Josephson Patents (Class 257/31)
  • Patent number: 11948045
    Abstract: Methods, systems, and apparatus for parallel optimization of continuously running quantum error correction by closed-loop feedback. In one aspect, a method includes continuously and effectively optimizing qubit performance in-situ whilst an error correction operation on the quantum system is running. The method directly monitors the output from error detection and provides this information as feedback to calibrate the quantum gates associated with the quantum system. In some implementations, the physical qubits are spatially partitioned into one or more independent hardware patterns, where the errors attributable to each hardware pattern are non-overlapping. The one or more different sets of hardware patterns are then temporarily interleaved such that all physical qubits and operations are optimized. The method allows for the optimization of each section of a hardware pattern to be performed individually and in parallel, and can result is O(1) scaling.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: April 2, 2024
    Assignee: Google LLC
    Inventor: Julian Shaw Kelly
  • Patent number: 11937520
    Abstract: A stacked quantum computing device including: a first chip including a superconducting qubit, where the superconducting qubit includes a superconducting quantum interference device (SQUID) region, a control region, and a readout region, and a second chip bonded to the first chip, where the second chip includes a first control element overlapping with the SQUID region, a second control element displaced laterally from the control region and without overlapping the control region, and a readout device overlapping the readout region.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: March 19, 2024
    Assignee: Google LLC
    Inventors: Julian Shaw Kelly, Joshua Yousouf Mutus
  • Patent number: 11937516
    Abstract: Devices, systems, and/or methods that can facilitate local heating of a superconducting flux biasing loop are provided. According to an embodiment, a method can comprise forming on a substrate a biasing loop and a flux controlled qubit device of a superconducting flux bias circuit. The method can further comprise forming a heating device on the substrate to couple the heating device to the biasing loop.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: March 19, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rasit Onur Topaloglu, Vivekananda P. Adiga, Martin O. Sandberg
  • Patent number: 11917925
    Abstract: The magnetoresistive stack or structure of a magnetoresistive device includes one or more electrodes or electrically conductive lines, a magnetically fixed region, a magnetically free region disposed between the electrodes or electrically conductive lines, and a dielectric layer disposed between the free and fixed regions. The magnetoresistive device may further include a spin-Hall (SH) material proximate to at least a portion of the free region, and one or more insertion layers comprising antiferromagnetic material.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 27, 2024
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventor: Shimon
  • Patent number: 11877523
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: January 16, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov
  • Patent number: 11868847
    Abstract: A method of reducing stray coupling in a qubit array, includes turning ON a first coupler between a first qubit and second qubit of the qubit array by providing a pulse having a first amplitude to the first coupler. A stray coupling between the first coupler and a spectator qubit is reduced by turning ON a second coupler coupled to the spectator qubit, by providing a compensation pulse having a second amplitude, to the second coupler, based on the pulse having the first amplitude.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 9, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jiri Stehlik, David Zajac
  • Patent number: 11861456
    Abstract: Various embodiments of the present disclosure provide for instruction compilation for at least one time slice in a one-dimensional quantum computing environment. In this regard, embodiments generate an algorithm swap command set by performing an even-odd transposition sort based on at least an initial qubit position set and a target qubit position set for one or more time slices. The algorithm swap command set may correspond to a qubit manipulation instruction set which can be used to generate a hardware instruction set that, upon execution, efficiently repositions any number of qubits to the target positions for gating.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 2, 2024
    Assignee: Quantinuum LLC
    Inventors: Christopher Eugene Langer, Dominic George Lucchetti
  • Patent number: 11808796
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes (a) measuring one or both of a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction, to obtain mapping data and refinement data; (b) finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; and (c) finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: November 7, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Mason L Thomas, Chetan Vasudeo Nayak, Roman Mykolayovych Lutchyn, Bas Nijholt, Bernard Van Heck, Esteban Adrian Martinez, Georg Wolfgang Winkler, Gijsbertus De Lange, John David Watson, Sebastian Heedt, Torsten Karzig
  • Patent number: 11775854
    Abstract: Systems, computer-implemented methods, and computer program products to facilitate characterizing crosstalk of a quantum computing system based on sparse data collection are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a package component that packs subsets of quantum gates in a quantum device into one or more bins. The computer executable components can further comprise an assessment component that characterizes crosstalk of the quantum device based on a number of the one or more bins into which the subsets of quantum gates are packed.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 3, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Prakash Murali, Ali Javadiabhari, David C. Mckay
  • Patent number: 11770982
    Abstract: In a general aspect, an integrated quantum circuit includes a first substrate and a second substrate. The first substrate includes a first surface and a recess formed in the first substrate along the first surface. The recess has a recess surface and is configured to enclose a quantum circuit element. The first substrate includes a first electrically-conductive layer disposed on the first surface and covering at least a portion of the recess surface. The first electrically-conductive layer includes a first superconducting material. The second substrate includes a second surface and a quantum circuit element. The second substrate includes a second electrically-conductive layer on the second surface that includes a second superconducting material. The first substrate is adjacent the second substrate to enclose the quantum circuit device within the recess. The first electrically-conductive layer of the first substrate is electrically-coupled to the second electrically-coupled layer of the second substrate.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: September 26, 2023
    Assignee: Rigetti & Co, LLC
    Inventors: Jayss Daniel Marshall, Chih-Yang Li, Biswajit Sur, Nagesh Vodrahalli, Mehrnoosh Vahidpour, William Austin O'Brien, IV, Andrew Joseph Bestwick, Chad Tyler Rigetti, James Russell Renzas
  • Patent number: 11734597
    Abstract: Techniques facilitating frequency allocation in multi-qubit circuits are provided. In one example, a computer-implemented method comprises determining, by a device operatively coupled to a processor, an estimated fabrication yield associated with respective qubit chip configurations by conducting simulations of the respective qubit chip configurations at respective frequency offsets; and selecting, by the device, a qubit chip configuration from among the respective qubit chip configurations based on the estimated fabrication yield associated with the respective qubit chip configurations.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: August 22, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jared Barney Hertzberg, Sami Rosenblatt, Easwar Magesan, John Aaron Smolin
  • Patent number: 11723288
    Abstract: A quantum bit array is disclosed. In an embodiment, the quantum bit array includes a control gate coupled to a qubit and at least one pass gate coupled between the qubit and an adjacent qubit to control operation of the qubit of the quantum bit array, a bit line, and a first transistor channel that connects the bit line to the control gate. The array further comprises at least one word line coupled to the first transistor channel. The at least one word line selectively controls charge flow through the first transistor channel. The array further comprises a capacitor coupled to selectively store charge in the first transistor channel.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 8, 2023
    Inventors: Fu-Chang Hsu, Kevin Hsu
  • Patent number: 11720430
    Abstract: The present disclosure relates to a method of mitigating errors in quantum circuits constituting a quantum computer, which includes: obtaining a plurality of pieces of first probability matrix information according to a sequence of quantum gates constituting a quantum circuit; obtaining a plurality of pieces of second probability matrix information according to a sequence of quantum gates constituting the quantum circuit; generating a plurality of pieces of differential matrix information based on the plurality of pieces of first and second probability matrix information; and generating error mitigation matrix information corresponding to the quantum circuit using the plurality of pieces of differential matrix information.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 8, 2023
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: June-Koo Rhee, Changjun Kim, Kyungdeock Park
  • Patent number: 11696516
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: July 4, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Patent number: 11694104
    Abstract: Methods, systems, and apparatus for performing an entangling operation on a system of qubits. In one aspect, a method includes operating the system of qubits, wherein the system of qubits comprises: a plurality of first qubits, a plurality of second qubits, a plurality of qubit couplers defining nearest neighbor interactions between the first qubits and second qubits, wherein the system of qubits is arranged as a two dimensional grid and each qubit of the multiple first qubits is coupled to multiple second qubits through respective qubit couplers, and wherein operating the system of qubits comprises: pairing multiple first qubits with respective neighboring second qubits; performing an entangling operation on each paired first and second qubit in parallel, comprising detuning each second qubit in the paired first and second qubits in parallel.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 4, 2023
    Assignee: Google LLC
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Patent number: 11663510
    Abstract: Systems, apparatuses, methods, and computer program products are disclosed for quantum entanglement authentication (QEA). An example method includes generating, at a first computing device, a first number based on a subset of a first set of entangled quantum particles comprised by a quantum authentication device and associated with the first computing device. Each entangled quantum particle in the first set of entangled quantum particles may be entangled with a respective entangled quantum particle in a second set of entangled quantum particles associated with a second computing device. The example method further includes transmitting an electronic identification of the subset of the first set of entangled quantum particles to the second computing device.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 30, 2023
    Assignee: Wells Fargo Bank, N.A.
    Inventors: Robert L. Carter, Jr., Bradford A. Shea, M. Erik Meinholz, Jeff J. Stapleton, Peter Bordow, Pierre Arbajian
  • Patent number: 11645442
    Abstract: The optimization of circuit parameters of variational quantum algorithms is a challenge for the practical deployment of near-term quantum computing algorithms. Embodiments relate to a hybrid quantum-classical optimization methods. In a first stage, analytical tomography fittings are performed for a local cluster of circuit parameters via sampling of the observable objective function at quadrature points in the circuit parameters. Optimization may be used to determine the optimal circuit parameters within the cluster, with the other circuit parameters frozen. In a second stage, different clusters of circuit parameters are then optimized in “Jacobi sweeps,” leading to a monotonically convergent fixed-point procedure. In a third stage, the iterative history of the fixed-point Jacobi procedure may be used to accelerate the convergence by applying Anderson acceleration/Pulay's direct inversion of the iterative subspace (DIIS).
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: May 9, 2023
    Assignee: QC Ware Corp.
    Inventors: Robert M. Parrish, Joseph T. Iosue, Asier Ozaeta Rodriguez, Peter L. McMahon
  • Patent number: 11626556
    Abstract: A hard mask includes a silicon oxide layer provided on a bare silicon wafer; and a silicon nitride layer provided on the silicon oxide layer, wherein the silicon nitride is provided with a first pattern, the silicon oxide layer is provided with a second pattern corresponding to the first pattern, the first pattern and the second pattern have different shapes, and the first pattern and the second pattern are configured to assist in forming a Josephson junction on the bare silicon wafer.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: April 11, 2023
    Assignee: Alibaba Group Holding Limited
    Inventors: Ran Gao, Jingwei Zhou, Chunqing Deng
  • Patent number: 11580436
    Abstract: Extra edges are added to a group of edges for use in decoding syndrome measurements of a surface code implemented using hybrid acoustic-electric qubits. The extra edges include two-dimensional cross-edges and three-dimensional space-time correlated edges that identify correlated errors arising from spurious photon dissipation processes of a multiplexed control circuit that leads to cross-talk between storage modes of a set of the mechanical resonators controlled by the given multiplexed control circuit. Additionally, error probabilities used for edge weighting incorporate error probabilities due to the spurious photon dissipation processes.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 14, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Christopher Chamberland, Kyungjoo Noh, Connor Hann, Fernando Brandao
  • Patent number: 11581126
    Abstract: An inductor component includes a multilayer body including a magnetic layer; an inductor wiring disposed inside the multilayer body; and an external terminal exposed from the multilayer body. The multilayer body or the external terminal has an overlapping region disposed on the inductor wiring and a non-overlapping region not in contact with the inductor wiring, and reflection spectra of the overlapping region is different from reflection spectra of the non-overlapping region when irradiated with light having a prescribed wavelength from an outer surface side.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: February 14, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshimasa Yoshioka, Ryo Kudou
  • Patent number: 11580435
    Abstract: The present disclosure provides methods and systems for performing non-classical computations. The methods and systems generally use a plurality of spatially distinct optical trapping sites to trap a plurality of atoms, one or more electromagnetic delivery units to apply electromagnetic energy to one or more atoms of the plurality to induce the atoms to adopt one or more superposition states of a first atomic state and a second atomic state, one or more entanglement units to quantum mechanically entangle at least a subset of the one or more atoms in the one or more superposition states with at least another atom of the plurality, and one or more readout optical units to perform measurements of the superposition states to obtain the non-classical computation.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 14, 2023
    Assignee: ATOM COMPUTING INC.
    Inventors: Jonathan King, Benjamin Bloom, Krish Kotru, Brian Lester, Maxwell Parsons
  • Patent number: 11568297
    Abstract: A method of generating a random uniformly distributed Clifford unitary circuit (C) includes: generating a random Hadamard (H) gate; drawing a plurality of qubits from a probability distribution of qubits; applying the random H gate to the plurality of qubits drawn from the probability distribution; and generating randomly a first Hadamard-free Clifford circuit (F1) and a second Hadamard-free Clifford circuit (F2). The first and second Hadamard-free Clifford circuits is generated by at least randomly generating a uniformly distributed phase (P) gate, and randomly generating a uniformly distributed linear Boolean invertible conditional NOT (CNOT) gate, and combining the P and CNOT gates to form the first and second Hadamard-free Clifford circuits. The method further includes combining the generated first Hadamard-free circuit (F1) and the second Hadamard-free Clifford circuit (F2) with the generated random Hadamard (H) gate to form the random uniformly distributed Clifford unitary circuit (C).
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: January 31, 2023
    Assignee: International Business Machines Corporation
    Inventors: Dmitri Maslov, Sergey Bravyi
  • Patent number: 11557708
    Abstract: A Josephson voltage standard includes: electrical conductors that receive bias currents and radiofrequency biases; a first Josephson junction array that: includes a first Josephson junction and produces a first voltage reference from the first bias current and the third bias current; a second Josephson junction array in electrical communication with the first Josephson junction array and that: includes a second Josephson junction; receives the second bias current; receives the third bias current; receives the second radiofrequency bias; and produces a second voltage reference from the second bias current and the third bias current; a first voltage reference output tap in electrical communication with the first Josephson junction array and that receives the first voltage reference from the first Josephson junction array such that the first voltage reference is electrically available at the first voltage reference output tap; and a second voltage reference output tap.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 17, 2023
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Alain Rufenacht, Nathan Edward Flowers-Jacobs, Anna Rose Elizabeth Fox, Samuel Paul Benz, Paul David Dresselhaus
  • Patent number: 11527697
    Abstract: A quantum computing device includes a first chip having a first substrate and one or more qubits disposed on the first substrate. Each of the one or more qubits has an associated resonance frequency. The quantum computing device further includes a second chip having a second substrate and at least one conductive surface disposed on the second substrate opposite the one or more qubits. The at least one conductive surface has at least one dimension configured to adjust the resonance frequency associated with at least one of the one or more qubits to a determined frequency adjustment value.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: December 13, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dongbing Shao, Markus Brink, Firat Solgun, Jared Barney Hertzberg
  • Patent number: 11521784
    Abstract: A coil component includes a body having one surface and another surface opposing each other in one direction, an internal insulating layer embedded in the body, and a coil portion disposed on the internal insulating layer and forming at least one turn. First and second external electrodes are disposed on the one surface of the body to be spaced apart from each other, and first and second connection electrodes respectively penetrate through the body to connect the coil portion and the first and second external electrodes to each other. A support electrode extends from the coil portion to be exposed to the other surface of the body to support the coil portion and the internal insulating layer.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: December 6, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hun Kim, Jong Min Lee
  • Patent number: 11494682
    Abstract: Quantum computing assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a quantum computing assembly may include: a package substrate; a first die coupled to the package substrate; and a second die coupled to the second surface of the package substrate and coupled to the first die; wherein the first die or the second die includes quantum processing circuitry.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: November 8, 2022
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Shawna M. Liff, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11474867
    Abstract: A computing system is provided, including a processor configured to identify a plurality of measurement sequences that implement a logic gate. Each measurement sequence may include a plurality of measurements of a quantum state of a topological quantum computing device. The processor may be further configured to determine a respective estimated total resource cost of each measurement sequence of the plurality of measurement sequences. The processor may be further configured to determine a first measurement sequence that has a lowest estimated total resource cost of the plurality of measurement sequences. The topological quantum computing device may be configured to implement the logic gate by applying the first measurement sequence to the quantum state.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 18, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Parsa Hassan Bonderson, Roman Bela Bauer, Alexei V. Bocharov, Alan D Tran
  • Patent number: 11422958
    Abstract: A quantum processor performs input and output which may be performed synchronously. The quantum processor executes a problem to generate a classical output state, which is read out at least partially by an I/O system. The I/O system also transmits a classical input state to by the I/O system, which may include the same qubit-proximate devices used for read-out. The classical input state is written to the qubits, and the quantum processor executes based on the classical input state (e.g., by performing reverse annealing to transform the classical input state to quantum state).
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 23, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Kelly T.R. Boothby, Andrew J. Berkley, Christopher B. Rich
  • Patent number: 11329211
    Abstract: An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 10, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren, Qingyuan Zhao
  • Patent number: 11289156
    Abstract: A reversible memory element is provided. The reversible memory element comprises a reversible memory cell comprising a Josephson junction and a passive inductor. A ballistic interconnect is connected to the reversible memory cell by a bidirectional input/output port. A polarized input fluxon propagating along the ballistic interconnect exchanges polarity with a stationary stored fluxon in the reversible memory cell in response to the input fluxon reflecting off the reversible memory cell.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 29, 2022
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael P. Frank, Erik Debenedictis
  • Patent number: 11289639
    Abstract: Electrical, mechanical, computing, and/or other devices that include components formed of extremely low resistance (ELR) materials, including, but not limited to, modified ELR materials, layered ELR materials, and new ELR materials, are described.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: March 29, 2022
    Assignee: Ambature, Inc.
    Inventors: Douglas J. Gilbert, Y. Eugene Shteyn, Michael J. Smith, Joel Patrick Hanna, Paul Greenland, Brian Coppa, Forrest North
  • Patent number: 11238131
    Abstract: The systems, devices, articles, and methods generally relate to sampling from an available probability distribution. The samples maybe used to create a desirable probability distribution, for instance for use in computing values used in computational techniques including: Importance Sampling and Markov chain Monte Carlo systems. An analog processor may operate as a sample generator, for example by: programming the analog processor with a configuration of the number of programmable parameters for the analog processor, which corresponds to a probability distribution over qubits of the analog processor, evolving the analog processor, and reading out states for the qubits. The states for the qubits in the plurality of qubits correspond to a sample from the probability distribution. Operation of the sampling device may be summarized as including updating a set of samples to include the sample from the probability distribution, and returning the set of samples.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 1, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Firas Hamze, James King, Evgeny Andriyash, Catherine McGeoch, Jack Raymond, Jason Rolfe, William G. Macready, Aaron Lott, Murray C. Thom
  • Patent number: 11223005
    Abstract: Techniques regarding parallel gradiometric SQUIDs and the manufacturing thereof are provided. For example, one or more embodiments described herein can comprise an apparatus, which can comprise a first pattern of superconducting material located on a substrate. Also, the apparatus can comprise a second pattern of superconducting material that can extend across the first pattern of superconducting material at a position. Further, the apparatus can comprise a Josephson junction located at the position, which can comprise an insulating barrier that can connect the first pattern of superconductor material and the second pattern of superconductor material.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 11, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Hanhee Paik
  • Patent number: 11216465
    Abstract: A method and a system are disclosed for displaying data representative of a large dataset. The method comprises the use of a processing device for receiving the dataset comprising a plurality of data points of dimension m; reducing the dimension m of at least one data point of the plurality of data points to a dimension selected from a group consisting of two (2) and three (3) if the dimension of the at least one data point is greater than or equal to three (3); generating at least one data cluster, each data cluster comprising a given number of data points; determining a set of representative data points for each generated at least one data cluster, each representative data point of a given set for representing a region of a corresponding given data cluster comprising a plurality of adjacent data points and displaying in a user interface the determined at least one set of representative data points of the at least one corresponding generated data cluster.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: January 4, 2022
    Assignee: 1QB Information Technologies Inc.
    Inventors: Jaspreet Oberoi, Austin Wallace
  • Patent number: 11188843
    Abstract: A quantum computing device includes multiple co-planar waveguide flux qubits, at least one coupler element arranged such that each co-planar waveguide flux qubit, of the multiple co-planar waveguide flux qubits, is operatively couplable to each other co-planar waveguide flux qubit, of the multiple co-planar waveguide flux qubits, of the quantum computing device, and a tuning quantum device, in which the tuning quantum device is in electrical contact with a first co-planar waveguide flux qubit of the plurality of co-planar waveguide flux qubits and with a second co-planar waveguide flux qubit of the plurality of co-planar waveguide flux qubits.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: November 30, 2021
    Assignee: Google LLC
    Inventors: Alireza Shabani Barzegar, Pedram Roushan, Yu Chen, Hartmut Neven
  • Patent number: 11177428
    Abstract: A flux-biasing device includes a set of magnetic flux generating members. A first magnetic flux generating member is configured to magnetically interact with a first qubit from a set of qubits of a quantum processor such that a first magnetic flux of the first member causes a first change in a first resonance frequency of the first qubit by a first frequency shift value. Each non-corresponding magnetic flux generating member of the set is well separated from qubits corresponding to other magnetic flux generating members of the set such that qubits corresponding to other members exhibit less than a threshold value of resonance frequency shift as a result of a magnetic flux of a non-corresponding member.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: November 16, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oblesh Jinka, Baleegh Abdo
  • Patent number: 11174545
    Abstract: In an embodiment, a fabrication method comprises forming first and second electrodes over a substrate that includes a nanowire that extends between, and beneath portions of, the first and second electrodes. The method also includes forming a mask structure that defines at least one opening over a portion of the nanowire and defines at least one overhang portion over a gap between the substrate and the mask. The method further includes depositing a first gate electrode on the substrate and overlapping a third region of the nanowire, and depositing a second gate electrode on the substrate and overlapping a fourth region of the nanowire. The depositing of the first gate electrode includes depositing conductive material through the at least one opening from a first oblique angle, and the depositing of the second gate electrode includes depositing conductive material through the at least one opening from a second oblique angle.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: November 16, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell, Ning Li
  • Patent number: 11171175
    Abstract: According to one embodiment, a magnetic device includes a stacked body including a first magnetic layer, a second magnetic layer, and a non-magnetic layer between the first magnetic layer and the second magnetic layer. The stacked body has a quadrangular planar shape, the stacked body has a first side dimension in a first direction parallel to a surface of a substrate and a thickness in a second direction perpendicular to the surface of the substrate, and a ratio of the first side dimension to the thickness is in a range of 0.10 to 4.0.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 9, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tadashi Kai, Masahiko Nakayama, Jyunichi Ozeki, Shogo Itai
  • Patent number: 11170846
    Abstract: A transmon qubit comprising a plate capacitor comprising a first plate (202) and a second plate (203) wherein the first plate is disposed opposite to at least a part of the second plate, wherein the first plate and the second plate are connected via a nonlinear inductance element (304), and a capacitance (205) formed between the first plate and the second plate, wherein the first plate and the second plate are configured to form a vacuum gap capacitor.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 9, 2021
    Assignee: Technische Universiteit Delft
    Inventors: Sal Jua Bosman, Gary Alexander Steele
  • Patent number: 11121301
    Abstract: In a general aspect, an integrated quantum circuit includes a first substrate and a second substrate. The first substrate includes a first surface and a recess formed in the first substrate along the first surface. The recess has a recess surface and is configured to enclose a quantum circuit element. The first substrate includes a first electrically-conductive layer disposed on the first surface and covering at least a portion of the recess surface. The first electrically-conductive layer includes a first superconducting material. The second substrate includes a second surface and a quantum circuit element. The second substrate includes a second electrically-conductive layer on the second surface that includes a second superconducting material. The first substrate is adjacent the second substrate to enclose the quantum circuit device within the recess. The first electrically-conductive layer of the first substrate is electrically-coupled to the second electrically-coupled layer of the second substrate.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: September 14, 2021
    Assignee: Rigetti & Co, Inc.
    Inventors: Jayss Daniel Marshall, Chih-Yang Li, Biswajit Sur, Nagesh Vodrahalli, Mehrnoosh Vahidpour, William Austin O'Brien, IV, Andrew Joseph Bestwick, Chad Tyler Rigetti, James Russell Renzas
  • Patent number: 11106992
    Abstract: Methods, systems, and apparatus for parallel optimization of continuously running quantum error correction by closed-loop feedback. In one aspect, a method includes continuously and effectively optimizing qubit performance in-situ whilst an error correction operation on the quantum system is running. The method directly monitors the output from error detection and provides this information as feedback to calibrate the quantum gates associated with the quantum system. In some implementations, the physical qubits are spatially partitioned into one or more independent hardware patterns, where the errors attributable to each hardware pattern are non-overlapping. The one or more different sets of hardware patterns are then temporarily interleaved such that all physical qubits and operations are optimized. The method allows for the optimization of each section of a hardware pattern to be performed individually and in parallel, and can result is O(1) scaling.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 31, 2021
    Assignee: Google LLC
    Inventor: Julian Shaw Kelly
  • Patent number: 11081634
    Abstract: Embodiments of a Majorana-based qubit are disclosed herein. The qubit is based on the formation of superconducting islands, some parts of which are topological (T) and some parts of which are non-topological. Also disclosed are example techniques for fabricating such qubits. In one embodiment, a semiconductor nanowire is grown, the semiconductor nanowire having a surface with an oxide layer. A dielectric insulator layer is deposited onto a portion of the oxide layer of the semiconductor nanowire, the portion being designed to operate as a non-topological segment in the quantum device. An etching process is performed on the oxide layer of the semiconductor nanowire that removes the oxide layer at the surface of the semiconductor nanowire but maintains the oxide layer in the portion having the deposited dielectric insulator layer. A superconductive layer is deposited on the surface of the semiconductor nanowire, including over the dielectric insulator layer.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 3, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Michael Freedman, Andrey Antipov
  • Patent number: 11069389
    Abstract: To provide a magnetic memory capable of performing stable recording while suppressing occurrence of an inversion error. Provided is a magnetic memory including a spin orbit layer in which a spin-polarized electron is generated by a current, a magnetic memory element having a laminated structure including a magnetic layer in which a magnetization direction changes according to information to be recorded and an insulating layer, and provided on the spin orbit layer, and a voltage application layer for applying a voltage to the magnetic layer via the insulating layer, in which the voltage application layer applies a voltage to the magnetic layer at a same time as the current flowing in the spin orbit layer to change magnetic anisotropy or a magnetic damping constant of the magnetic layer.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: July 20, 2021
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hiroyuki Ohmori, Masanori Hosomi, Yutaka Higo, Hiroyuki Uchida, Naoki Hase, Yo Sato
  • Patent number: 11050010
    Abstract: A flux-biasing device includes a set of magnetic flux generating members. A first magnetic flux generating member is configured to magnetically interact with a first qubit from a set of qubits of a quantum processor such that a first magnetic flux of the first member causes a first change in a first resonance frequency of the first qubit by a first frequency shift value. Each non-corresponding magnetic flux generating member of the set is well separated from qubits corresponding to other magnetic flux generating members of the set such that qubits corresponding to other members exhibit less than a threshold value of resonance frequency shift as a result of a magnetic flux of a non-corresponding member.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 29, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oblesh Jinka, Baleegh Abdo
  • Patent number: 11038021
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gate lines above the quantum well stack; a plurality of second gate lines above the quantum well stack, wherein the second gate lines are perpendicular to the first gate lines; and an array of regularly spaced magnet lines.
    Type: Grant
    Filed: June 24, 2017
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Kanwaljit Singh, James S. Clarke, Menno Veldhorst, Lieven Mark Koenraad Vandersypen
  • Patent number: 11037612
    Abstract: To provide a magnetic memory capable of performing stable recording while suppressing occurrence of an inversion error. Provided is a magnetic memory including a spin orbit layer in which a spin-polarized electron is generated by a current, a magnetic memory element having a laminated structure including a magnetic layer in which a magnetization direction changes according to information to be recorded and an insulating layer, and provided on the spin orbit layer, and a voltage application layer for applying a voltage to the magnetic layer via the insulating layer, in which the voltage application layer applies a voltage to the magnetic layer at a same time as the current flowing in the spin orbit layer to change magnetic anisotropy or a magnetic damping constant of the magnetic layer.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: June 15, 2021
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hiroyuki Ohmori, Masanori Hosomi, Yutaka Higo, Hiroyuki Uchida, Naoki Hase, Yo Sato
  • Patent number: 11010685
    Abstract: Techniques facilitating frequency allocation in multi-qubit circuits are provided. In one example, a computer-implemented method comprises determining, by a device operatively coupled to a processor, an estimated fabrication yield associated with respective qubit chip configurations by conducting simulations of the respective qubit chip configurations at respective frequency offsets; and selecting, by the device, a qubit chip configuration from among the respective qubit chip configurations based on the estimated fabrication yield associated with the respective qubit chip configurations.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jared Barney Hertzberg, Sami Rosenblatt, Easwar Magesan, John Aaron Smolin
  • Patent number: 10998486
    Abstract: Large algorithms can be run on a quantum computer only if quantum error correction is used to lower logical qubit errors. The energy deposited by cosmic-ray muons produces a quasiparticle “heat” pulse that causes the qubits to decay in energy quickly, with errors correlated in space and time, so that error correction fails. Metal layers comprising normal metal and/or small-gap superconductors channel this energy away from the qubit into benign structures so that qubit performance is not degraded. These structures are designed according to the electron-phonon interactions and constraints from electromagnetic radiation to make large reductions in the induced errors so that error correction works properly.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 4, 2021
    Assignee: Quantala LLC
    Inventor: John M. Martinis
  • Patent number: 10964885
    Abstract: This spin current magnetization rotational type magnetoresistive element includes a magnetoresistive effect element having a first ferromagnetic metal layer having a fixed magnetization orientation, a second ferromagnetic metal layer having a variable magnetization orientation, and a non-magnetic layer sandwiched between the first ferromagnetic metal layer and the second ferromagnetic metal layer, and spin-orbit torque wiring which extends in a direction that intersects the stacking direction of the magnetoresistive effect element, and is connected to the second ferromagnetic metal layer, wherein the electric current that flows through the magnetoresistive effect element and the electric current that flows through the spin-orbit torque wiring merge or are distributed in the portion where the magnetoresistive effect element and the spin-orbit torque wiring are connected.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 30, 2021
    Assignee: TDK CORPORATION
    Inventor: Tomoyuki Sasaki
  • Patent number: 10957737
    Abstract: Symmetrical qubits with reduced far-field radiation are provided. In one example, a qubit device includes a first group of superconducting capacitor pads positioned about a defined location of the qubit device, wherein the first group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a first polarity, and a second group of superconducting capacitor pads positioned about the defined location of the qubit device in an alternating arrangement with the first group of superconducting capacitor pads, wherein the second group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a second polarity that is opposite the first polarity.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow, Hanhee Paik