar transistor region is smaller than that of the layer of the MOS transistor region.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: March 23, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahito Nishigohri, Kazunari Ishimaru
  • Patent number: 5854497
    Abstract: A semiconductor memory device having a plurality of memory cells each comprising two CMOS inverters cross-coupled to each other and arranged at intersections between a plurality of word lines extending in a column direction and a plurality of complementary data line pairs extending in a row direction; wherein p-channel type load MISFETs of the memory cells arranged in the column direction are formed on the main surface of an n-type well region in the direction in which the word lines extend, the source regions of the p-channel type load MISFETs of the memory cells arranged in the column direction are electrically connected to the n-type well region through conductor layers, and each of the conductor layer is formed independently of the memory cells arranged in the column direction.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: December 29, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Toshiro Hiramoto, Nobuo Tamba, Motoki Kasai
  • Patent number: 5847409
    Abstract: A semiconductor device that enables to prevent the electron transport property of a semiconductor active layer from degrading even if a semiconductor compositionally-graded buffer layer is used. This device contains a semiconductor substrate, a semiconductor active layer lattice-mismatched with the substrate, and a semiconductor compositionally-graded buffer layer formed between the substrate and the active layer. The compositionally-graded buffer layer has a semiconductor superlattice structure including first semiconductor sublayers and second semiconductor sublayers that are alternately stacked in a direction perpendicular to the substrate. Each of the first sublayers is made of a first semiconductor material. Each of the second sublayers is made of a second semiconductor material different in composition from the first semiconductor material. The lattice constant of the first and second sublayers decreases or increases stepwise from a side near the substrate and the other side near the active layer.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: December 8, 1998
    Assignee: NEC Corporation
    Inventor: Tatsuo Nakayama
  • Patent number: 5793670
    Abstract: A memory cell includes first and second driver transistors, first and second access transistors and first and second load elements, and in addition, first and second bipolar transistors. Accordingly, static noise margin is enlarged. The first bipolar transistor has its emitter formed in one of the source/drain regions of the first access transistor. The collector of the first bipolar transistor is the backgate terminal of the first access transistor. One of the source/drain regions of the first access transistor functions as the base of the first bipolar transistor. The same applies to the second bipolar transistor and the second access transistor. As the memory cell is structured in the above described manner, lower power supply potential can be used without the problem of latch up or increased area.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: August 11, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tomohisa Wada, Hirotoshi Sato, Hiroki Honda
  • Patent number: 5789791
    Abstract: The gate resistance of a high-frequency multi-finger MOS transistor is reduced by shorting together the ends of each of the gates by utilizing gate contacts, metal regions, vias, and a metal layer. Alternately, the gate resistance is reduced by utilizing a metal line that shorts all of the gate contacts together, and overlies each of the gates. By reducing the gate resistance, the maximum frequency f.sub.MAX of the multi-finger transistor can be increased.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: August 4, 1998
    Assignee: National Semiconductor Corporation
    Inventor: Albert M. Bergemont
  • Patent number: 5739560
    Abstract: A monolithic integrated circuit utilizing areas associated with unused devices for wiring signal lines, thereby implementing effective wiring and improving high frequency characteristics. A common substrate consisting of a semiconductor substrate, and active devices, capacitor electrodes and resistors formed on the semiconductor substrate, is followed by a dielectric film, a ground metal, a dielectric film whose thickness is equal to or greater than 1 .mu.m, and signal lines. A desired circuit is formed by connecting the signal lines with electrodes of the active devices and other elements via, holes in the dielectric films, and windows of the ground metal. The windows of the ground metal are formed over portions of active devices which are used as components of the circuit.
    Type: Grant
    Filed: September 14, 1995
    Date of Patent: April 14, 1998
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Ichihiko Toyoda, Tsuneo Tokumitsu, Kenjiro Nishikawa, Kenji Kamogawa
  • Patent number: 5694078
    Abstract: A semiconductor integrated circuit includes a chip having an element forming surface with a side thereof extending along a first direction, an output buffer portion provided on the element forming surface of the chip, a plurality of output transistors having different emitter areas provided on the element forming surface of the chip and arranged approximately in a line along a second direction, which is perpendicular to the first direction, and a pad provided on the element forming surface of the chip. An output circuit is formed by the output buffer portion, a portion or all of the output transistors and the pad. The output buffer portion, the output transistors and the pad are arranged approximately in a line along the second direction.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: December 2, 1997
    Assignee: Fujitsu Limited
    Inventors: Katsunobu Nomura, Masaya Tamamura, Shinichi Shiotsu, Hojo Masayasu
  • Patent number: 5672895
    Abstract: Diodes rows are arranged at interval L in the same direction as that of arrangement of cell rows. Each of the diodes rows has a row of pn junctions each formed on a substrate and arranged along a track vertical to interconnection tracks. The interconnection between cells automatically connect the gates of MOS transistors to the diodes without the need for considering which gate should be connected to the diode. The length of wiring between the gate of MOS transistor and a diode is less than an upper limit value for preventing electrostatic breakdown at a gate oxide in a process of fabricating the semiconductor integrated circuit. Each of the pn junctions may be formed under necessary input signal lines, necessary ground line, the bottom of the drain of MOS transistor or under the power supply line outside of macrocell.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: September 30, 1997
    Assignee: Fujitsu, Ltd.
    Inventors: Takashi Iida, Satoru Sumi, Hiroshi Shimizu, Akinori Tahara, Isao Amano, Tetsuya Nakajima
  • Patent number: 5652441
    Abstract: A semiconductor 110 device includes an array of like base cells wherein each base cell includes at least one source 132 and at least one drain 130 region formed in a semiconductor substrate. At least one gate 126 is formed over and insulated from a channel region 118 which separates the source 132 and drain 130 regions. An insulating layer 190 overlies the structure. A plurality of contacts are formed in the insulating layer in a plurality of substantially parallel; evenly spaced grid lines G1-G5. In addition, at least one additional contact 150 formed between two adjacent ones G2 and G3 of the substantially parallel grid lines is formed. A plurality of interconnect lines 142 and 144 are formed over the insulating layer such that each contact is connected to at least one of the interconnect lines. Modifications, variations, circuit configurations and an illustrative fabrication method are also disclosed.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: July 29, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Mashashi Hashimoto, Shivaling S. Mahant-Shetti
  • Patent number: 5633524
    Abstract: In order to improve a withstand voltage and implement a gate array SOI semiconductor integrated circuit device having a large gate width, a region consisting of end cells (49) is provided on each end of a region formed by repeatedly arranging basic cells (BC) consisting of both transistor regions (32, 33) in a first direction and while symmetrically arranging the same to be folded in a second direction. Both ends of a channel region of a PMOS transistor (42) are drawn out in the second direction to provide a P-type semiconductor layer just under a field shielding gate electrode (FG), and this semiconductor layer is drawn also in the first direction to be connected with a P-type semiconductor layer of the end cell (49). A first source potential is applied to a region (PBD) which is bonded with one of the P-type semiconductor layers.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: May 27, 1997
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kimio Ueda, Hiroyuki Morinaka, Koichiro Mashiko
  • Patent number: 5629537
    Abstract: A semiconductor device has a plurality of basic cells fabricated on a single semiconductor substrate. Each of the basic cells comprises a first-conduction-type FETs, a second-conduction-type FETs, and a bipolar transistor. The collector region of the bipolar transistor is formed in a well region where the first-conduction-type FETs are formed. The bipolar transistor is formed between the first-conduction-type FETs of adjacent ones of the basic cells separated by an element insulation film.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: May 13, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsu Nagamatsu, Hiroshi Momose
  • Patent number: 5591995
    Abstract: A gate array base cell is disclosed which provides decreased input loading. The preferred base cell comprises two rows of CMOS sites. Each row comprises small CMOS sites CS and large CMOS sites CL. The transistor gates in the small CMOS site CS are narrower than the transistor gates in the large CMOS site CL. Preferably, the CS sites comprise transistor gates one half the size of transistor gates in the CL sites so that transistor gates in the CS sites may be connected in parallel to form the electrical equivalent of transistor gates in the CL sites.
    Type: Grant
    Filed: May 10, 1994
    Date of Patent: January 7, 1997
    Assignee: Texas Instruments, Incorporated
    Inventor: Ching-Hao Shaw
  • Patent number: 5523611
    Abstract: The invention relates to a combination of monolithically integrated semiconductor arrays each having a number of prefabricated standard elements that can be connected together using one or more metalization layers to form different signal processing units. The standard elements prefabricated on the semiconductor array comprise a number of base cells, a number of capacitors, a number of output transistors and a number of photodiodes arranged in rows and columns. The base cells each contain a number of npn and pnp transistors and a number of resistors. The common arrangement of base cells for signal processing and a photodiode array arranged in rows and columns in addition to the capacitors and output transistors permit low cost manufacture at short notice and in small production quantities of a wide variety of different photodetectors with integrated electronic circuits.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: June 4, 1996
    Assignee: Temic Telefunken microelectronic GmbH
    Inventors: Peter Mischel, Jasbeer-Singh Suri, Ulrich Wicke
  • Patent number: 5517040
    Abstract: A computer converts a description of an analog circuit to a physical representation in terms of devices on a personalizable chip. The devices are placed and wired automatically for fabrication of the chip. Descriptions of resistors in the circuit are expanded by wiring multiple contacts of one or more actual resistor devices on the chip. The chip uses multiple rows of devices arranged in columns; each row contains multiple transistor and resistor devices.
    Type: Grant
    Filed: October 21, 1991
    Date of Patent: May 14, 1996
    Assignee: International Business Machines Corporation
    Inventors: Robert L. Hedman, Gordon G. Koehler, Karl L. Ladin, John T. Trnka
  • Patent number: 5512766
    Abstract: A logic block of a memory (LSI) with logic functions includes RAM macrocells (RAMO-RAM7) and a centrally located gate array (GAO-GA5). Clock pulse shaping circuits (CSPO, CSP1) and input/output portion (I/O) surround the logic block. The logic block power supply includes a smoothing capacitor (CC) that is substantially the same size as a cell (GC) of the gate array. Each RAM macrocell has memory mats (MATOO-MAT21), word lines (WO-W127), data lines (DO-D7), and peripheral circuits (MPCOO-MPC21), which includes an address decoder and a sense amp (SAO). An input unit cell (ICO) receives ECL level signals and outputs ECL level signals (FIG. 5 ) and MOS level signals (FIG. 6 ). The input unit cells and analogous output unit cells (OCO) are selectively used singly or in parallel to accommodate signals of different form and driving capability. A wiring line replacement region (LRP) connects memory macrocell wiring lines with logic block wiring lines.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: April 30, 1996
    Assignees: Hitachi, Ltd., Hitachi Microcomputer System Ltd.
    Inventors: Mitsugu Kusunoki, Shuuichi Miyaoka, Michiaki Nakayama, Kouji Kobayashi, Masato Ikeda, Takashi Ogata
  • Patent number: 5497014
    Abstract: The invention provides a Bi-CMOS gate array semiconductor integrated circuit chip including a peripheral region including an input/output circuit region and a bonding pad region and an internal cell structure provided within an internal cell region involved in the semiconductor integrated circuit chip. The internal cell structure comprises MOS transistor cell units including a plurality of MOS transistors and bipolar transistor cell units including a plurality of bipolar transistors wherein a distribution ratio in the number of the MOS transistor cell units to the bipolar transistor cell units has such a variation that the distributed ratio is high in a region that requires driving of almost no or a small load while the distributed ratio is low in a region that requires driving of a large load.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: March 5, 1996
    Assignee: NEC Corporation
    Inventor: Takayuki Momose
  • Patent number: RE38545
    Abstract: A semiconductor memory device having a plurality of memory cells each comprising two CMOS inverters cross-coupled to each other and arranged at intersections between a plurality of word lines extending in a column direction and a plurality of complementary data line pairs extending in a row direction; wherein p-channel type load MISFETs of the memory cells arranged in the column direction are formed on the main surface of an n-type well region in the direction in which the word lines extend, the source regions of the p-channel type load MISFETs of the memory cells arranged in the column direction are electrically connected to the n-type well region through conductor layers, and each of the conductor layer is formed independently of the memory cells arranged in the column direction.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: July 6, 2004
    Assignee: Renesas Technology Corporation
    Inventors: Toshiro Hiramoto, Nobuo Tamba, Motoki Kasai