Particular Electrode Material Patents (Class 257/32)
  • Patent number: 11581474
    Abstract: Techniques for forming quantum circuits, including connections between components of quantum circuits, are presented. A trench can be formed in a dielectric material, by removing a portion of the dielectric material and a portion of conductive material layered on top of the dielectric material, to enable creation of circuit components of a circuit. The trench can define a regular nub or compensated nub to facilitate creating electrical leads connected to the circuit components on a nub. The compensated nub can comprise recessed regions to facilitate depositing material during evaporation to form the leads. For compensated nub implementation, material can be evaporated in two directions, with oxidation performed in between such evaporations, to contact leads and form a Josephson junction. For regular nub implementation, material can be evaporated in four directions, with oxidation performed in between the third and fourth evaporations, to contact leads and form a Josephson junction.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: February 14, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow
  • Patent number: 11145801
    Abstract: Techniques regarding encapsulating one or more superconducting devices of a quantum processor are provided. For example, one or more embodiments described herein can regard a method that can comprise depositing an adhesion layer onto a superconducting resonator and a silicon substrate that are comprised within a quantum processor. The superconducting resonator can be positioned on the silicon substrate. Also, the adhesion layer can comprise a chemical compound having a thiol functional group.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard Alan Haight, Ali Afzali-Ardakani, Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik
  • Patent number: 11111396
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 7, 2021
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Patent number: 10833121
    Abstract: Techniques related to vertical silicon-on-metal superconducting quantum interference devices and method of fabricating the same are provided. Also provided are associated flux control and biasing circuitry. A superconductor structure can comprise a silicon-on-metal substrate that can comprise a first superconducting layer, comprising a first superconducting material, between a first crystalline silicon layer and a second crystalline silicon layer. The superconducting structure can also comprise a first via comprising a first Josephson junction and a second via comprising a second Josephson junction. The first via and the second via can be formed between the first superconducting layer and a second superconducting layer, comprising a second superconducting material.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sami Rosenblatt, Jared Barney Hertzberg, Rasit Onur Topaloglu, Markus Brink
  • Patent number: 10833243
    Abstract: Superconducting integrated circuits require several wiring layers to distribute bias and signals across the circuit, which must cross each other both with and without contacts. All wiring lines and contacts must be fully superconducting, and in the prior art each wiring layer comprises a single metallic thin film. An alternative wiring layer is disclosed that comprises sequential layers of two or more different metals. Such a multi-metallic wiring layer may offer improved resistance to impurity diffusion, better surface passivation, and/or reduction of stress, beyond that which is attainable with a single-metallic wiring layer. The resulting process leads to improved margin and yield in an integrated circuit comprising a plurality of Josephson junctions. Several preferred embodiments are disclosed, for both planarized and non-planarized processes.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 10, 2020
    Assignee: SeeQC Inc.
    Inventors: Sergey K. Tolpygo, Denis Amparo, Richard Hunt, John Vivalda, Daniel Yohannes
  • Patent number: 10769546
    Abstract: A quantum computing system that includes a quantum circuit device having at least one operating frequency; a first substrate having a first surface on which the quantum circuit device is disposed; a second substrate having a first surface that defines a recess of the second substrate, the first and second substrates being arranged such that the recess of the second substrate forms an enclosure that houses the quantum circuit device; and an electrically conducting layer that covers at least a portion of the recess of the second substrate.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: September 8, 2020
    Assignee: Rigetti & Co, Inc.
    Inventors: Chad Tyler Rigetti, Dane Christoffer Thompson, Alexei N. Marchenkov, Mehrnoosh Vahidpour, Eyob A. Sete, Jean-Luc Francois-Xavier Orgiazzi
  • Patent number: 10615223
    Abstract: Techniques related to vertical silicon-on-metal superconducting quantum interference devices and method of fabricating the same are provided. Also provided are associated flux control and biasing circuitry. A superconductor structure can comprise a silicon-on-metal substrate that can comprise a first superconducting layer, comprising a first superconducting material, between a first crystalline silicon layer and a second crystalline silicon layer. The superconducting structure can also comprise a first via comprising a first Josephson junction and a second via comprising a second Josephson junction. The first via and the second via can be formed between the first superconducting layer and a second superconducting layer, comprising a second superconducting material.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sami Rosenblatt, Jared Barney Hertzberg, Rasit Onur Topaloglu, Markus Brink
  • Patent number: 10503077
    Abstract: A technique relates to correcting an area of overlap between two films created by sequential shadow mask evaporations. At least one process is performed of: correcting design features in an original layout to generate a corrected layout using a software tool, such that the corrected layout modifies shapes of the design features and correcting the design features in the original layout to generate the corrected layout using a lithographic tool, such that the corrected layout modifies the shapes of the design features. The modified shapes of the design features are patterned at locations on a wafer according to the corrected layout using the lithographic tool. A first film is deposited by an initial shadow mask evaporation and a second film by a subsequent shadow mask evaporation to produce corrected junctions at the locations on the wafer, such that the first film and the second film have an overlap.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 10, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Markus Brink, Sami Rosenblatt, Bryan D. Trimm
  • Patent number: 10199553
    Abstract: Described are concepts, systems, circuits and techniques related to shielded through via structures and methods for fabricating such shielded through via structures. The described shielded through via structures and techniques allow for assembly of multi-layer semiconductor structures including one or more superconducting semiconductor structures (or integrated circuits).
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: February 5, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: William D. Oliver, Andrew J. Kerman, Rabindra N. Das, Donna-Ruth W. Yost, Danna Rosenberg, Mark A. Gouker
  • Patent number: 10170679
    Abstract: Various embodiments are directed toward a circuit configured to act as a Josephson junction. The circuit includes: a junction stack on a substrate, the junction stack including a portion of a first superconductor electrode, with an interface layer on a top side of the first superconductor electrode and configured to act as a tunneling barrier for the junction stack. The circuit may also comprise a first portion of a second superconductor electrode on top of the interface layer. A spacer may separate the portion of the first superconductor electrode in the junction stack from a second portion of the second superconductor electrode outside the junction stack where the second superconductor electrode overlays the first superconductor electrode, the second portion of the second superconductor electrode contacting the substrate on at least one side of the spacer.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Ryan M. Martin, Jeffrey W. Sleight
  • Patent number: 10147865
    Abstract: Superconducting regions formed with a crystal provide highly doped regions of acceptor atoms. These superconducting regions are used to provide superconducting devices wherein non-epitaxial interfaces have been eliminated. A method is provided to highly doped regions of a crystal to form the superconducting regions and devices. By forming the superconducting regions within the crystal non-epitaxial interfaces are eliminated.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: December 4, 2018
    Inventor: Charles George Tahan
  • Patent number: 9964446
    Abstract: A bolometer is described. A bolometer includes a superconductor-insulator-semiconductor-superconductor structure or a superconductor-insulator-semiconductor-insulator-superconductor structure. The semiconductor comprises an electron gas in a layer of silicon, germanium or silicon-germanium alloy in which valley degeneracy is at least partially lifted. The insulator or a one or both of the insulators may comprise a layer of dielectric material. The insulator or a one or both of the insulators may comprise a layer of non-degenerately doped semiconductor.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 8, 2018
    Assignee: The University of Warwick
    Inventors: David Gunnarsson, Evan Parker, Martin Prest, Mika Prunnila, Terence Whall
  • Patent number: 9929344
    Abstract: Disclosed is a display device having a display panel that includes a plurality of pixels in a display area, each pixel including a first thin film transistor (TFT); a plurality of pads in a non-display area outside the display area that provide operating signals to the plurality of pixels in the display area, each pad including a first signal line running toward the display area and a second signal line running toward an outer edge of the display panel, with each pad disposed between the first and second signal lines; and an extension line crossing one or more of second signal lines of the plurality of pads, two ends of the extension line running toward the outer edge of the display panel, wherein each of the one or more of second signal lines of the plurality of pads includes an active layer of a second TFT.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: March 27, 2018
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Jeonghwa Lee, Minjae Shin
  • Patent number: 9741920
    Abstract: Superconducting integrated circuits require several wiring layers to distribute bias and signals across the circuit, which must cross each other both with and without contacts. All wiring lines and contacts must be fully superconducting, and in the prior art each wiring layer comprises a single metallic thin film. An alternative wiring layer is disclosed that comprises sequential layers of two or more different metals. Such a multi-metallic wiring layer may offer improved resistance to impurity diffusion, better surface passivation, and/or reduction of stress, beyond that which is attainable with a single-metallic wiring layer. The resulting process leads to improved margin and yield in an integrated circuit comprising a plurality of Josephson junctions. Several preferred embodiments are disclosed, for both planarized and non-planarized processes.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 22, 2017
    Assignee: Hypres, Inc.
    Inventors: Sergey K. Tolpygo, Denis Amparo, Richard Hunt, John Vivalda, Daniel Yohannes
  • Patent number: 9653153
    Abstract: One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current that is provided to the memory cell and to generate a superconducting phase based on the stored digital state. The memory cell also includes a superconducting read-select device that is configured to implement a read operation in response to a read current that is provided to the memory cell. The memory cell further includes at least one Josephson junction configured to provide an output based on the superconducting phase of the PHMJJ during the read operation, the output corresponding to the stored digital state.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: May 16, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anna Y. Herr, Quentin P. Herr, Andrew Hostetler Miklich
  • Patent number: 9570209
    Abstract: Provided are a conductive layer and a method of manufacturing the same. The conductive layer is formed without, so called, a high temperature process but has suitable crystallinity, excellent transparency and excellent resistance characteristic, and the method of manufacturing the same is also provided.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: February 14, 2017
    Assignee: LG CHEM, LTD.
    Inventor: Phil Kook Son
  • Patent number: 9535037
    Abstract: An inspection apparatus (100) for monitoring the structural integrity of a pipeline (101) comprising a superconducting electromagnet (102) suitable for generating a magnetic field (106); a cryostat (103) suitable for containing and preserving said superconducting electromagnet (102) at a low temperature; at least two magnetic conveyors (104?, 104?) connected at opposite ends of the cryostat (103) suitable for conveying the magnetic field (106) generated by the superconducting electromagnet (102) to the wall of the pipeline (101) and facilitating the closing of a magnetic circuit; at least one sensor system (105) for revealing the intensity of the magnetic field (106). A method for monitoring the structural integrity of a pipeline (101) using an inspection apparatus (100) according to the present invention.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: January 3, 2017
    Assignee: ENI S.P.A.
    Inventors: Alberto Giulio Di Lullo, Giordano Pinarello, Alessandro Bailini
  • Patent number: 9455393
    Abstract: Provided are superconducting circuits and method of forming thereof. A superconducting circuit may include a low loss dielectric (LLD) layer formed from one or both of polycrystalline silicon or polycrystalline germanium. The LLD layer may be formed at a low temperature (e.g., less than about 525° C.) using chemical vapor deposition (CVD). Addition of germanium may help to lower the deposition temperature and improve crystallinity of the resulting layer. The LLD layer is formed without adding silicides at the interface of the LLD layer and metal electrode. In some embodiments, an initial layer (e.g., a seed layer or a protective layer) may be formed on a metal electrode prior to forming the LLD layer. For example, the initial layer may include one of zinc sulfide, polycrystalline germanium, or polycrystalline silicon. The initial layer may be deposited at a low pressure (e.g., less than 10 Torr) to ensure higher levels of crystallinity.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 27, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Ashish Bodke, Frank Greer, Mark Clark
  • Patent number: 9281057
    Abstract: One embodiment describes a memory cell. The memory cell includes a phase hysteretic magnetic Josephson junction (PHMJJ) that is configured to store one of a first binary logic state corresponding to a binary logic-1 state and a second binary logic state corresponding to a binary logic-0 state in response to a write current that is provided to the memory cell and to generate a superconducting phase based on the stored digital state. The memory cell also includes a superconducting read-select device that is configured to implement a read operation in response to a read current that is provided to the memory cell. The memory cell further includes at least one Josephson junction configured to provide an output based on the superconducting phase of the PHMJJ during the read operation, the output corresponding to the stored digital state.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: March 8, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anna Y. Herr, Quentin P. Herr, Andrew Hostetler Miklich
  • Patent number: 9281463
    Abstract: Metal oxide tunnel barrier layers for superconducting tunnel junctions are formed by atomic layer deposition. Both precursors include a metal (which may be the same metal or may be different). The first precursor is a metal alkoxide with oxygen bonded to the metal, and the second precursor is an oxygen-free metal precursor with an alkyl-reactive ligand such as a halogen or methyl group. The alkyl-reactive ligand reacts with the alkyl group of the alkoxide, forming a detached by-product and leaving a metal oxide monolayer. The temperature is selected to promote the reaction without causing the metal alkoxide to self-decompose. The oxygen in the alkoxide precursor is bonded to a metal before entering the chamber and remains bonded throughout the reaction that forms the monolayer. Therefore, the oxygen used in this process has no opportunity to oxidize the underlying superconducting electrode.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 8, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Frank Greer, Andy Steinbach
  • Patent number: 8981378
    Abstract: A mother substrate for an organic light-emitting display apparatus. The mother substrate has a panel area and a peripheral area surrounding the panel area, pixels disposed in a display area of the panel area, pads that are disposed in a non-display area of the panel area and are coupled to the pixels, test wirings disposed in the peripheral area, a local buffer electrically connected to the test wirings, a bridge wiring connecting the local buffer to one of the pads, and a dummy resistance layer having one end in contact with the bridge wiring and another end in contact with one of the test wirings.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: March 17, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kwang-Min Kim, Won-Kyu Kwak, Jin-Tae Jeong, Ji-Hyun Ka
  • Publication number: 20140357493
    Abstract: A Josephson junction (JJ) quantum bit (qubits) arranged on a substrate is provided. In one embodiment, each qubit comprises a dielectric layer, a superconductor base layer portion underlying the dielectric layer and a first dielectric diffused region adjacent a dielectric layer/superconductor base layer portion junction. The qubit further comprise a superconductor mesa layer portion overlying the dielectric layer and having a second dielectric diffused region adjacent a dielectric layer/superconductor mesa layer portion junction, the first and second dielectric diffused regions mitigating further diffusion from other semiconductor processes on the plurality of qubits.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: PATRICK B. SHEA, ERICA C. FOLK, DANIEL J. EWING, JOHN J. TALVACCHIO
  • Patent number: 8330145
    Abstract: A superconducting junction element has a lower electrode formed by a superconductor layer, a barrier layer provided on a portion of a surface of the lower electrode, an upper electrode formed by a superconductor and covering the barrier layer, and a superconducting junction formed by the lower electrode, the barrier layer and the upper electrode. A critical current density of the superconducting junction is controlled based on an area of the lower electrode.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 11, 2012
    Assignees: The Chugoku Electric Power Co., Inc., Hitachi Ltd., Fujitsu Limited, International Superconductivity Technology Center, The Juridical Foundation
    Inventors: Hironori Wakana, Koji Tsubone, Yoshinobu Tarutani, Yoshihiro Ishimaru, Keiichi Tanabe
  • Patent number: 8055318
    Abstract: A new family of superconducting materials with critical temperature up to 55 K have recently been discovered, comprising a crystal structure with atomic layers of iron and arsenic alternating with atomic layers of rare-earth oxide or alkaline earth. The present invention identifies structures for integrated circuit elements (including Josephson junctions) in these and related materials. These superconducting circuit elements will operate at a higher temperature than low-temperature superconductors such as niobium, and may be easier to manufacture than prior-art high-temperature superconductors based on copper-oxides.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: November 8, 2011
    Assignee: Hypres, Inc.
    Inventor: Alan M. Kadin
  • Patent number: 8032196
    Abstract: A Josephson device includes a first superconducting electrode layer, a barrier layer and a second superconducting electrode layer that are successively stacked. The first and second superconducting electrode layers are made of an oxide superconductor material having (RE)1(AE)2Cu3Oy as a main component, where an element RE is at least one element selected from a group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and an element AE is at least one element selected from a group consisting of Ba, Sr and Ca. The barrier layer is made of a material that includes the element RE, the element AE, Cu and oxygen, where in cations within the material forming the barrier layer, a Cu content is in a range of 35 At. % to 55 At. % and an RE content is in a range of 12 At. % to 30 At. %, and the barrier layer has a composition different from compositions of the first and second superconducting electrode layers.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: October 4, 2011
    Assignees: Chugoku Electric Power Co., Inc., International Superconductivity Technology Center, The Juridical Foundation
    Inventors: Hironori Wakana, Seiji Adachi, Koji Tsubone, Keiichi Tanabe
  • Patent number: 7985967
    Abstract: There have been problems in that a dedicated apparatus is needed for a conventional method of manufacturing an organic thin film transistor and in that: a little amount of an organic semiconductor film is formed with respect to a usage amount of a material; and most of the used material is discarded. Further, apparatus maintenance such as cleaning of the inside of an apparatus cup or chamber has needed to be frequently carried out in order to remove the contamination resulting from the material that is wastefully discarded. Therefore, a great cost for materials and man-hours for maintenance of apparatus have been required. In the present invention, a uniform organic semiconductor film is formed by forming an aperture between a first substrate for forming the organic semiconductor film and a second substrate used for injection with an insulating film formed at a specific spot and by injecting an organic semiconductor film material into the aperture due to capillarity to the aperture.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiharu Hirakata, Tetsuji Ishitani, Shuji Fukai, Ryota Imahayashi
  • Patent number: 7977668
    Abstract: A multilayer structure with zirconium-oxide tunnel barriers. In one embodiment, the multilayer structure includes a first niobium (Nb) layer, a second niobium (Nb) layer, and a plurality of zirconium-oxide tunnel barriers sandwiched between the first niobium (Nb) layer and the second niobium (Nb) layer, wherein the plurality of zirconium-oxide tunnel barriers is formed with N layers of zirconium-oxide, N being an integer greater than 1, and M layers of zirconium, M being an integer no less than N, such that between any two neighboring layers of zirconium-oxide, a layer of zirconium is sandwiched therebetween.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 12, 2011
    Assignee: Northwestern University
    Inventors: Ivan Nevirkovets, John Ketterson, Oleksandr Chernyashevskyy, Serhii Shafraniuk
  • Patent number: 7923717
    Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 12, 2011
    Inventor: Katsuyuki Tsukui
  • Publication number: 20090267054
    Abstract: The present invention relates to reconfigurable circuitry, and more particularly to the reconfiguration of the characteristics of materials used in the formation of electronic circuitry as the result of applied external influences. Exemplary embodiments of the present invention provide an apparatuses, methods, electronic devices and computer program products that include a nanoscale material layer, and a programmable element in close proximity to at least a first section of the nanoscale material layer. The programmable element is configured to produce interference with an electron wave in at least the first section of the nanoscale material layer.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Asta Karkkainen, Leo Karkkainen
  • Patent number: 7579699
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 25, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7566896
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice. Various platforms can be used to physically implement such a quantum computer. Platforms include an optical lattice, a Josephson junction array, a quantum dot, and a crystal structure. Each platform comprises an appropriate array of associated sites that can be used to approximate a desired Kagome geometry. A charge controller is desirably electrically coupled to the platform so that the array may be manipulated as desired.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 28, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7544964
    Abstract: A method for producing a thin layer device such as a superconductive device excellent in mechanical strength and useful as a submillimeter band receiver is provided. The thin layer device is produced by forming a multilayer structure substance comprising an NbN/MgO/NbN-SIS junction on an MgO temporary substrate, then forming SiO2, as a substrate, on said multilayer structure substance, and subsequently removing the MgO temporary substrate by etching. A superconductive device (a thin layer device) produced by a method of the present invention has excellent performance and high mechanical strength, and therefore introduction to a waveguide for a submillimeter band is also easy.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: June 9, 2009
    Assignee: National Institute of Information and Communications Technology, Incorporated Administrative Agency
    Inventor: Akira Kawakami
  • Patent number: 7525202
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such quantum computational systems may include quantum computers, quantum cryptography systems, quantum information processing systems, quantum storage media, and special purpose quantum simulators.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: April 28, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7474010
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: January 6, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7453162
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 18, 2008
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7439089
    Abstract: In a liquid crystal display device substrate, an insulating layer covers a thin film transistor. Another insulating layer covers a black matrix, which is formed on the insulating layer and covers the thin film transistor, a gate line, and a data line except a portion of a drain electrode. A first transparent conductive layer covers the top insulating layer and contacts the exposed portions of the drain electrode, a gate pad and a data pad. A buffer layer is formed on the first conductive layer and a color filter is formed on the buffer layer. The buffer layer is exposed by the color filter to reveal portions of the first conductive layer. A second transparent conductive layer covers the color filter and the revealed portions of the first conductive layer. The conductive layers are patterned to form pixel electrodes and double-layered gate and data pad terminals.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: October 21, 2008
    Assignee: LG Display Co., Ltd.
    Inventor: Dong-Guk Kim
  • Patent number: 7342266
    Abstract: A field effect transistor (FET) device includes a gate conductor and gate dielectric formed over an active device area of a semiconductor substrate. A drain region is formed in the active device area of the semiconductor substrate, on one side of the gate conductor, and a source region is formed in the active device area of the semiconductor substrate, on an opposite side of the gate conductor. A dielectric halo or plug is formed in the active area of said semiconductor substrate, the dielectric halo or plug disposed in contact between the drain region and a body region, and in contact between the source region and the body region.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Belyansky, Dureseti Chidambarrao, Oleg Gluschenkov
  • Patent number: 7332738
    Abstract: A method for reading out the state of a mesoscopic phase device. In the method the mesoscopic phase device is coherently coupled to a mesoscopic charge device using a phase shift device and the quantum state of the mesoscopic charge device is measured. A method for reading out the quantum state of a qubit in a heterogeneous quantum register. The heterogeneous quantum register includes a first plurality of phase qubits and a second plurality of charge qubits. In the method a first phase qubit or a first charge qubit in the heterogeneous quantum register is selected. The first phase qubit or the first charge qubit is coherently connected to a mesoscopic charge device for a duration tc. The quantum state of the mesoscopic charge device is read out after the duration tc has elapsed.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 19, 2008
    Assignee: D-Wave Systems Inc.
    Inventors: Alexandre Blais, Jeremy P. Hilton
  • Patent number: 7312182
    Abstract: Rare earth metal containing compounds of the formula Sr2LuSbO6 and Sr2LaSbO6 have been prepared as high critical temperature thin film superconductor structures, and can be used in other ferroelectrics, pyroelectrics, piezoelectrics, and hybrid device structures.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: December 25, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Arthur Tauber, Robert D. Finnegan, William D. Wilber, Steven C. Tidrow, Donald W. Eckart, William C. Drach
  • Patent number: 7253069
    Abstract: A method for manufacturing a SOI wafer includes a step of heat-treating a wafer in a furnace to form an SOI wafer including a silicon support, an insulating layer containing oxide, and a superficial silicon layer arranged in that order and a step of unloading the SOI wafer from the furnace maintained at a temperature of 250° C. to 800° C. to transfer the SOI wafer to an atmosphere containing hydrogen or water. The steps are performed in that order.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 7, 2007
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Yoshio Murakami, Toru Yamazaki, Yoshiro Aoki, Akihiko Endo
  • Patent number: 7224019
    Abstract: A semiconductor device comprises a semiconductor substrate, an electrically rewritable semiconductor memory cell provided on the semiconductor substrate, the memory cell comprising an island semiconductor portion provided on the surface of the semiconductor substrate or above the semiconductor substrate, a first insulating film provided on a top surface of the island semiconductor portion, a second insulating film provided on a side surface of the island semiconductor portion and being smaller in thickness than the first insulating film, and a charge storage layer provided on the side surface of the island semiconductor portion with the second insulating film interposed therebetween and on a side surface of the first insulating film, a third insulating film provided on the charge storage layer, and a control gate electrode provided on the third insulating film.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: May 29, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Hieda, Daisuke Hagishima
  • Patent number: 7176483
    Abstract: An electrical junction that includes a semiconductor (e.g., C, Ge, or an Si-based semiconductor), a conductor, and an interface layer disposed therebetween. The interface layer is sufficiently thick to depin a Fermi level of the semiconductor, yet sufficiently thin to provide the junction with a specific contact resistance of less than or equal to approximately 1000 ?-?m2, and in some cases a minimum specific contact resistance.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: February 13, 2007
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 7105853
    Abstract: A superconductor integrated circuit (1) includes an anodization ring (35) disposed around a perimeter of a tunnel junction region (27) for preventing a short-circuit between an outside contact (41) and the base electrode layer (18). The tunnel junction region (27) includes a junction contact (31) with a diameter of approximately 1.00 ?m or less defined by a top surface of the counter electrode layer (24). The base electrode layer (18) includes an electrode isolation region (36) disposed approximately 0.8 ?m in horizontal distance from the junction contact (31) for providing device isolation.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: September 12, 2006
    Assignee: Northrop Grumman Corporation
    Inventor: George L. Kerber
  • Patent number: 7105852
    Abstract: A detector includes a voltage source for providing a bias voltage and first and second non-insulating layers, which are spaced apart such that the bias voltage can be applied therebetween and form an antenna for receiving electromagnetic radiation and directing it to a specific location within the detector. The detector also includes an arrangement serving as a transport of electrons, including tunneling, between and to the first and second non-insulating layers when electromagnetic radiation is received at the antenna. The arrangement includes a first insulating layer and a second layer configured such that using only the first insulating in the arrangement would result in a given value of nonlinearity in the transport of electrons while the inclusion of the second layer increases the nonlinearity above the given value. A portion of the electromagnetic radiation incident on the antenna is converted to an electrical signal at an output.
    Type: Grant
    Filed: June 26, 2004
    Date of Patent: September 12, 2006
    Assignee: University Technology Corporation
    Inventors: Garret Moddel, Blake J. Eliasson
  • Patent number: 7002174
    Abstract: A structure comprising a tank circuit inductively coupled to a flux qubit or a phase qubit. In some embodiments, a low temperature preamplifier is in electrical communication with the tank circuit. The tank circuit comprises an effective capacitance and an effective inductance that are in parallel or in series. In some embodiments, the effective inductance comprises a multiple winding coil of wire. A method that includes the steps of (i) providing a tank circuit and a phase qubit that are inductively coupled, (ii) reading out a state of the phase qubit, (iii) applying a flux to the phase qubit that approaches a net zero flux, (iv) increasing a level of flux applied to the phase qubit, and (v) observing a response of the tank circuit in a readout device.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: February 21, 2006
    Assignee: D-Wave Systems, Inc.
    Inventors: Evgeni Il'ichev, Miroslav Grajcar, Alexandre M. Zagoskin, Miles F. H. Steininger
  • Patent number: 6999806
    Abstract: A Josephson junction having a barrier layer sandwiched by two superconductors wherein the superconductors include one or more elements selected from the group of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, one or more elements selected from the group of Ba, Sr and Ca, and Cu and oxygen, wherein the two superconductors each include at least five elements with compositions different from each other, or the barrier layer (5) includes one or more elements selected from the group of La, Nd, Sm and Eu, and one or more elements selected from the group of Y, Gd, Dy, Ho, Er, Tm, Yb and Lu.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: February 14, 2006
    Assignee: International Superconductivity Technology Center, the Juridical Foundation
    Inventors: Seiji Adachi, Hironori Wakana, Keiichi Tanabe
  • Patent number: 6995390
    Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: February 7, 2006
    Inventor: Katsuyuki Tsukui
  • Patent number: 6987282
    Abstract: A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: January 17, 2006
    Assignee: D-Wave Systems, Inc.
    Inventors: Mohammad H. S. Amin, Timothy Duty, Alexander Omelyanchouk, Geordie Rose, Alexandre Zagoskin, Alexandre Blais
  • Patent number: 6919579
    Abstract: A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: July 19, 2005
    Assignee: D-Wave Systems, Inc.
    Inventors: Mohammad H. S. Amin, Timothy Duty, Alexander Omelyanchouk, Geordie Rose, Alexandre Zagoskin, Alexandre Blais
  • Patent number: 6911665
    Abstract: A superconducting integrated circuit includes a substrate, a multilayer structure formed on the substrate and composed of a lower superconducting electrode, a tunnel barrier and an upper superconducting electrode sequentially joined together upward in the order mentioned, and an insulating layer perforated to form via holes to get electrical contacts with the lower and upper electrodes. The insulating layer is formed of a high-resolution, photosensitive, solvent-soluble, organic insulating material. The superconducting integrated circuit is produced by a method that includes the steps of depositing the multiplayer on the substrate, applying the insulating material to the front surface of the substrate inclusive of the multiplayer, forming the via holes in the insulating material by the lithographic technique at the prospective positions to get electrical contacts with the upper and lower electrodes, and laying wirings for connecting the upper and lower electrodes through the via holes.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: June 28, 2005
    Assignees: National Institute of Advanced Industrial Science and Technology, PI R&D Co., Ltd.
    Inventors: Masahiro Aoyagi, Hiroshi Nakagawa, Kazuhiko Tokoro, Katsuya Kikuchi, Hiroshi Itatani, Sigemasa Segawa