Multiple Channels (e.g., Converging Or Diverging Or Parallel Channels) Patents (Class 257/241)
  • Patent number: 11956973
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) on a substrate; forming a first spin orbit torque (SOT) layer on the MTJ; forming a passivation layer around the MTJ; forming a second SOT layer on the first SOT layer and the passivation layer; and patterning the second SOT layer and the passivation layer.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hung-Chan Lin, Yu-Ping Wang
  • Patent number: 11868876
    Abstract: Disclosed is a neuromorphic integrated circuit including, in some embodiments, a multi-layered neural network disposed in an analog multiplier array of two-quadrant multipliers. Each multiplier of the multipliers is wired to ground and draws a negligible amount of current when input signal values for input signals to transistors of the multiplier are approximately zero, weight values of the transistors of the multiplier are approximately zero, or a combination thereof. Also disclosed is a method of the neuromorphic integrated circuit including, in some embodiments, training the neural network; tracking rates of change for the weight values; determining if and how quickly certain weight values are trending toward zero; and driving those weight values toward zero, thereby encouraging sparsity in the neural network. Sparsity in the neural network combined with the multipliers wired to ground minimizes power consumption of the neuromorphic integrated circuit such that battery power is sufficient for power.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: January 9, 2024
    Assignee: Syntiant
    Inventors: Kurt F. Busch, Jeremiah H. Holleman, III, Pieter Vorenkamp, Stephen W. Bailey
  • Patent number: 11868697
    Abstract: Systems, methods and devices are provided, which can include an engineering change order (ECO) base. A base layout cell includes metal layer regions, conductive gate patterns arranged above metal layer regions; oxide definition (OD) patterns, metal-zero layer over oxide-definition (metal-zero) patterns, at least one cut metal layer (CMD) pattern; and at least one via region. The base layout cell can be implemented in at least two non-identical functional cells. A first functional cell of the at least two non-identical functional cells includes first interconnection conductive patterns arranged connecting metal-zero structures corresponding to at least two metal-zero patterns in a first layout, and a second functional cell of the at least two non-identical functional cells includes second interconnection conductive patterns arranged connecting metal-zero structures corresponding to at least two metal-zero patterns in a second layout.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Shang-Hsuan Chiu, Chih-Liang Chen, Hui-Zhong Zhuang, Chi-Yu Lu, Kuang-Ching Chang
  • Patent number: 11838659
    Abstract: An image sensing system comprising: a storage device, comprising at least two first registers, wherein a number of the first registers following a first direction of the storage device is larger than a number of the first registers following a second direction of the storage device; a filter, comprising at least two second registers; and an SIPO (serial in parallel out) circuit, coupled between the storage device and the filter.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: December 5, 2023
    Assignee: PixArt Imaging Inc.
    Inventor: Wai Lian Teo
  • Patent number: 11817447
    Abstract: A semiconductor device includes a substrate including a P-well region, a gate electrode on the substrate, and a first region and a second region formed in the substrate on opposite sides adjacent to the gate electrode, the first region includes a first N-well region in the substrate and a second N-well region, a first impurity region, a second impurity region in the first N-well region, the second region includes a third impurity region in the substrate and a fourth impurity region in the third impurity region, a doping concentration of the second N-well region is greater than a doping concentration of the first N-well region, and a doping concentration of the second impurity region is greater than a doping concentration of the second N-well region.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: November 14, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungjun Song, Hyunkwang Jeong, Changsu Kim, Chanhee Jeon
  • Patent number: 11729993
    Abstract: Ferroelectric random access memory (FRAM) capacitors and methods of forming FRAM capacitors are provided. An FRAM capacitor may be formed between adjacent metal interconnect layers or between a silicided active layer (e.g., including MOSFET devices) and a first metal interconnect layer. The FRAM capacitor may be formed by a damascene process including forming a tub opening in a dielectric region, forming a cup-shaped bottom electrode, forming a cup-shaped ferroelectric element in an interior opening defined by the cup-shaped bottom electrode, and forming a top electrode in an interior opening defined by the cup-shaped ferroelectric element. The FRAM capacitor may form a component of an FRAM memory cell. For example, an FRAM memory cell may include one FRAM capacitor and one transistor (1T1C configuration) or two FRAM capacitors and two transistor (2T2C configuration).
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Microchip Technology Incorporated
    Inventor: Yaojian Leng
  • Patent number: 11626082
    Abstract: A display device capable of improving image quality is provided. The display device includes a first circuit, a pixel, and a wiring. The first circuit has a function of supplying data to the wiring and a function of making the wiring floating to hold the data. The pixel has a function of taking in the data twice from the wiring and performing addition. The pixel can perform the first writing of the data in a period during which the data is supplied to the wiring, and can perform the second writing of the data in a period during which the data is held in the wiring. Therefore, by one time of data charging to a source line, a data potential larger than or equal to an output voltage of a source driver can be supplied to a display element.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: April 11, 2023
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Susumu Kawashima, Naoto Kusumoto
  • Patent number: 11569279
    Abstract: There is provided a solid-state imaging device that includes a photoelectric conversion unit, a transfer gate, a floating diffusion unit, and a transistor. The photoelectric conversion unit produces a charge according to incident light. The transfer gate has a columnar shape having an opening that is continuous in a vertical direction, and transfers the charge from the photoelectric conversion unit. The floating diffusion unit is formed extending to a region surrounded by the opening of the transfer gate, and converts the transferred charge into a voltage signal. The transistor is electrically connected to the floating diffusion unit via a diffusion layer.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 31, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hironobu Fukui, Hirofumi Yamashita
  • Patent number: 11538681
    Abstract: An epitaxy substrate and a method of manufacturing the same are provided. The epitaxy substrate includes a silicon substrate and a silicon carbide layer. The silicon substrate has a first surface and a second surface opposite to each other, and the first surface is an epitaxy surface. The silicon carbide layer is located in the silicon substrate, and a distance between the silicon carbide layer and the first surface is between 100 angstroms (?) and 500 angstroms.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: December 27, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Ying-Ru Shih, Chih-Yuan Chuang, Chun-I Fan, Wen-Ching Hsu
  • Patent number: 11437369
    Abstract: An array of multi-stack transistor structures is provided, wherein the multi-stack transistor structures are arranged in a plurality of rows and a plurality of columns in the array, wherein each of the multi-stack transistor structures includes two or more vertically arranged transistor stacks, and wherein a dam structure is formed between adjacent two rows in a same column so that a multi-stack transistor structure in one of the adjacent two rows is electrically isolated from a multi-stack transistor structure in the other of the adjacent two rows in the same column.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: September 6, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Inchan Hwang, Hwichan Jun
  • Patent number: 11435231
    Abstract: A vision inspection apparatus includes an inspection controller which displays a grid pattern with a plurality of gray levels on a display panel, an imaging converter which drives a charge-coupled device with a predetermined or set exposure-time and converts the grid pattern displayed on the display panel into a grid pattern signal, a charge calculator which calculates a charge amount per unit time for each color of a reference gray level using a reference gray level signal, included in the grid pattern signal, and the set exposure-time, and an exposure-time calculator which calculates an optimum exposure-time for each color of the reference gray level based on a target charge amount of the reference gray level.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: September 6, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventors: Juneyoung Lee, Hoi Sik Moon, Hyungwoo Yim, Jae-Seob Chung, Minyup Chae
  • Patent number: 11412196
    Abstract: Digital camera systems and methods are described that provide a color digital camera with direct luminance detection. The luminance signals are obtained directly from a broadband image sensor channel without interpolation of RGB data. The chrominance signals are obtained from one or more additional image sensor channels comprising red and/or blue color band detection capability. The red and blue signals are directly combined with the luminance image sensor channel signals. The digital camera generates and outputs an image in YCrCb color space by directly combining outputs of the broadband, red and blue sensors.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: August 9, 2022
    Assignee: INTELLECTUAL VENTURES II LLC
    Inventors: Richard Ian Olsen, James Gates, Darryl L. Sato
  • Patent number: 11380111
    Abstract: Apparatus for a motor vehicle comprises an image sensor generating non-trichromatic image data as an image pixel array covering a predetermined field of view relative to the vehicle. A color-calibration source generates at least one color reference value according to an object depicted in the non-trichromatic image data. A controller is configured to 1) associate the at least one color reference value to a set of pixels within the image pixel array, and 2) colorize the non-trichromatic image data according to the at least one color reference value to produce a colorized image. A display is configured to display the colorized image to a viewer in the vehicle.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: July 5, 2022
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Cynthia M. Neubecker, Jon M. Speigle, Lidia Van Moen
  • Patent number: 11257913
    Abstract: Provided is a structure of a vertical field effect transistor (VFET) device which includes: a fin structure protruding from a substrate, and having an H-shape in a plan view; a gate including a fin sidewall portion formed on sidewalls of the fin structure, and a field gate portion extended from the fin sidewall portion and filling a space inside a lower half of the fin structure; a gate contact landing on the field gate portion at a position inside the lower half of the fin structure; a bottom epitaxial layer comprising a bottom source/drain (S/D) region, and formed below the fin structure; a power contact landing on the bottom epitaxial layer, and configured to receive a power signal; a top S/D region formed above the fin structure; and a top S/D contact landing on the top S/D region.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: February 22, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hwi Chan Jun, Jung Ho Do
  • Patent number: 11232349
    Abstract: Disclosed is a neuromorphic integrated circuit including, in some embodiments, a multi-layered neural network disposed in an analog multiplier array of two-quadrant multipliers. Each multiplier of the multipliers is wired to ground and draws a negligible amount of current when input signal values for input signals to transistors of the multiplier are approximately zero, weight values of the transistors of the multiplier are approximately zero, or a combination thereof. Also disclosed is a method of the neuromorphic integrated circuit including, in some embodiments, training the neural network; tracking rates of change for the weight values; determining if and how quickly certain weight values are trending toward zero; and driving those weight values toward zero, thereby encouraging sparsity in the neural network. Sparsity in the neural network combined with the multipliers wired to ground minimizes power consumption of the neuromorphic integrated circuit such that battery power is sufficient for power.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: January 25, 2022
    Assignee: Syntiant
    Inventors: Kurt F. Busch, Jeremiah H. Holleman, III, Pieter Vorenkamp, Stephen W. Bailey
  • Patent number: 11037935
    Abstract: A semiconductor device includes: active regions arranged in a first grid oriented substantially parallel to a first direction; and gate electrodes arranged spaced apart in a second grid and overlying corresponding ones of the active regions, the second grid being oriented substantially parallel to a second direction, the second direction being substantially orthogonal to the first direction. The first gaps are interspersed correspondingly between neighboring ones of the active regions. For a flyover intersection at which a corresponding gate electrode crosses over a corresponding active region and for which the gate electrode is not functionally connected to the corresponding active region, the gate electrode does not extend substantially beyond the corresponding active region and so does not extend substantially into a corresponding one of the first gaps.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Jen Chen, Wen-Hsi Lee, Ling-Sung Wang, I-Shan Huang, Chan-yu Hung
  • Patent number: 10923393
    Abstract: A first conductive feature has a dielectric layer formed thereover. An opening is formed in the dielectric layer to expose a portion of the first conductive feature. A first barrier layer is formed over the first conductive feature and over a top surface of the dielectric layer. A second barrier layer is formed over the first barrier layer and on sidewalls of the opening. The second barrier layer is removed, resulting in at least a portion of the first barrier layer disposed over the first conductive feature. A second conductive feature is formed over the portion of the first barrier layer. Sidewalls of the second conductive feature directly contact the dielectric layer.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Patent number: 10886369
    Abstract: A semiconductor structure containing a gate-all-around nanosheet field effect transistor having a self-limited inner spacer composed of a rare earth doped germanium dioxide that provides source/drain isolation between rare earth metal silicide ohmic contacts is provided.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: January 5, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee, Alexander Reznicek, Pouya Hashemi
  • Patent number: 10693017
    Abstract: A semiconductor device includes a drain, a source, a gate electrode, and a nanowire between the source and drain. The nanowire has a first section with a first thickness and a second section with a second thickness greater than the first thickness. The second section is between the first section and at least one of the source or drain. The first nanowire includes a channel when a voltage is applied to the gate electrode.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: June 23, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seung Hun Lee, Dong Woo Kim, Dong Chan Suh, Sun Jung Kim
  • Patent number: 10644121
    Abstract: The description relates to a semiconductor die having a stacking structure of silicon-metallic conductive layer-silicon, and the semiconductor die according to embodiments includes a stacking structure of first semiconductor layer-metallic conductive layer-second semiconductor layer, and first and second power semiconductor devices in the first semiconductor layer, in which the first power semiconductor device includes a first source bump and a first gate bump, first trench gate electrodes under the first source bump, and a first channel among the plurality of first trench gate electrodes, in which the second power semiconductor device includes a second source bump and a second gate bump, second trench gate electrodes under the second source bump, and a second channel among the plurality of second trench gate electrodes, and in which the metallic conductive layer includes a metal layer.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 5, 2020
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Myung Ho Park, Ul Kyu Seo, Young Ho Seo, Jae Sik Choi
  • Patent number: 10600859
    Abstract: A display device includes a substrate, a plurality of pixels, a plurality of wirings, a power voltage supply line, an insulating layer, and a window. The substrate includes a display area and a peripheral area outside the display area. The plurality of pixels are in the display area and the plurality of wirings are in the peripheral area. The power voltage supply line covers the plurality of wirings and includes a top surface having an irregular surface corresponding to the plurality of wirings. The insulating layer includes an opening overlapping a first portion of the power voltage supply line. The window is disposed on the insulating layer and includes a light-blocking region and a light-transmissive region, the light-transmissive region entirely covering the opening.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: March 24, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyunae Park, Jieun Lee, Yunkyeong In
  • Patent number: 10541315
    Abstract: Methods of forming structures that include InP-based materials, such as a transistor operating as an inversion-type, enhancement-mode device are disclosed. A dielectric layer may be deposited by ALD over a semiconductor layer including In and P. A channel layer may be formed above a buffer layer having a lattice constant similar to a lattice constant of InP, the buffer layer being formed over a substrate having a lattice constant different from a lattice constant of InP.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: January 21, 2020
    Assignee: Purdue Research Foundation
    Inventors: Peide Ye, Zhiyuan Cheng, Yi Xuan, Yanqing Wu, Bunmi Adekore, James Fiorenza
  • Patent number: 10541175
    Abstract: A structure and a formation method of a semiconductor device structure are provided. The method includes forming a first fin structure, a second fin structure, and a third fin structure over a semiconductor substrate. The method includes forming first spacer elements over sidewalls of the first fin structure and the second fin structure and partially removing the first fin structure and the second fin structure. The method includes forming second spacer elements over sidewalls of the third fin structure and partially removing the third fin structure. The second spacer element is taller than the first spacer element. The method includes epitaxially growing a semiconductor material over the first fin structure, the second fin structure, and the third fin structure such that a merged semiconductor element is formed on the first fin structure and the second fin structure, and a semiconductor element is formed on the third fin structure.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Patent number: 10537249
    Abstract: A signal processing method for a plurality of reception signals, wherein a plurality of reception elements are each configured to receive acoustic waves and output a reception signal at a plurality of sampling times, includes generating a representative value signal from the plurality of reception signals, except for reception signals having amplitudes that are larger than a threshold value among the plurality of reception signals at each sampling time, generating a plurality of differential signals indicating differences between the plurality of reception signals obtained at each sampling time and the representative value signal, and generating image data using the plurality of differential signals.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: January 21, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuhito Suehira
  • Patent number: 10529627
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 10354930
    Abstract: A contact resistance test device includes a set of full fins providing channels between a source region and a drain region and a set of partial fins connected to the source region. A gate structure is formed over the set of full fins and set of partial fins. A source contact is connected to the source region. A probe contact is isolated from the source contact and is connected to the source region wherein a voltage measured on the probe contact measures contact resistance when a drain-to-source current is flowing in the set of full fins.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Zuoguang Liu, Xin Miao, Chen Zhang
  • Patent number: 10263117
    Abstract: A semiconductor device having favorable electric characteristics is provided. An oxide semiconductor layer includes first and second regions apart from each other, a third region which is between the first and second regions and overlaps with a gate electrode layer with a gate insulating film provided therebetween, a fourth region between the first and third regions, and a fifth region between the second and third regions. A source electrode layer includes first and second conductive layers. A drain electrode layer includes third and fourth conductive layers. The first conductive layer is formed only over the first region. The second conductive layer is in contact with an insulating layer, the first conductive layer, and the first region. The third conductive layer is formed only over the second region. The fourth conductive layer is in contact with the insulating layer, the third conductive layer, and the second region.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 16, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daigo Ito, Kazuya Hanaoka
  • Patent number: 10157940
    Abstract: The present invention provides a manufacturing method of LTPS array substrate, wherein the LTPS array substrate contains at least a metal mask layer, a buffer layer, an active layer, a gate insulating layer and a gate layer. The manufacturing method is to form the gate layer by patterning the gate layer using the metal mask layer as a photomask, and a width of the formed gate layer is smaller than a width of the metal mask layer so that a vertical projection of the gate layer falls within the scope of the metal mask layer. In the present invention, the cost of producing a metal mask for the gate electrode is saved by patterning the gate layer using the metal mask layer as a photomask, so that the cost of producing LTPS is saved and the process of production is simplified.
    Type: Grant
    Filed: June 12, 2016
    Date of Patent: December 18, 2018
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yuxia Chen, Chao He
  • Patent number: 9859395
    Abstract: A semiconductor device includes a semiconductor body with a first surface, a contact electrode arranged on the first surface, and a passivation layer on the first surface adjacent the contact electrode. The passivation layer includes a layer stack with an amorphous semi-insulating layer on the first surface, a first nitride layer on the amorphous semi-insulating layer, and a second nitride layer on the first nitride layer.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Schmidt, Josef-Georg Bauer, Carsten Schaeffer, Oliver Humbel, Angelika Koprowski, Sirinpa Monayakul
  • Patent number: 9831314
    Abstract: One or more techniques or systems for controlling a profile of a surface of a semiconductor region are provided herein. In some embodiments, an etching to deposition (E/D) ratio is set to be less than one to form the region within the semiconductor. For example, when the E/D ratio is less than one, an etching rate is less than a deposition rate of the E/D ratio, thus ‘growing’ the region. In some embodiments, the E/D ratio is subsequently set to be greater than one. For example, when the E/D ratio is greater than one, the etching rate is greater than the deposition rate of the E/D ratio, thus ‘etching’ the region. In this manner, a smooth surface profile is provided for the region, at least because setting the E/D ratio to be greater than one enables etch back of at least a portion of the grown region.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chao-Hsuing Chen, Ling-Sung Wang, Chi-Yen Lin
  • Patent number: 9755017
    Abstract: Nanosheet semiconductor devices and methods of forming the same include forming a first nanosheet stack in a first device region with layers of a first channel material and layers of a sacrificial material. A second nanosheet stack is formed in a second device region with layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away, but the liner protects the second channel material from the etch. Gate stacks are formed over and around the layers of first and second channel material to form respective first and second semiconductor devices in the first and second device regions.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Guillorn, Isaac Lauer, Nicolas J. Loubet
  • Patent number: 9691970
    Abstract: A magnetoresistive device includes a substrate and an electrically insulating layer arranged over the substrate. The magnetoresistive device further includes a first free layer embedded in the electrically insulating layer and a second free layer embedded in the electrically insulating layer. The first free layer and the second free layer are separated by a portion of the electrically insulating layer.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: June 27, 2017
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Wolfgang Raberg, Stephan Schmitt
  • Patent number: 9635293
    Abstract: A solid-state imaging device includes photoelectric converting sections transfer sections first buffer sections second buffer sections first output sections, and second output sections. The photoelectric converting sections generate electric charges in response to incidence of light. The transfer sections transfer the generated electric charges in a first direction or in a second direction opposite thereto in response to three-phase or four-phase drive signals. The first buffer sections and the second buffer sections acquire the electric charges transferred in the first and second directions, respectively, by the transfer sections and transfer the acquired electric charges in the first and second directions, respectively, in response to two-phase drive signals. The first output sections and the second output sections acquire the electric charges transferred from the first buffer sections and from the second buffer sections respectively, and output signals according to the acquired electric charges.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 25, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Shinya Otsuka, Hisanori Suzuki, Masaharu Muramatsu
  • Patent number: 9634148
    Abstract: The disclosure is related to a thin film transistor and a method of manufacturing the thin film transistor. The thin film transistor comprises a substrate, a first semiconductor layer, an etch stop layer and a second semiconductor layer stacked on a surface of the substrate, and a first via and a second via formed on the etch stop layer; a source and a drain formed separating from each other and the source and the drain overlapping two ends of the second semiconductor layer respectively, wherein the source connects the first semiconductor layer through the first via, and the drain connects the first semiconductor layer through the second via, a gate insulation layer formed on the source and the drain; and a gate formed on the gate insulation layer. The thin film transistor of the disclosure have a higher on-state current of the thin film transistor and a faster switching speed.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 25, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventors: Longqiang Shi, Zhiyuan Zeng, Wenhui Li, Chih-Yu Su, Xiaowen Lv
  • Patent number: 9620647
    Abstract: The disclosure is related to a thin film transistor and a method of manufacturing the thin film transistor. The thin film transistor comprises a substrate, a gate, a gate insulation layer, a first semiconductor layer, an etch stop layer and a second semiconductor layer sequentially stacked on a surface of the substrate, and a source and a drain formed separating from each other and the source and the drain overlapping two ends of the second semiconductor layer respectively. A first via and a second via are formed on the etch stop layer corresponding to the source and the drain respectively. The source connects the first semiconductor layer through the first via; the drain connects the first semiconductor layer through the second via. The thin film transistor of the disclosure can effectively increase the on-state current of the thin film transistor and have a faster switching speed.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 11, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Longqiang Shi, Zhiyuan Zeng, Wenhui Li, Chih-Yu Su, Xiaowen Lv
  • Patent number: 9570357
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 9570629
    Abstract: The embodiments of the present invention provide a thin film transistor including a gate, an upper active layer, a lower active layer, an upper source, a lower source, an upper drain and a lower drain. The upper active layer and the lower active layer are disposed at an upper side and a lower side of the gate, respectively, the lower source and the lower drain are connected to the lower active layer, respectively, and the upper source and the upper drain are connected to the upper active layer, respectively. The embodiments of the present invention also provide an array substrate including the thin film transistor, a method of fabricating the array substrate, and a display device including the array substrate.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: February 14, 2017
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS
    Inventors: Jiaxiang Zhang, Jian Guo, Xiaohui Jiang
  • Patent number: 9299835
    Abstract: Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 29, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8927353
    Abstract: A fin field effect transistor and method of forming the same. The fin field effect transistor includes a semiconductor substrate having a fin structure and between two trenches with top portions and bottom portions. The fin field effect transistor further includes shallow trench isolations formed in the bottom portions of the trenches and a gate electrode over the fin structure and the shallow trench isolation, wherein the gate electrode is substantially perpendicular to the fin structure. The fin field effect transistor further includes a gate dielectric layer along sidewalls of the fin structure and source/drain electrode formed in the fin structure.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Wang Hsu, Chih-Yuan Ting, Tang-Xuan Zhong, Yi-Nien Su, Jang-Shiang Tsai
  • Patent number: 8901619
    Abstract: Asymmetric FET devices, and a method for fabricating such asymmetric devices on a fin structure is disclosed. The fabrication method includes disposing over the fin a high-k dielectric layer followed by a threshold-modifying layer, performing an ion bombardment at a tilted angle which removes the threshold-modifying layer over one of the fin's side-surfaces. The completed FET devices will be asymmetric due to the threshold-modifying layer being present only in one of two devices on the side of the fin. In an alternate embodiment further asymmetries are introduced, again using tilted ion implantation, resulting in differing gate-conductor materials for the two FinFET devices on each side of the fin.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ying Zhang
  • Patent number: 8878255
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8878256
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8859358
    Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate; and configuring a channel region along a first direction. The method also includes forming trenches at both sides of the channel region along a second direction; and forming a magnetic material layer in each of the trenches. Further, the method includes magnetizing the magnetic material layers to form a magnetic field in the channel region between adjacent magnetic material layers; and forming source/drain regions at both ends of the channel region along the first direction.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Dongjiang Wang, Steven Zhang
  • Patent number: 8835993
    Abstract: Gate-all-around integrated circuit devices include first and second source/drain regions on an active area of an integrated circuit substrate. The first and second source/drain regions form p-n rectifying junctions with the active area. A channel region extends between the first and second source/drain regions. An insulated gate electrode surrounds the channel region.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-jung Yun, Sung-young Lee, Min-sang Kim, Sung-min Kim
  • Patent number: 8835261
    Abstract: The disclosure relates generally to a metal-oxide-semiconductor field effect transistor (MOSFET) structures and methods of forming the same. The MOSFET structure includes at least one semiconductor body on a substrate; a dielectric cap on a top surface of the at least one semiconductor body, wherein a width of the at least one semiconductor body is less than a width of the dielectric cap; a gate dielectric layer conformally coating the at least one semiconductor body; and at least one electrically conductive gate on the gate dielectric layer.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward J. Nowak, Richard Q. Williams
  • Patent number: 8803247
    Abstract: A fin-type field effect transistor including at least one fin-type semiconductor structure, a gate strip and a gate insulating layer is provided. The fin-type semiconductor structure is doped with a first type dopant and has a block region with a first doping concentration and a channel region with a second doping concentration. The first doping concentration is larger than the second doping concentration. The blocking region has a height. The channel region is configured above the blocking region. The gate strip is substantially perpendicular to the fin-type semiconductor structure and covers above the channel region. The gate insulating layer is disposed between the gate strip and the fin-type semiconductor structure.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corporation
    Inventors: Chih-Jung Wang, Tong-Yu Chen
  • Patent number: 8748945
    Abstract: Image sensors are provided. The image sensors may include first and second stacked impurity regions having different conductivity types. The image sensors may also include a floating diffusion region in the first impurity region. The image sensors may further include a transfer gate electrode surrounding the floating diffusion region in the first impurity region. Also, the transfer gate electrode and the floating diffusion region may overlap the second impurity region.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Cheol Shin
  • Patent number: 8742468
    Abstract: Systems, methods and apparatus are provided through which in some embodiments a mass spectrometer micro-leak includes a number of channels fabricated by semiconductor processing tools and that includes a number of inlet holes that provide access to the channels.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: June 3, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics Space Administration
    Inventors: Dan N. Harpold, Hasso B. Niemann, Brian G. Jamieson, Bernard A. Lynch
  • Patent number: 8723259
    Abstract: A SiC semiconductor device capable of increasing a switching speed without destroying a gate insulating film. In addition, in a SiC-MOSFET including an n-type semiconductor substrate formed of SiC, a p-type semiconductor layer is entirely or partially provided on an upper surface of a p-type well layer that has a largest area of the transverse plane among a plurality of p-type well layers provided in an n-type drift layer and is arranged on an outermost periphery immediately below a gate electrode pad. It is preferable that a concentration of an impurity contained in the p-type semiconductor layer be larger than that of the p-type well layer.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yukiyasu Nakao, Masayuki Imaizumi, Shuhei Nakata, Naruhisa Miura
  • Patent number: 8699264
    Abstract: A memory element has a layered structure, including a memory layer that has magnetization perpendicular to a film face in which a magnetization direction is changed depending on information, and includes a Co—Fe—B magnetic layer, the magnetization direction being changed by applying a current in a lamination direction of the layered structure to record the information in the memory layer, a magnetization-fixed layer having magnetization perpendicular to a film face that becomes a base of the information stored in the memory layer, and an intermediate layer that is formed of a non-magnetic material and is provided between the memory layer and the magnetization-fixed layer, a first oxide layer and a second oxide layer.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: April 15, 2014
    Assignee: Sony Corporation
    Inventors: Kazutaka Yamane, Masanori Hosomi, Hiroyuki Ohmori, Kazuhiro Bessho, Yutaka Higo, Tetsuya Asayama, Hiroyuki Uchida