Light Responsive Structure Patents (Class 257/21)
  • Publication number: 20080197340
    Abstract: A multiple-wavelength opto-electronic device may include a substrate and a plurality of active optical devices carried by the substrate and operating at different respective wavelengths. Each optical device may include a superlattice comprising a plurality of stacked groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson, Marek Hytha, Ilija Dukovski, Jean Augustin Chan Sow Fook Yiptong, Samed Halilov, Xiangyang Huang
  • Patent number: 7415185
    Abstract: A buried-waveguide light detecting element includes an n-type cladding layer on a Fe-InP substrate, a waveguide on a portion of the n-type cladding layer, and in which an n-type light guide layer, an i-light guide layer having a refractive index equal to or higher than that of the n-type cladding layer and undoped or having an impurity concentration of 1×1017 cm?3 or less, lower than the impurity concentration in the n-type light guide layer, a light absorption layer having a refractive index higher than that of the i-light guide layer, a p-type light guide layer, and a p-type cladding layer are successively layered in mesa form, from the Fe—InP substrate, and a blocking layer on the Fe—InP substrate and in which side walls of the waveguide are embedded.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 19, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaharu Nakaji, Eitaro Ishimura
  • Publication number: 20080179589
    Abstract: Included are embodiments for providing an infrared detector structure. At least one embodiment of a device includes a substrate and an n-type layer coupled to the substrate, the n-type layer being configured as an n-type contact for a first electrical connection to a read out integrated circuit. Some embodiments include a growing component configured as an intrinsic absorbing superlattice and a p-type contact layer coupled to the intrinsic absorbing superlattice layer, the p-type contact layer being coupled to the read out integrated circuit via a second electrical connection.
    Type: Application
    Filed: April 2, 2008
    Publication date: July 31, 2008
    Applicant: US Government as represented by Secretary of the Army
    Inventor: Stefan Per Svensson
  • Patent number: 7399988
    Abstract: A photodetecting device which is capable of performing photodetection with a high sensitivity in a wide temperature range. A quantum dot structure including an embedding layer and quantum dots embedded by the embedding layer is formed. A quantum well structure including embedding layers and a quantum well layer whose band gap is smaller than those of the embedding layers is formed at a location downstream of the quantum dot structure in the direction of flow of electrons which flow perpendicularly to the quantum dot structure during operation of the photodetecting device. This reduces the temperature dependence of the potential barrier of a photodetecting section, which has to be overcome by electrons, whereby it is possible to lower the potential barrier of the embedding layers at high temperature.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: July 15, 2008
    Assignee: Fujitsu Limited
    Inventor: Yusuke Matsukura
  • Patent number: 7397067
    Abstract: Some embodiments provide a microdisplay integrated circuit (IC), a substantially transparent protective cover coupled to the microdisplay IC, and a base coupled to the microdisplay IC. Thermal expansion characteristics of the base may be substantially similar to thermal expansion characteristics of the protective cover. According to some embodiments, at least one set of imaging elements is fabricated on an upper surface of a semiconductor substrate, and a base is affixed to a lower surface of the semiconductor substrate to generate substantially negligible mechanical stress between the semiconductor substrate and the base.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: July 8, 2008
    Assignee: Intel Corporation
    Inventors: Michael O'Connor, Thomas W. Springett, Paul C. Ward-Dolkas
  • Patent number: 7397066
    Abstract: Microelectronic imagers with curved image sensors and methods for manufacturing curved image sensors. In one embodiment, a microelectronic imager device includes an imager die having a substrate, a curved microelectronic image sensor having a face with a convex and/or concave portion at one side of the substrate, and integrated circuitry in the substrate operatively coupled to the image sensor. The imager die can further include external contacts electrically coupled to the integrated circuitry and a cover over the curved image sensor.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Steven D. Oliver
  • Publication number: 20080121867
    Abstract: In an avalanche photodiode provided with a substrate including a first electrode and a first semiconductor layer, formed of a first conductivity type, which is connected to the first electrode, the configuration is in such a way that, at least an avalanche multiplication layer, a light absorption layer, and a second semiconductor layer having a bandgap that is larger than that of the light absorption layer are layered on the substrate; a second conductivity type conductive region is formed in the second semiconductor layer; and the second conductivity type conductive region is arranged so as to be connected to a second electrode. With the foregoing configuration, an avalanche photodiode having a small dark current and a high long-term reliability can be provided with a simple process.
    Type: Application
    Filed: October 25, 2004
    Publication date: May 29, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Eiji Yagyu, Eitaro Ishimura, Masaharu Nakaji
  • Patent number: 7378151
    Abstract: The invention provides a semiconductor nanoparticle comprising a semiconductor nanoparticle core on the surface of which electron-releasing groups are arranged, the semiconductor nanoparticle having a fluorescent property and water-solubility. The invention also provides a water-soluble semiconductor nanoparticle with an excellent fluorescent property that can be easily prepared by adding a surface-treating material for providing a semiconductor nanoparticle with one or more kinds of electron-releasing groups, and arranging the electron-releasing groups on the surface of the semiconductor nanoparticle core.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: May 27, 2008
    Assignee: Hitachi Software Engineering Co., Ltd.
    Inventors: Keiichi Sato, Susumu Kuwabata
  • Patent number: 7378680
    Abstract: Methods and systems produce flattening layers associated with nitrogen-containing quantum wells and prevent 3-D growth of nitrogen containing layers using high As fluxes. MEE (Migration Enhanced Epitaxy) is used to flatten layers and enhance smoothness of quantum well interfaces and to achieve narrowing of the spectrum of light emitted from nitrogen containing quantum wells. MEE is performed by alternately depositing single atomic layers of group III and V before, and/or after, and/or in-between quantum wells. Where GaAs is used, the process can be accomplished by alternately opening and closing Ga and As shutters in an MBE system, while preventing both from being open at the same time. Where nitrogen is used, the system incorporates a mechanical means of preventing nitrogen from entering the MBE processing chamber, such as a gate valve.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: May 27, 2008
    Assignee: Finisar Corporation
    Inventors: Ralph H. Johnson, Virgil J. Blasingame
  • Patent number: 7372068
    Abstract: A QWIP structure is disclosed that includes a graded emitter barrier and can further be configured with a blocked superlattice miniband. The graded emitter barrier effectively operates to launch dark electrons into the active quantum well region, thereby improving responsivity. A graded collector barrier may also be included for reverse bias applications. The configuration operates to eliminate or otherwise reduce image artifacts or persistence associated with dielectric relaxation effect in low-background applications.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: May 13, 2008
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventors: Mani Sundaram, Axel R Reisinger
  • Patent number: 7358525
    Abstract: The invention relates to a quantum dot. The quantum dot comprises a core including a semiconductor material Y selected from the group consisting of Si and Ge. The quantum dot also comprises a shell surrounding the core. The quantum dot is substantially defect free such that the quantum dot exhibits photoluminescence with a quantum efficiency that is greater than 10 percent.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 15, 2008
    Assignee: UltraDots, Inc.
    Inventor: Howard Wing Hoon Lee
  • Publication number: 20080078989
    Abstract: A spin coherent, single photon detector has a body of semiconductor material with a quantum well region formed in barrier material in the body. The body has first and second electrodes formed thereon, the first electrode forming an isolation electrode for defining, when negatively energized, an extent of the quantum well in the body and the second electrode being positioned above a location where an electrostatic quantum dot is defined in said quantum well in response to positive energization of the second electrode.
    Type: Application
    Filed: October 2, 2006
    Publication date: April 3, 2008
    Inventors: Edward T. Croke, Mark F. Gyure
  • Patent number: 7348583
    Abstract: An apparatus for producing wavelength stabilized electromagnetic radiation is provided, the apparatus comprising a broadband semiconductor radiation source configured to produce broadband electromagnetic radiation having a mean wavelength ?m, and a bandpass radiation filter, an input of said bandpass radiation filter being in optical connection to an output of said radiation source, and a common temperature stabilizer being in thermal contact with both, the radiation source and the radiation filter. In a preferred embodiment, the radiation source—which is, for example, a superluminescent light emitting diode—and the bandpass radiation filter are provided on a common mount which is in contact with a thermoelectric cooler acting, together with temperature sensing means and control means, as temperature stabilizer.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: March 25, 2008
    Assignee: Exalos AG
    Inventors: Christian Vélez, Lorenzo Occhi, Christopher Armistead
  • Patent number: 7349603
    Abstract: Optical arrangement comprising two parallel plates each with a through-hole forming an optical input/output with a given optical axis and one at least partly optical component placed between the plates, the component and the first plate comprising first fastening studs placed transversely in opposite relationship of the plate and connected by first bumps made of a meltable material that when molten is able to selectively wet these first fastening studs in order to optically align the component and the input/output on the first plate, and the two plates comprising second fastening studs placed transversely in opposite relationship of the plate and connected by second bumps made of a meltable material that when molten is able to selectively wet the second fastening studs in order to optically align the inputs/outputs of the two plates.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: March 25, 2008
    Assignee: Commissariat A l'Energie Atomique
    Inventor: Jean-Charles Souriau
  • Publication number: 20080054251
    Abstract: Systems and methods for at or near room temperature of infrared detection are disclosed. Embodiments of the disclosure include high temperature split-off band infrared detectors. One embodiment, among others, comprises a first barrier and a second barrier with an emitter disposed between the first and second barrier, each barrier being a layer of a first semiconductor material and the emitter being a layer of a second semiconductor material.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 6, 2008
    Inventors: A.G. Unil Perera, S. G. Matsik
  • Patent number: 7294848
    Abstract: In one aspect, a semiconductor device includes a p-region and an n-region. The p-region includes a first Group IV semiconductor that has a bandgap and is doped with a p-type dopant, and a first region of local crystal modifications inducing localized strain that increases the bandgap of the first Group IV semiconductor and creates a conduction band energy barrier against transport of electrons across the p-region. The n-region includes a second Group IV semiconductor that has a bandgap and is doped with an n-type dopant, and a second region of local crystal modifications inducing localized strain that increases the bandgap of the second Group IV semiconductor and creates a valence band energy barrier against transport of holes across the n-region.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 13, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Sandeep R. Bahl, Glenn H. Rankin
  • Patent number: 7291858
    Abstract: A tunable QWIP FPA device that is configured for spectral tunability for performing the likes of imaging and spectroscopy is disclosed. A selected bias voltage is applied across the contacts associated with a particular detector layer/channel of the device, where each applied bias corresponds to a particular target spectrum/color for detection. Each detector layer/channel can be coarse tuned for a bimodal or dual-band operation (e.g., MWIR/LWIR). Also, each detector layer/channel is configured for continuous or fine tuning within a particular mode (e.g., MWIR/MWIR). Thus, dynamic bias-controlled tuning is enabled. Asymmetric quantum well configurations enable this tunability.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: November 6, 2007
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventors: Mani Sundaram, Axel R Reisinger
  • Patent number: 7282798
    Abstract: A method and structure for heat transport, cooling, sensing and power generation is described. A photonic bandgap structure (3) is employed to enhance emissive heat transport from heat sources such as integrated circuits (2) to heat spreaders (4). The photonic bandgap structure (3) is also employed to convert heat to electric power by enhanced emission absorption and to cool and sense radiation, such as infra-red radiation. These concepts may be applied to both heat loss and heat absorption, and may be applied to heat transport and absorption enhancement in a single device.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: October 16, 2007
    Assignee: Research Triangle Institute
    Inventor: Rama Venkatasubramanian
  • Patent number: 7279699
    Abstract: An integrated circuit may include at least one active optical device and a waveguide coupled thereto. The waveguide may include a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: October 9, 2007
    Assignee: RJ Mears, LLC
    Inventors: Robert J. Mears, Robert John Stephenson
  • Patent number: 7276724
    Abstract: Series interconnection of optoelectronic device modules is disclosed. Each device module includes an active layer disposed between a bottom electrode and a transparent conducting layer. An insulating layer is disposed between the bottom electrode of a first device module and a backside top electrode of the first device module. One or more vias are formed through the active layer, transparent conducting layer and insulating layer of the first device module. Sidewalls of the vias are coated with an insulating material such that a channel is formed through the insulating material to the backside top electrode of the first device module. The channel is at least partially filled with an electrically conductive material to form a plug that makes electrical contact between the transparent conducting layer and the backside top electrode of the first device module.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: October 2, 2007
    Assignee: Nanosolar, Inc.
    Inventors: James R. Sheats, Sam Kao, Gregory A. Miller, Martin R. Roscheisen
  • Patent number: 7271405
    Abstract: A photodetector for use at wavelengths of 2 ?m and longer has an intersubband absorption region to provide absorption at wavelengths beyond 2 ?m, integrated with an avalanche multiplier region to provide low-noise gain. In one particular design, the intersubband absorption region is a quantum-confined absorption region (e.g., based on quantum wells and/or quantum dots).
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: September 18, 2007
    Assignee: STC.UNM
    Inventors: Sanjay Krishna, John P. R David, Majeed M Hayat
  • Patent number: 7268364
    Abstract: Hybrid devices, such as optically erasable memory cells and light sensors, and related methods are disclosed. In some embodiments, a device includes a structure capable of converting between a first resistance state and a second resistance state, and a light source configured to convert the structure from the first resistance state to the second resistance state. The structure includes an organic first material and a second material different from the first material.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: September 11, 2007
    Assignee: Aculon, Inc.
    Inventors: Norbert Koch, Hisao Ishii
  • Patent number: 7262429
    Abstract: An improved THz detection mechanism includes a heterojunction thyristor structure logically formed by an n-type quantum-well-base bipolar transistor and p-type quantum-wellbase bipolar transistor arranged vertically to share a common collector region. Antenna elements, which are adapted to receive electromagnetic radiation in a desired portion of the THz region, are electrically coupled (or integrally formed with) the p-channel injector electrodes of the heterojunction thyristor device such the that antenna elements are electrically connected to the p-type modulation doped quantum well interface of the device. THz radiation supplied by the antenna elements to the p-type quantum well interface increases electron temperature of a two-dimensional electron gas at the p-type modulation doped quantum well interface thereby producing a current resulting from thermionic emission over a potential barrier provided by said first-type modulation doped quantum well interface.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: August 28, 2007
    Inventor: Geoff W. Taylor
  • Patent number: 7253432
    Abstract: A photodetector and method of detecting far infrared optical signals. In one embodiment of the present invention, the photodetctor has a plurality of N barriers, N being an integer greater than 1, each barrier being a layer of a material made from a first and a second group III elements and a first group V element and characterized by a bandgap. The photodetector further has a plurality of N?1 emitters, each emitter being a layer of material made from a third group III element and a second group V element and characterized by a bandgap different from that of the barriers and having at least one free carrier responsive to optical signals, wherein each emitter is located between two barriers so as to form a heterojunction at each interface between an emitter and a barrier.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: August 7, 2007
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: A.G. Unil Perera, Steven George Matsik
  • Patent number: 7253522
    Abstract: A precision RF passive component including: a silicon substrate; a first dielectric layer deposited above the silicon substrate; a first metal layer formed above the first dielectric layer; a second dielectric layer formed above the first metal layer; and a second metal layer formed above the second dielectric layer. In one embodiment a passivation layer is added above the second metal layer. In an exemplary embodiment the first metal layer includes a first adhesion layer, a metal sub-layer, and a second adhesion layer; and the second dielectric layer includes a first diffusion barrier layer, a dielectric sub-layer second diffusion barrier. In an exemplary embodiment, the metal sub-layer includes copper. In another exemplary embodiment the dielectric sub-layer includes SiO2 or Si3N4 between diffusion barrier layers including SiN.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: August 7, 2007
    Assignee: AVX Israel, Ltd.
    Inventors: Elad Irron, Eitan Avni
  • Patent number: 7244959
    Abstract: An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a “bimetallic effect.” The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: July 17, 2007
    Assignee: UT-Battelle, LLC
    Inventors: Panagiotis G. Datskos, Slobodan Rajic, Irene Datskou
  • Patent number: 7238960
    Abstract: A QWIP structure is disclosed that is configured with enhanced optical coupling to improve absorption capability and efficiency. A waffle-type light-coupling grating having a pattern of etched wells operates to improve absorption by preventing photons from bouncing out of the detector sensing areas. A post-type light coupling grating can also be used. Parameters of the grating, including its orientation, pitch, and etch depth, can be adjusted to optimize specific color detection. The grating can include a hybrid metal layer including both ohmic and reflective qualities to further improve quantum and conversion efficiency. A “photon-in-a-box” configuration is also disclosed, where sides of the QWIP sensing areas are coated with reflective metal to further inhibit the escaping of photons. The material design and number of quantum wells per QWIP can be selected so as to exploit the avalanche effect, thereby increasing device responsivity.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: July 3, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mani Sundaram, Axel R Reisinger
  • Patent number: 7238972
    Abstract: A photodetector is described. The photodetector is comprised of a substrate, a first n-type III-V compound semiconductor layer located on the substrate, an n++-type III-V compound semiconductor layer located on a first portion of the first n-type III-V compound semiconductor layer with a second portion of the first n-type III-V compound semiconductor layer exposed, a p-type III-V compound semiconductor layer located on the n++-type compound semiconductor layer, an undoped III-V compound semiconductor layer located on the p-type III-V compound semiconductor layer, a second n-type III-V compound semiconductor layer located on the undoped III-V compound semiconductor layer, a conductive transparent oxide layer located on the second n-type III-V compound semiconductor layer, a first electrode located on a portion of the conductive transparent oxide layer, and a second electrode located on a portion of the second portion of the first n-type III-V compound semiconductor layer.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: July 3, 2007
    Assignee: Epitech Technology Corporation
    Inventors: Ming-Lum Lee, Wei-Chih Lai, Shih-Chang Shei
  • Patent number: 7226871
    Abstract: A method for forming a silicon oxynitride layer, suitable to be used in the production of semiconductor devices, e.g. poly-silicon thin film transistors, is provided. A plasma surface treatment is performed over a substrate after a silicon nitride/silicon oxide layer has been formed on the substrate by a glow discharge system to transform the silicon nitride/silicon oxide layer into a silicon oxynitride layer. The semiconductor device may be completely manufactured in simplex equipment. Therefore, the production time and production cost are favorably reduced.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: June 5, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Lin-En Chou, Hung-Che Ting
  • Patent number: 7227177
    Abstract: A particle, includes a semiconductor nanocrystal. The nanocrystal is doped.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: June 5, 2007
    Assignee: Arch Development Corporation
    Inventors: Philippe Guyot-Sionnest, Moonsub Shim, Conjun Wang
  • Patent number: 7217951
    Abstract: A semiconductor detector has a tunable spectral response. These detectors may be used with processing techniques that permit the creation of “synthetic” sensors that have spectral responses that are beyond the spectral responses attainable by the underlying detectors. For example, the processing techniques may permit continuous and independent tuning of both the center wavelength and the spectral resolution of the synthesized spectral response. Other processing techniques can also generate responses that are matched to specific target signatures.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 15, 2007
    Assignee: Stc@unm
    Inventors: Sanjay Krishna, J. Scott Tyo, Majeed M Hayat, Sunil Raghavan, Unal Sakoglu
  • Patent number: 7217926
    Abstract: The present disclosure relates to detection of light (or radiation) at different wavelengths. A voltage-tunable multi-color infrared (IR) detector element receives incident radiation through a substantially-transparent substrate. Side surfaces of the voltage-tunable multi-color IR detector element reflect the incident radiation, thereby redirecting the radiation. The reflected radiation is directed through a voltage-tunable multi-color infrared (IR) detector. Energy proportional to different ranges of wavelengths is detected by supplying different bias voltages across the voltage-tunable multi-color IR detector element.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: May 15, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventor: Kwong-Kit Choi
  • Patent number: 7214971
    Abstract: A semiconductor light-receiving device has a substrate including upper, middle and lower regions in its front side. A p-type layer on the lower region has a top surface including a portion on a level with the middle region. An electrode covers at least part of the boundary between the portion of the p-type layer and the middle region. An n-type layer on the p-type layer has a top surface including a portion on a level with the upper region. Another electrode covers at least part of the boundary between the portion of the n-type layer and the upper region.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: May 8, 2007
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Minoru Niigaki, Kazutoshi Nakajima
  • Patent number: 7211820
    Abstract: Quantum-well sensors having an array of spatially separated quantum-well columns formed on a substrate. A grating can be formed increase the coupling efficiency.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: May 1, 2007
    Assignee: California Institute of Technology
    Inventors: Sarath D. Gunapala, Sumith V. Bandara, John K. Liu, Daniel W. Wilson
  • Patent number: 7211821
    Abstract: A photonic device includes a silicon semiconductor based superlattice. The superlattice has a plurality of layers that form a plurality of repeating units. At least one of the layers in the repeating unit is an optically active layer with at least one species of rare earth ion.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: May 1, 2007
    Assignee: Translucent Photonics, Inc.
    Inventors: Petar B. Atanackovic, Larry R. Marshall
  • Patent number: 7205563
    Abstract: A QWIP structure is disclosed that includes a graded emitter barrier and can further be configured with a blocked superlattice miniband. The graded emitter barrier effectively operates to launch dark electrons into the active quantum well region, thereby improving responsivity. A graded collector barrier may also be included for reverse bias applications. The configuration operates to eliminate or otherwise reduce image artifacts or persistence associated with dielectric relaxation effect in low-background applications.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: April 17, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mani Sundaram, Axel R Reisinger
  • Patent number: 7202511
    Abstract: Electromagnetic energy is detected with high efficiency in the spectral range having wavelengths of about 1–2 microns by coupling an absorber layer having high quantum efficiency in the spectral range having wavelengths of about 1–2 microns to an intrinsic semiconducting blocking region of an impurity band semiconducting device included in a solid state photon detector.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 10, 2007
    Assignee: DRS Sensors & Targeting Systems, Inc.
    Inventors: Maryn G. Stapelbroek, Henry H. Hogue, Arvind I. D'Souza
  • Patent number: 7195723
    Abstract: A colloidal solution and/or nanocomposite having enhanced energy transfer between thermal, electron, phonons, and photons energy states. The composition comprises a synergistic blend of electrides and alkalides within a medium that effectively alters the mean free path. The composition is optionally further enhanced through externally generated fields and made into energy conversion devices.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 27, 2007
    Inventor: Michael H. Gurin
  • Patent number: 7196349
    Abstract: Multi-quantum well (MQW) spatial light modulator devices are disclosed that are capable of achieving reasonable quantum efficiencies and high contrast ratios in order to close an optical communication link by resolving the logical on or off state. The device both modulates and detects light through the use of the quantum well design and resonant cavity enhancement. Based on the materials (e.g., InGaAs/InAlAs) and their band structures, this device can be configured to communicate in the eye-safe wavelength range (e.g., 1550±20 nm). The device can be fabricated using standard photolithographic processes such as molecular beam epitaxy (MBE) and inductively coupled plasma (ICP) reactive ion etching (RIE).
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: March 27, 2007
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Kambiz Alavi, Joseph Pellegrino, Patrick G Maloney, F. Elliott Koch
  • Patent number: 7179680
    Abstract: An optoelectronic component with an optoelectronic transducer is produced with the novel method. The optoelectronic component has a coupling region, which is formed in a radiation-transparent molding of the optoelectronic component. On the base of a clearance of the coupling region, the optoelectronic component has a radiation-optical functional surface, which is formed from the housing material and introduced into the molding with the aid of a profile milling cutter.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: February 20, 2007
    Assignee: Infineon Technologies AG
    Inventor: Manfred Fries
  • Patent number: 7180066
    Abstract: A quantum-well infrared photodetector (QWIP) is presented. The photodetector includes a substrate, a buffer layer, a first conductive layer, a multiple quantum well, an optional blocking layer, and a second conductive layer. Substrate is composed of a monocrystal which may be removed after fabrication. Remaining layers are composed of group III-V nitrides, including binary, ternary, and quaternary compositions. Alternate embodiments of the present invention include a doped binary alloy along first and second conductive layers, a binary alloy along buffer and blocking layers, and alternating alloys of binary, ternary and quaternary compositions within the multiple quantum well. The present invention responds to infrared light at normal and oblique incidences, from near infrared to very far infrared.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: February 20, 2007
    Inventor: Chang-Hua Qiu
  • Patent number: 7180648
    Abstract: An electro-absorption light intensity modulator device is provided that comprises a first and a second layer disposed relative to the first layer so as to provide a light-absorbing optical confinement region. The first layer comprises a first insulator layer, and the light-absorbing optical confinement region comprises at least one quantum-confined structure. The at least one quantum-confined structure possesses dimensions such, that upon an application of an electric field in the at least one quantum-confined structure, light absorption is at least partially due to a transition of at least one carrier between a valence state and a conduction state of the at least one quantum-confined structure. A method is also provided for fabricating an electro-absorption light intensity modulator device.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 20, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl Dohrman, Saurabh Gupta, Eugene A. Fitzgerald
  • Patent number: 7169647
    Abstract: A conductive connection is made between a semiconductor chip and an external conductor structure. An elevation element is applied on the surface of the semiconductor chip and a soldering island is arranged on the elevation element. An interconnect is produced below the soldering island as far as a bonding island or an I/O pad. Increased reliability of conductive connections of the bonding island or the I/O pad to an external conductive structure can be achieved by preventing the flowing-away of the solder and the oxidation or corrosion of the conductive layer.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: January 30, 2007
    Assignee: Infineon Technologies AG
    Inventors: Octavio Trovarelli, Ingo Uhlendorf, David Wallis, Axel Brintzinger
  • Patent number: 7170085
    Abstract: The present invention provides a device for frequency-selective detection of electromagnetic radiation in the terahertz region of the electromagnetic spectrum using a lateral semiconductor superlattice, a metal antenna attached to the lateral semiconductor superlattice; and a resonator comprising two mirrors and a substrate. A method for detecting electromagnetic radiation using the device is also provided.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: January 30, 2007
    Assignee: Stevens Institute of Technology
    Inventors: Alexander S. Raspopin, Hong-Liang Cui
  • Patent number: 7161170
    Abstract: An InGaAs/InAlAs-based avalanche photodetector provides high gain and high bandwidth over a range of operating biases. A graded transition region alleviates the barrier to electron transport from the absorption region to the multiplication region when an operating bias is applied. The graded transition region is a graded bandgap material with a relatively wide bandwidth in the region closer to the multiplication region and a relatively narrow bandgap in the region closer to the absorption region. In another embodiment, a p-type dopant profile is introduced within the absorption layer to produce an electrostatic field which accelerates electrons towards the multiplication region. In another embodiment, a bi-level multiplication region with a wide bandgap ternary layer and a narrower bandgap quarternary layer is provided at an increased thickness to improve gain per unit length.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: January 9, 2007
    Assignee: TriQuint Technology Holding Co.
    Inventor: Paul Douglas Yoder
  • Patent number: 7157741
    Abstract: A silicon optoelectronic device and an optical transceiver, wherein the silicon optoelectronic device includes an n- or p-type silicon-based substrate and a doped region formed in a first surface of the substrate and doped to an opposite type from that of the substrate. The doped region provides photoelectrical conversion. The silicon optoelectronic device includes a light-emitting device section and a light-receiving device section. These sections use the doped region in common and are formed in the first surface of the substrate. The silicon optoelectronic device has an internal amplifying circuit, can selectively perform emission and detection of light, and can control the duration of emission and detection of light.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: January 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-young Kim, Byoung-lyong Choi, Eun-kyung Lee
  • Patent number: 7148529
    Abstract: A semiconductor package includes (a) an interposer, (b) a wiring layer containing conductors formed adjacent to each other at intervals that cause no short circuit among the conductors, the wiring layer covering a given area of the interposer, to block light from passing through the given area, (c) a light blocking layer covering a no-wiring area of the interposer not covered by the wiring layer, to block light from passing through the no-wiring area, (d) a semiconductor chip electrically connected to the wiring layer, and (e) a resin mold sealing the wiring layer, the light blocking layer, and the semiconductor chip.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: December 12, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuru Oida, Masatoshi Fukuda, Yasuhiro Koshio, Hiroshi Funakura
  • Patent number: 7135698
    Abstract: A multi-spectral super-pixel photodetector for detecting four or more different bands of infrared radiation is described. The super-pixel photodetector includes two or more sub-pixel photodetectors, each of which includes a diffractive resonant optical cavity that resonates at two or more infrared radiation bands of interest. By detecting infrared radiation at two or more different applied biases and by generating a spectral response curve for each of the sub-pixel photodetectors at each of these biases, the response to each of the individual bands of infrared radiation can be calculated. The response to each band of infrared radiation can be found by deconvolving the response at each bias. The super-pixel photodetector finds use in military and medical imaging applications and can cover a broad portion of the infrared spectrum.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: November 14, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Pradip Mitra
  • Patent number: 7119359
    Abstract: The design and operation of a p-i-n device, operating in a sequential resonant tunneling condition for use as a photodetector and an optically pumped emitter, is disclosed. The device contains III-nitride multiple-quantum-well (MQW) layers grown between a III-nitride p-n junction. Transparent ohmic contacts are made on both p and n sides. The device operates under a certain electrical bias that makes the energy level of the first excitation state in each well layer correspond with the energy level of the ground state in the adjoining well layer. The device works as a high-efficiency and high-speed photodetector with photo-generated carriers transported through the active MQW region by sequential resonant tunneling. In a sequential resonant tunneling condition, the device also works as an optically pumped infrared emitter that emits infrared photons with energy equal to the energy difference between the first excitation state and the ground state in the MQWs.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 10, 2006
    Assignee: Research Foundation of the City University of New York
    Inventors: Robert R. Alfano, Shengkun Zhang, Wubao Wang
  • Patent number: 7115925
    Abstract: An active pixel includes a a photosensitive element formed in a semiconductor substrate. A transfer transistor is formed between the photosensitive element and a floating diffusion and selectively operative to transfer a signal from the photosensitive element to the floating diffusion. The floating diffusion is formed from an n-type implant with a dosage in the range of 5e13 to 5e14 ions/cm2. Finally, an amplification transistor is controlled by the floating diffusion.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: October 3, 2006
    Assignee: OmniVision Technologies, Inc.
    Inventor: Howard E. Rhodes