Quantum Well Patents (Class 257/14)
  • Patent number: 10727370
    Abstract: Provided is an optical device including an active layer, which includes two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. The second quantum well layer is between the first quantum well layer and the third quantum well layer. An energy band gap of the second quantum well layer is less than an energy band gap of the first quantum well layer, and an energy band gap of the third quantum well layer is equal to or less than the energy band gap of the second quantum well layer.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 28, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byunghoon Na, Changyoung Park, Yonghwa Park
  • Patent number: 10718491
    Abstract: A light source system or apparatus configured with an infrared illumination source includes a gallium and nitrogen containing laser diode based white light source. The light source system includes a first pathway configured to direct directional electromagnetic radiation from the gallium and nitrogen containing laser diode to a first wavelength converter and to output a white light emission. In some embodiments infrared emitting laser diodes are included to generate the infrared illumination. In some embodiments infrared emitting wavelength converter members are included to generate the infrared illumination. In some embodiments a second wavelength converter is optically excited by a UV or blue emitting gallium and nitrogen containing laser diode, a laser diode operating in the long wavelength visible spectrum such as a green laser diode or a red laser diode, by a near infrared emitting laser diode, by the white light emission produced by the first wavelength converter, or by some combination thereof.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: July 21, 2020
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Melvin McLaurin, Troy Trottier, Steven DenBaars
  • Patent number: 10714640
    Abstract: A semiconductor stacked body includes: a first semiconductor layer containing a group III-V compound semiconductor and being a layer whose conductivity type is a first conductivity type; a quantum-well light-receiving layer containing a group III-V compound semiconductor; a second semiconductor layer containing a group III-V compound semiconductor; and a third semiconductor layer containing a group III-V compound semiconductor and being a layer whose conductivity type is a second conductivity type. The first semiconductor layer, the quantum-well light-receiving layer, the second semiconductor layer, and the third semiconductor layer are stacked in this order. The concentration of an impurity that generates a carrier of the second conductivity type is 1×1014 cm?3 or more and 1×1017 cm?3 or less in the second semiconductor layer.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 14, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuma Fuyuki, Suguru Arikata, Susumu Yoshimoto, Katsushi Akita
  • Patent number: 10697828
    Abstract: A multispectral optical sensor is disclosed. In one embodiment, the multispectral optical sensor includes a piezoelectric material, a first sensing layer and a second sensing layer spaced apart from each other on the piezoelectric material and configured to change the propagation speed of the acoustic wave propagated through the piezoelectric material by receiving ultraviolet light and visible light, respectively. The multiple optical sensor further includes a first acoustic wave output part and a second acoustic wave output part disposed on the piezoelectric material respectively corresponding to the first and second sensing layers and configured to generate an electrical signal based on the changed acoustic wave. The multiple optical sensor measures the intensity of ultraviolet and visible light using a single sensor by detecting the change in frequency, and measures the frequency change in the acoustic wave using zinc oxide, gallium nitride), or cadmium sulfide nanoparticles.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 30, 2020
    Assignee: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Kunnyun Kim, Yeon Hwa Kwak, Hae Kwan Oh
  • Patent number: 10692924
    Abstract: The present disclosure provides a scalable architecture for an advanced processing apparatus for performing quantum processing. The architecture is based on an all-silicon CMOS fabrication technology. Transistor-based control circuits, together with floating gates, are used to operate a two-dimensional array of qubits. The qubits are defined by the spin states of a single electron confined in a quantum dot.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 23, 2020
    Assignee: NewSouth Innovations Pty Limited
    Inventors: Andrew Dzurak, Menno Veldhorst, Chih-Hwan Henry Yang
  • Patent number: 10684497
    Abstract: An electro-optic modulator includes an input waveguide, a beam splitter connected to the input waveguide, a modulation arm that is disposed on each branch of the beam splitter and modulates a signal. Each modulation arm is correspondingly disposed with a first layer electrode and a second layer electrode. The first layer electrode is a high-frequency traveling wave electrode and is configured to change carrier concentration in the modulation arm, the second layer electrode is a direct current electrode having an inductor function, and an inductor formed in the second layer electrode is connected to the first layer electrode. The electro-optic modulator has functions of a bias tee, so that integration of the electro-optic modulator can be improved without affecting its performance. High-density packaging layout difficulty and cabling pressure can be effectively reduced, and cabling and packaging of a multi-channel high-speed signal on a base board can be implemented.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 16, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yanbo Li, Xiaolu Song, Zhen Dong, Ruiqiang Ji, Shengmeng Fu, Li Zeng
  • Patent number: 10671937
    Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: June 2, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
  • Patent number: 10640703
    Abstract: An object of the present invention is to provide a semiconductor nanoparticle having high emission efficiency and excellent durability; a method of producing the same; and a dispersion liquid and a film obtained by using a semiconductor nanoparticle. The semiconductor nanoparticle of the present invention is a semiconductor nanoparticle in which oxygen, zinc, and sulfur are detected by X-ray photoelectron spectroscopy analysis and a peak (ICH3) which is derived from a hydrocarbon group and present in a range of 2800 cm?1 to 3000 cm?1 and a peak (ICOO) which is derived from COO? and present in a range of 1400 cm?1 to 1600 cm?1 are detected by Fourier transform infrared spectroscopy analysis.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: May 5, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Tsutomu Sasaki
  • Patent number: 10637583
    Abstract: Systems and methods of modeling the structure and behavior of the quantum continuum based on geometrical principles are provided. In some embodiments, systems and methods of modeling quantum structure and behavior may include modeling a region of space as a three-dimensional projection of a field of N-dimensional hard-spheres, modeling a stable particle within the region of space as a locally stably packed set of hard-spheres, defining an energy subspace comprising one or more additional dimensions, and modeling an energy of the stable particle as an amount of hard-sphere geometry shifted out of the three spatial dimensions into the energy subspace sufficient for the set of hard-spheres to pack stably. Systems and methods for modeling virtual particles and performing quantum communication are also described.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: April 28, 2020
    Assignee: Omnisent, LLC
    Inventors: Joseph Eric Henningsen, Clifford Tureman Lewis
  • Patent number: 10614372
    Abstract: Among other things, an apparatus comprises quantum units; and couplers among the quantum units. Each coupler is configured to couple a pair of quantum units according to a quantum Hamiltonian characterization of the quantum by the coupler characterizing the quantum units and the couplers. The quantum Hamiltonian includes quantum annealer Hamiltonian and a quantum governor Hamiltonian. The quantum annealer Hamiltonian includes information bearing degrees of freedom. The quantum governor Hamiltonian includes non-information bearing degrees of freedom that are engineered to steer the dissipative dynamics of information bearing degrees of freedom.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: April 7, 2020
    Assignee: Google LLC
    Inventors: Masoud Mohseni, Hartmut Neven
  • Patent number: 10600933
    Abstract: A light-emitting device can include a conductive support structure comprising a metal; a GaN-based semiconductor structure disposed on the conductive support structure, the GaN-based semiconductor structure including a p-type GaN-based layer, a GaN-based active layer and an n-type GaN-based layer, in which the GaN-based semiconductor structure has a first surface, a side surface and a second surface, in which the first surface, relative to the second surface, is proximate to the conductive support structure, in which the second surface is opposite to the first surface, in which the conductive support structure is thicker than the p-type GaN-based semiconductor layer, and the conductive support structure is thicker than the n-type GaN-based semiconductor layer; a p-type electrode disposed on the conductive support structure; an n-type electrode disposed on the second surface of the GaN-based semiconductor structure; and a passivation layer disposed on the side surface and the second surface of the GaN-based se
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: March 24, 2020
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jong Lam Lee, In-kwon Jeong, Myung Cheol Yoo
  • Patent number: 10593756
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; a plurality of first gates disposed above the quantum well stack, wherein at least two of the first gates are spaced apart in a first dimension above the quantum well stack, at least two of the first gates are spaced apart in a second dimension above the quantum well stack, and the first and second dimensions are perpendicular; and a second gate disposed above the quantum well stack, wherein the second gate extends between at least two of the first gates spaced apart in the first dimension, and the second gate extends between at least two of the first gates spaced apart in the second dimension.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 17, 2020
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jeanette M. Roberts, David J. Michalak, Zachary R. Yoscovits, James S. Clarke
  • Patent number: 10571344
    Abstract: There is provided a semiconductor nanocrystal or quantum dot comprising a core made of a material and at least one shell made of another material. Also there is provided a composite comprising a plurality of such nanocrystals or quantum dots. Moreover, there is provided a method of measuring the temperature of an object or area, comprising using a temperature sensor comprising a semiconductor nanocrystal or quantum dot of the invention.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: February 25, 2020
    Inventors: Haiguang Zhao, Alberto Vomiero, Federico Rosei
  • Patent number: 10572814
    Abstract: A quantum computing system and method for performing quantum computation is provided. In some aspects, the system includes at least one charge qubit comprising a quantum dot assembly prepared with a symmetric charge distribution, wherein the symmetric charge distribution is configured to reduce a coupling between the charge qubit and a charge noise source. The system also includes a controller for controlling the at least one charge qubit to perform a quantum computation. The system further includes an output for providing a report generated using information obtained from the quantum computation performed.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: February 25, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Mark Friesen, Mark Eriksson, Susan Coppersmith
  • Patent number: 10562765
    Abstract: A novel and useful controlled quantum shift register for transporting particles from one quantum dot to another in a quantum structure. The shift register incorporates a succession of qdots with tunneling paths and control gates. Applying appropriate control signals to the control gates, a particle or a split quantum state is made to travel along the shift register. The shift register also includes ancillary double interaction where two pairs of quantum dots provide an ancillary function where the quantum state of one pair is replicated in the second pair. The shift register also provides bifurcation where an access path is split into two or more paths. Depending on the control pulse signals applied, quantum dots are extended into multiple paths. Control of the shift register is provided by electric control pulses. An optional auxiliary magnetic field provides additional control of the shift register.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 18, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10562764
    Abstract: A novel and useful controlled quantum shift register for transporting particles from one quantum dot to another in a quantum structure. The shift register incorporates a succession of qdots with tunneling paths and control gates. Applying appropriate control signals to the control gates, a particle or a split quantum state is made to travel along the shift register. The shift register also includes ancillary double interaction where two pairs of quantum dots provide an ancillary function where the quantum state of one pair is replicated in the second pair. The shift register also provides bifurcation where an access path is split into two or more paths. Depending on the control pulse signals applied, quantum dots are extended into multiple paths. Control of the shift register is provided by electric control pulses. An optional auxiliary magnetic field provides additional control of the shift register.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 18, 2020
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10551610
    Abstract: Gravitational Janus microparticle having, a center-of-mass, a center-of-volume, and a non¬uniform density, wherein: the center-of-mass and the center-of-volume are distinct. When suspended in a fluid, the microparticle substantially aligns with either: i) the gravitational field; or ii) the direction of an acceleration, such that the Janus microparticle is in substantial rotation equilibrium. After perturbation from substantial rotational equilibrium, the Janus microparticle reversibly rotates to return to substantial rotational equilibrium. The gravitational Janus microparticle may comprise at least two portions, each having distinct physical and/or chemical characteristics, wherein at least one portion provides a detectable effect following rotation and alignment of the microparticle.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: February 4, 2020
    Assignees: National Research Council of Canada, Bank of Canada
    Inventors: Daniel Brassard, Lidija Malic, Keith J. Morton, Teodor Veres, Charles D. Macpherson, Theodoros Garanzotis
  • Patent number: 10535795
    Abstract: An embodiment relates to a light emitting element, a method for manufacturing a light emitting element, a light emitting element package, and a lighting system. An ultraviolet light emitting element according to an embodiment may comprise: a first conductivity type semiconductor layer (112); an active layer (114) comprising a quantum barrier (114B) and a quantum well (114W), the active layer (114) being arranged on the first conductivity type semiconductor layer (112); and a second conductivity type semiconductor layer (116) on the active layer (114). The quantum barrier (114B) may comprise an undoped AlxGa1-xN layer (0?x?1) (114BU) and an n-type AlyGa1-yN layer (0?y?1) (114BN).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: January 14, 2020
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Chan Keun Park
  • Patent number: 10522699
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 31, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Strauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10482388
    Abstract: Methods and apparatus of quantum information processing using quantum dots are provided. Electrons from a 2DEG are confined to the quantum dots and subjected to a magnetic field having a component directed parallel to the interface. Due to interfacial asymmetries, there is created an effective magnetic field that perturbs the energies of the spin states via an interfacial spin-orbit (SO) interaction. This SO interaction is utilized to controllably produce rotations of the electronic spin state, such as X-rotations of the electronic spin state in a double quantum dot (DQD) singlet-triplet (ST) qubit. The desired state rotations are controlled solely by the use of electrical pulses.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 19, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Ryan Michael Jock, Martin Rudolph, Andrew David Baczewski, Wayne Witzel, Malcom S. Carroll, Patrick Harvey-Collard, John King Gamble, IV, Noah Tobias Jacobson, Andrew Mounce, Daniel Robert Ward
  • Patent number: 10475897
    Abstract: In a method of forming a Group III-V semiconductor layer on a Si substrate, a first source gas containing a Group V element is supplied to a surface of the Si substrate while heating the substrate at a first temperature, thereby terminating the Si surface with the Group V element. Then, a second source gas containing a Group III element is supplied to the surface while heating the substrate at a second temperature, thereby forming a nucleation layer directly on the surface of the Si substrate. After the nucleation layer is formed, the supply of the second source gas is stopped and the substrate is annealed at a third temperature while the first source gas being supplied, thereby foaming a seed layer. After the annealing, the second source gas is supplied while heating the substrate at a fourth temperature, thereby forming a body III-V layer semiconductor on the seed layer.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: November 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mark Van Dal, Matthias Passlack, Martin Christopher Holland
  • Patent number: 10468562
    Abstract: Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods are disclosed. A solid state radiative semiconductor structure in accordance with a particular embodiment includes a first region having a first value of a material characteristic and being positioned to receive radiation at a first wavelength. The structure can further include a second region positioned adjacent to the first region to emit radiation at a second wavelength different than the first wavelength. The second region has a second value of the material characteristic that is different than the first value, with the first and second values of the characteristic forming a potential gradient to drive electrons, holes, or both electrons and holes in the radiative structure from the first region to the second region. In a further particular embodiment, the material characteristic includes material polarization.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 5, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 10453979
    Abstract: Materials and methods may be provided for short-wave infrared (SWIR) superlattice materials. The superlattice material includes a first sub-layer comprising InAs, and a second sub-layer adjacent to the first sub-layer including AlSb, AlAsSb, or InAlAsSb.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: October 22, 2019
    Assignee: FLIR SYSTEM, INC.
    Inventors: Edward K. Huang, Andrew D. Hood
  • Patent number: 10453990
    Abstract: A semiconductor light emitting element includes: an n-type clad layer formed of an n-type aluminum gallium nitride (AlGaN) based semiconductor material; an intermediate layer provided on the n-type clad layer and having a higher oxygen (O) concentration than the n-type clad layer; an active layer provided on the intermediate layer and formed of an AlGaN-based semiconductor material; and a p-type semiconductor layer provided on the active layer. The intermediate layer may contain at least oxygen (O) and aluminum (Al).
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: October 22, 2019
    Assignee: NIKKISO CO., LTD.
    Inventor: Yuta Furusawa
  • Patent number: 10446723
    Abstract: The invention relates to an optoelectronic element comprising a semiconductor chip (12) that emits a blue-green light (4) during operation and has at least one light passage surface (12a) through which the blue-green light (4) emitted during operation passes and comprising a conversion element (3) which comprises fluorescent particles (31), in particular fluorescent particles of only one type, and which is arranged on the light passage surface (12a) at least in some areas. The fluorescent particles (31) at least partly convert the blue-green light (4) into a red light (5), and the optoelectronic element emits a white mixed light (6) which contains non-converted components of the blue-green light (4) and components of the red light (5).
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 15, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Rainer Butendeich, Ion Stoll, Martin Mandl, Martin Strassburg
  • Patent number: 10446778
    Abstract: The present disclosure relates to an OLED display panel and a manufacturing method of the same. The OLED panel includes an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer and a cathode disposed on a substrate. The anode transporting holes to the hole injection layer, the holes penetrating the hole injection layer into the hole transport layer, the cathode transporting electrons to the electron transport layer. The electrons pass through the electron transport layer and enter the light-emitting layer. Magnetic particles are provided in the light-emitting layer and generate a magnetic field on the barrier layer where the hole transport layer and the light-emitting layer intersect to change trajectories of electrons and holes that fail to normally enter the barrier layer and rebound, moving it again to the blocking layer for bonding, thereby increasing the internal quantum efficiency of the OLED assembly.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: October 15, 2019
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Xuesi Qin
  • Patent number: 10421899
    Abstract: A composite particle that includes: a fluorescent semiconductor core/shell nanoparticle (preferably, nanocrystal); and a thiol-substituted silicone ligand.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 24, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Zai-Ming Qiu
  • Patent number: 10423888
    Abstract: Techniques facilitating frequency allocation in multi-qubit circuits are provided. In one example, a computer-implemented method comprises determining, by a device operatively coupled to a processor, an estimated fabrication yield associated with respective qubit chip configurations by conducting simulations of the respective qubit chip configurations at respective frequency offsets; and selecting, by the device, a qubit chip configuration from among the respective qubit chip configurations based on the estimated fabrication yield associated with the respective qubit chip configurations.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: September 24, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jared Barney Hertzberg, Sami Rosenblatt, Easwar Magesan, John Aaron Smolin
  • Patent number: 10424752
    Abstract: Electrical device comprising a field effect transistor (FET). The FET includes a substrate with a channel region thereon, the channel region including a film of single-walled carbon nanotubes located on the substrate, metallic source and drain electrodes layers on the channel region and gate structure covering a portion of channel region and located between the metallic source and drain electrode layers. The gate structure includes a gate dielectric layer on the portion of the channel region and a gate electrode layer on the gate dielectric layer. Other non-gate-covered portions of the channel region are located between the source electrode layer and the gate structure and between the drain electrode layer and the gate structure. The FET includes a stoichiometrically oxygen-reduced silicon oxide layer contacting the non-gate-covered portions of the channel region, wherein the stoichiometrically oxygen-reduced silicon oxide composition includes SiOx where x has a value of less than 2.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: September 24, 2019
    Assignee: Carbonics Inc.
    Inventors: Christopher Michael Rutherglen, Ahmad Nabil Abbas
  • Patent number: 10404214
    Abstract: According to some aspects, a quantum circuit is provided including a plurality of non-linear circuit elements coupled together in series and in parallel, such that at least two of the circuit elements are coupled together in series and at least two of the circuit elements are coupled together in parallel, wherein the quantum circuit is configured to act as an amplifier.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: September 3, 2019
    Assignee: Yale University
    Inventors: László J. Szöcs, Anirudh Narla, Michael Hatridge, Katrina Sliwa, Shyam Shankar, Luigi Frunzio, Michel Devoret
  • Patent number: 10393807
    Abstract: A method and associated systems for using direct sums and invariance groups to optimize the testing of partially symmetric quantum-logic circuits is disclosed. A test system receives information that describes the architecture of a quantum-logic circuit to be tested. The system uses this information to organize the circuit's inputs into two or more mutually exclusive subsets of inputs. The system computes a direct sum of a set of groups associated with the subsets in order to generate an invariance group that contains one or more invariant permutations of the circuit's inputs. These invariant permutations can be used to reduce the number of tests required to fully verify the circuit for all possible input vectors. Once one specific input vector has been verified, there is no need to test other vectors that can be generated by performing any one of the invariant permutations upon the previously verified vector.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventor: Pawel Jasionowski
  • Patent number: 10388224
    Abstract: A quantum dot light emitting device includes a grating device which includes a grating region that has a particular grating interval, and a quantum dot layer located above the grating region. The device provides high-purity color light based on a selection of a wavelength band by the grating region in correspondence with a wavelength band of light emitted from the quantum dot layer.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: August 20, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyochul Kim, Yeonsang Park, Kyungsang Cho, Weonkyu Koh, Younggeun Roh
  • Patent number: 10388848
    Abstract: Embodiments of the present disclosure describe use of isotopically purified materials in donor- or acceptor-based spin qubit devices and assemblies. An exemplary spin qubit device assembly may include a semiconductor host layer that includes an isotopically purified material, a dopant atom in the semiconductor host layer, and a gate proximate to the dopant atom. An isotopically purified material may include a lower atomic-percent of isotopes with nonzero nuclear spin than the natural abundance of those isotopies in the non-isotopically purified material. Reducing the presence of isotopes with nonzero nuclear spin in a semiconductor host layer may improve qubit coherence and thus performance of spin qubit devices and assemblies.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: August 20, 2019
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, James S. Clarke, Jessica M. Torres, Lester Lampert, Ravi Pillarisetty, Hubert C. George, Kanwaljit Singh, Jeanette M. Roberts, Roman Caudillo, Zachary R. Yoscovits, David J. Michalak
  • Patent number: 10381511
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm ?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 13, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Patent number: 10347783
    Abstract: Various examples are provided for hot carrier spectral photodetectors that can be tuned. In one example, among others, a hot-carrier photodetector includes a graded barrier; an absorber disposed on the graded barrier; and a second barrier disposed on the absorber. For example, the absorber can include p-type doped GaAs. The graded barrier is disposed between the absorber and an injector, which can include p-type doped GaAs. In some implementations, the hot-carrier detector can include multiple barriers and absorbers. The hot-carrier photodetector can include an optical source (e.g., a LED) to trigger the VLWIR response in the photodetector.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: July 9, 2019
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: A. G. Unil Perera, Yanfeng Lao
  • Patent number: 10347824
    Abstract: Apparatuses, systems, and methods are disclosed for magnetoresistive random access memory. A magnetic tunnel junction for storing data includes a fixed layer, a barrier layer, and a composite free layer. A barrier layer is disposed between a fixed layer and a composite free layer. A composite free layer includes a ferromagnetic amorphous layer and an in-plane anisotropy free layer. A spin Hall effect (SHE) layer may be coupled to the composite free layer of the magnetic tunnel junction. The SHE layer may be configured such that an in-plane electric current within the SHE layer causes a spin current in the composite free layer.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 9, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Young-Suk Choi
  • Patent number: 10348245
    Abstract: Superconducting device applications implemented with two surface acoustic wave resonators coupled to a Josephson ring modulator are provided. A method can include receiving, by a unitary Josephson mixer and from a first superconducting surface acoustic wave resonator of a superconducting device, a first surface acoustic wave signal that comprises one or more phonons that resonate at a first frequency, and receiving, by the unitary Josephson mixer and from a radio frequency source operatively coupled to the unitary Josephson mixer, a radio frequency control signal. The method can also include mixing the first surface acoustic wave signal and the radio frequency control signal and outputting a second surface acoustic wave signal based on mixing the first surface acoustic wave signal and the radio frequency control signal. The second surface acoustic wave signal can comprise one or more phonons that resonate at a second frequency.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 10325963
    Abstract: The present disclosure provides a display unit of a display device including a light emitting unit and a light converting layer disposed on the light emitting unit. The display unit emits an output light under an operation of the highest gray level, the output light having an output spectrum, an intensity integral of the output spectrum from 380 nm to 470 nm defines as a first intensity integral, an intensity integral of the output spectrum from 580 nm to 780 nm defines as a second intensity integral, a ratio of the first intensity integral over the second intensity integral defines as a first ratio, and the first ratio is greater than 0% and less than or equal to 2.5%.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 18, 2019
    Assignee: InnoLux Corporation
    Inventors: Hsiao-Lang Lin, Jui-Jen Yueh, Kuan-Feng Lee, Jia-Yuan Chen
  • Patent number: 10311189
    Abstract: Three-dimensional electromagnetic field analysis is performed for a plurality of positional patterns of a first wiring board internal structure model including one glass cloth on the upper side of differential lines and also for a plurality of positional patterns of a second wiring board internal structure model including one glass cloth on the lower side of differential lines to calculate skews, and the calculated skews are summed relating to a plurality of wiring board patterns configured by combining a plurality of combination patterns obtained by combining the plurality of positional patterns of the first model and a plurality of combination patterns obtained by combining the plurality of positional patterns of the second model to calculate a total skew and then a skew distribution in a wiring board having a certain line length is acquired based on the total skew.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: June 4, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Hideaki Nagaoka, Taiga Fukumori, Daisuke Mizutani
  • Patent number: 10304535
    Abstract: A switch activated by a single control photon for routing a single target photon from either of two switch inputs to either of two switch outputs. The device is based on a single quantum emitter, such as an atom, coupled to a fiber-coupled, chip-based optical micro-resonator. A single reflected control photon toggles the switch from high reflection to high transmission mode, with no additional control fields required. The control and target photons are both in-fiber and practically identical, for compatibility with scalable architectures for quantum information processing.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 28, 2019
    Assignee: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: Barak Dayan, Itay Shomroni, Serge Rosenblum
  • Patent number: 10290779
    Abstract: A light emitting element includes a light emitting member that is formed of at least two kinds of an oxide material and has a plate shape; and a light transmitting member that collimates a light emitted from the light emitting member and has a plano-convex shape, in which a contact portion between the light transmitting member and the light emitting member is continuous.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 14, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shinnosuke Akiyama, Kei Toyota, Masato Mori
  • Patent number: 10277010
    Abstract: A semiconductor laser includes a mesa structure disposed on a principal surface of a substrate, the mesa structure extending in a direction of an axis parallel to the principal surface, the mesa structure including an active region that includes a quantum well, the active region having top and bottom surfaces, and first, second, third and fourth side surfaces; an emitter region disposed on at least one of the first and second side surfaces, and the top and bottom surfaces; and a collector region including a quantum filter structure disposed on at least one of the side surfaces. The collector region is separated from the emitter region on the mesa structure. The first and second side surfaces extend in the direction of the axis. The third side surface extends in a direction intersecting the axis.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: April 30, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tsukuru Katsuyama, Takashi Kato
  • Patent number: 10271385
    Abstract: The invention of the application relates to obtaining a three dimensional coating on fabrics with dip coating method of silver nanowires, which allow fabric to breathe, do not limit the flexibility or restrict the use of the fabric, and heating these coatings with an applied voltage. Moreover, this coating also enables fabrics to be antibacterial and flame retardant.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: April 23, 2019
    Inventors: Husnu Emrah Unalan, Doga Doganay, Sahin Coskun
  • Patent number: 10263041
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: April 16, 2019
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Jason Paul Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Patent number: 10255556
    Abstract: The present disclosure provides a quantum processor realized in a semiconductor material and method to operate the quantum processor to implement adiabatic quantum computation. The quantum processor comprises a plurality of qubit elements disposed in a two-dimensional matrix arrangement. The qubits are implemented using the nuclear or electron spin of phosphorus donor atoms. Further, the processor comprises a control structure with a plurality of control members, each arranged to control a plurality of qubits disposed along a line or a column of the matrix. The control structure is controllable to perform adiabatic quantum error corrected computation.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: April 9, 2019
    Assignees: NEWSOUTH INNOVATIONS PTY LIMITED, UNIVERSITY OF MELBOURNE
    Inventors: Lloyd Christopher Leonard Hollenberg, Charles David Hill, Michelle Yvonne Simmons, Eldad Peretz, Sven Rogge, Martin Fuechsle, Samuel James Hile
  • Patent number: 10249684
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 2, 2019
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, C. Rinn Cleavelin
  • Patent number: 10243101
    Abstract: A light emitting diode can include a metal support layer: a GaN-based semiconductor structure having a less than 5 microns thickness on the metal support layer, the GaN-based semiconductor structure including a p-type GaN-based semiconductor layer, an active layer on the p-type GaN-based semiconductor layer, and an n-type GaN-based semiconductor layer on the active layer; a p-type electrode on the metal support layer and including a plurality of metal layers; an n-type electrode on a flat portion of an upper surface of the GaN-based semiconductor structure, and the n-type electrode contacts the flat portion; a metal pad layer on the n-type electrode; and an insulating layer including a first part disposed on the upper surface of the GaN-based semiconductor structure, and a second part disposed on an entire side surface of the GaN-based semiconductor structure, in which the metal pad layer includes a first portion having a flat bottom surface on the n-type electrode, and a second portion having stepped surface
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 26, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jong Lam Lee, In-kwon Jeong, Myung Cheol Yoo
  • Patent number: 10233390
    Abstract: Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: March 19, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Nathalie Gresty
  • Patent number: 10229365
    Abstract: The present disclosure provides a quantum processor realized in a semiconductor material and method to operate the quantum processor to implement error corrected quantum computation. The quantum processor comprises a plurality of qubit elements disposed in a two-dimensional matrix arrangement. The qubits are implemented using the nuclear or electron spin of phosphorus donor atoms. Further, the processor comprises a control structure with a plurality of control members, each arranged to control a plurality of qubits disposed along a line or a column of the matrix. The control structure is controllable to perform topological quantum error corrected computation.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: March 12, 2019
    Assignees: NewSouth Innovations Pty Limited, University of Melbourne
    Inventors: Martin Fuechsle, Samuel James Hile, Charles David Hill, Lloyd Christopher Leonard Hollenberg, Matthew Gregory House, Eldad Peretz, Sven Rogge, Michelle Yvonne Simmons
  • Patent number: 10222314
    Abstract: A flow channel device, a complex permittivity measuring apparatus, and a dielectric cytometry system are provided which can improve the measurement accuracy. A constriction portion having a constricted space is disposed between an inflow port and an outflow port of a flow channel. Electrodes are arranged between the inflow port and the constriction portion and between the outflow port and the constriction portion. The conductance of the constriction portion at a low-limit frequency is less than the combined conductance of an inflow channel portion and an outflow channel portion. The capacitance of the constriction portion at a high-limit frequency is less than the combined capacitance of the inflow channel portion and the outflow channel portion.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 5, 2019
    Assignee: Sony Corporation
    Inventors: Yoichi Katsumoto, Shinji Omori