Matrix Or Array Of Field Effect Transistors (e.g., Array Of Fets Only Some Of Which Are Completed, Or Structure For Mask Programmed Read-only Memory (rom)) Patents (Class 257/390)
  • Patent number: 7956424
    Abstract: A semiconductor device and a method for manufacturing thereof are provided. The semiconductor device includes: an ONO film including a charge storage layer on a semiconductor substrate; a plurality of bit lines each extending inside the semiconductor substrate; a plurality of interspaces each interposed between the adjacent bit lines; a plurality of gates each provided along the bit line on the ONO film above the interspaces; and a plurality of word lines electrically coupled with the corresponding gates formed on one of the interspaces, each extending to intersect with the bit lines. The two gates adjacent with each other in a width direction of the bit line are connected to different word lines.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: June 7, 2011
    Assignee: Spansion LLC
    Inventor: Fumiaki Toyama
  • Publication number: 20110121403
    Abstract: A semiconductor device has a substrate that includes a cell array region and a dummy pattern region surrounding the cell array region. The cell array region includes a cell structure having a plurality of cell active pillars extending in a vertical direction from the cell array region of the substrate and includes cell gate patterns and cell gate interlayer insulating patterns alternately stacked on the substrate. The cell gate patterns and cell gate interlayer insulating patterns have sides facing the cell active pillars. The dummy pattern region includes a damp-proof structure.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 26, 2011
    Inventors: Seung-Jun LEE, Woonkyung Lee
  • Patent number: 7939858
    Abstract: A cell includes a plurality of diffusion region pairs, each of the diffusion region pairs being formed by a first impurity diffusion region which is a constituent of a transistor and a second impurity diffusion region such that the first and second impurity diffusion regions are provided side-by-side in a gate length direction with a device isolation region interposed therebetween. In each of the diffusion region pairs, the first and second impurity diffusion regions have an equal length in the gate width direction and are provided at equal positions in the gate width direction, and a first isolation region portion, which is part of the device isolation region between the first and second impurity diffusion regions, has a constant separation length. In the diffusion region pairs, the first isolation region portions have an equal separation length.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 10, 2011
    Assignee: Panasonic Corporation
    Inventor: Kazuyuki Nakanishi
  • Patent number: 7936002
    Abstract: In multiple-layered memory devices, memory systems employing the same, and methods of forming such devices, a second memory device layer on a first memory device layer comprises a second substrate including a second memory cell region. The second substrate includes only a single well in the second memory cell region, the single well of the second memory cell region comprising a semiconducting material doped with impurity of one of a first type and second type. The single well defines an active region in the second memory cell region of the second substrate. Multiple second cell strings are arranged on the second substrate in the second active region.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: May 3, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jonghyuk Kim, Han-Soo Kim, YoungSeop Rah, Min-sung Song, Jang Young Chul, Soon-Moon Jung, Wonseok Cho
  • Publication number: 20110095377
    Abstract: In some embodiments, a semiconductor memory device includes a substrate that includes a cell array region and a peripheral circuit region. The semiconductor memory device further includes a device isolation pattern on the substrate. The device isolation pattern defines a first active region and a second active region within the cell array region and a third active region in the peripheral circuit region. The semiconductor memory device further includes a first common source region, a plurality of first source/drain regions, and a first drain region in the first active region. The semiconductor memory device further includes a second common source region, a plurality of second source/drain regions, and a second drain region in the second active region. The semiconductor memory device further includes a third source/drain region in the third active region. The semiconductor memory device further includes a common source line contacting the first and second common source regions.
    Type: Application
    Filed: January 5, 2011
    Publication date: April 28, 2011
    Inventors: Jong-Sun Sel, Jung-Dal Choi, Choong-Ho Lee, Ju-Hyuck Chung, Hee-Soo Kang, Dong-uk Choi
  • Patent number: 7932543
    Abstract: Provided are a wire structure and a semiconductor device having the wire structure. The wire structure includes a first wire that has a first region having a width of several to tens of nanometers and a second region having a width wider than that of the first region.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-jun Choi, Jung-hyun Lee, Hyung-jin Bae, Chang-soo Lee
  • Patent number: 7932557
    Abstract: The invention provides an advanced metallization technique for fabricating a memory cell array on a substrate. The array is fabricated by forming discrete and self-aligned vias in a first layer disposed over the array to form contacts to each of the source and drain junction in the array. Further, self-aligned local area slotted vias are formed in a second layer that is disposed over the first layer to form local area interconnects that electrically shunt all of the source contacts/junctions. Further, discrete self-aligned drain extensions are formed over each of the formed drain contacts to electrically connect the junctions, and source contacts to the extensions. The formed vias, extensions, and slotted local area vias are simultaneously plugged and filled with a conductive material to form the memory cell array.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: April 26, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Paul J. Rudeck
  • Patent number: 7928530
    Abstract: A first isolation is formed on a semiconductor substrate, and a first element region is isolated via the first isolation. A first gate insulating film is formed on the first element region, and a first gate electrode is formed on the first gate insulating film. A second isolation is formed on the semiconductor substrate, and a second element region is isolated via the second isolation. A second gate insulating film is formed on the second element region, and a second gate electrode is formed on the second gate insulating film. A first oxide film is formed between the first isolation and the first element region. A second oxide film is formed between the second isolation and the second element region. The first isolation has a width narrower than the second isolation, and the first oxide film has a thickness thinner than the second oxide film.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Junichi Shiozawa
  • Patent number: 7928516
    Abstract: A semiconductor storage device include a semiconductor substrate, an insulating layer provided on the semiconductor substrate and having an opening, a semiconductor layer provided on the insulating layer, the semiconductor layer having a recess at a center of a surface thereof above the opening, a memory cell unit provided on the semiconductor layer and including a plurality of memory cells, current paths of the memory cells being connected in series, a selecting transistor adjacent to the memory cell unit and arranged on a region of the semiconductor layer including the recess, the selecting transistor including a gate insulating film provided on the region of the semiconductor layer including the recess and a gate electrode provided on the gate insulating film.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyohito Nishihara
  • Patent number: 7923813
    Abstract: A One Time Programmable (OTP) memory cell (10) comprising a first, metallic layer (12) coated with a second, conductive stable transition compound (14) with an insulating layer (16) there-between. The first and second layers (12, 14) are selected according to the difference in Gibbs Free Energy between them, which dictates the chemical energy that will be generated as a result of an exothermic chemical reaction between the two materials. The materials of the first and second layers (12, 14) are highly thermally stable in themselves but, when a voltage is applied to the cell (10), a localized breakdown of the insulative layer (16) results which creates a hotspot (18) that sets off an exothermic chemical reaction between the first and second layers (12, 14). The exothermic reaction generates sufficient heat (20) to create a short circuit across the cell and therefore reduce the resistance thereof.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: April 12, 2011
    Assignee: NXP B.V.
    Inventors: Paul Van Der Sluis, Andrei Mijiritskii, Pierre H. Woerlee, Victor M. G Van Acht, Nicolaas Lambert
  • Patent number: 7919823
    Abstract: A semiconductor integrated circuit device includes a cell well, a memory cell array formed on the cell well and having a memory cell area and cell well contact area, first wiring bodies arranged in the memory cell area, and second wiring bodies arranged in the cell well contact area. The layout pattern of the second wiring bodies is the same as the layout pattern of the first wiring bodies. The cell well contact area comprises cell well contacts that have the same dopant type as the cell well and that function as source/drain regions of dummy transistors formed in the cell well contact area.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Sato, Kikuko Sugimae, Masayuki Ichige
  • Patent number: 7919792
    Abstract: Structures and methods for standard cell layouts having variable rules for spacing of layers to cell boundaries are disclosed. In one embodiment, a first standard cell layout is provided with a conductive layer having at least two portions spaced apart by a minimum spacing distance, the conductive layer having at least one portion spaced from a cell boundary by a first spacing distance of less than half of the minimum spacing distance; a second standard cell disposed adjacent the first standard cell with at least one second portion of the conductive layer in the second cell disposed adjacent the first portion in the first standard cell and spaced apart from a common cell boundary by a second spacing greater than half of the minimum; wherein the sum of the first and second spacings is at least as great as the minimum spacing. A method for forming standard is disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 5, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Oscar M. K. Law, Manoj Achyutrao Joshi, Kong-Beng Thei, Harry Chuang
  • Publication number: 20110073958
    Abstract: A memory cell having N transistors including at least one pair of access transistors, one pair of pull-down transistors, and one pair of pull-up transistors to form a memory cell, wherein N is an integer at least equal to six, wherein each of the access transistors and each of the pull-down transistors is a same one of an n-type or a p-type transistor, and each of the pull-up transistors is the other of an n-type or a p-type transistor, wherein at least one of the pair of the pull down transistors and the pair of the pull up transistors are asymmetric.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Jeffrey W. Sleight
  • Patent number: 7915689
    Abstract: A thin film transistor, a display device, and a manufacturing method thereof. The thin film transistor includes a control electrode, a semiconductor overlapping the control electrode, and an input electrode and an output electrode disposed on or under the semiconductor and opposite to each other. The semiconductor includes a first portion disposed between the input electrode and the output electrode and having a first crystallinity, and a second portion connected with the first portion, which overlaps the input electrode or the output electrode, and having a second crystallinity. The first crystallinity is higher than the second crystallinity.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 29, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Haeng Cho, Ki-Hun Jeong, Jun-Ho Song, Joo-Han Kim, Hyung-Jun Kim, Seung-Hwan Shim
  • Patent number: 7915667
    Abstract: In an embodiment, an integrated circuit having a memory cell arrangement is provided. The memory cell arrangement may include a substrate, a fin structure disposed above the substrate, and a memory cell contacting region. The fin structure may include a memory cell region having a plurality of memory cell structures being disposed above one another, each memory cell structure having an active region of a respective memory cell. Furthermore, the memory cell contacting region may be configured to electrically contact each of the memory cell structures, wherein the memory cell contacting region may include a plurality of contact regions, which are at least partially displaced with respect to each other in a direction parallel to the main processing surface of the substrate.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 29, 2011
    Assignee: Qimonda AG
    Inventors: Roman Knoefler, Michael Specht, Franz Hofmann, Florian Beug, Dirk Manger, Stephan Riedel
  • Patent number: 7915690
    Abstract: A die rearrangement package structure is provided, which includes a die that having an active surface and a bottom surface, and a plurality of pads is disposed on the active surface; a package body is provided to cover a die and the active surface being exposed; a polymer material with at least one slit is provided to cover the active surface and the pads is exposed from said slits; one ends of a plurality of metal traces is electrically connected to each pads; a protective layer is provided to cover the active surface of the dies and each metal traces, and the other ends of the metal traces being exposed; a plurality of connecting elements is electrically connected other ends of the metal traces, the characterized in that: the package body is a B-stage material.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: March 29, 2011
    Assignees: ChipMos Technologies Inc, ChipMos Technologies (Bermuda) Ltd
    Inventor: Geng-Shin Shen
  • Publication number: 20110068400
    Abstract: Circuits and methods for providing an SRAM or CAM bit cell. In one embodiment, a bit cell portion with thicker gate oxides in the storage cell transistors, and thinner gate oxides in a read port section having transistors are disclosed. The use of the thick gate oxides in the storage cell transistors provides a stable storage of data and lower standby leakage current. The use of the thinner gate oxides in the read port transistors provides fast read accesses and allows a lower Vcc,min in the read port. The methods used to form the dual gate oxide thickness SRAM cells have process steps compatible with the existing semiconductor manufacturing processes. Embodiments using high k gate dielectrics, dual gate dielectric materials in a single bit cell, and using finFET and planar devices in a bit cell are described. Methods for forming the structures are disclosed.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 24, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Wei Wang, Chang-Ta Yang, Yuh-Jier Mii
  • Patent number: 7911005
    Abstract: A semiconductor device having a DRAM region and a logic region embedded together therein, including a first transistor formed in a DRAM region, and having a first source/drain region containing arsenic and phosphorus as impurities; and a second transistor formed in a logic region, and having a second source/drain region containing at least arsenic as an impurity, wherein each of the first source/drain region and the second source/drain region has a silicide layer respectively formed in the surficial portion thereof, and the first source/drain region has a junction depth which is determined by phosphorus and is deeper than the junction depth of the second source/drain region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 22, 2011
    Assignee: RENESAS Electronics Corporation
    Inventor: Hiroki Shirai
  • Patent number: 7906781
    Abstract: A method for fabricating a liquid crystal display (LCD) device comprises forming an active pattern and a data line on a substrate, the active pattern including a source, a drain, and a channel regions; a first insulation film on a portion of the substrate; forming a gate electrode in a portion of the active pattern where the first insulation film is formed; a second insulation film on the substrate; forming a plurality of first contact holes exposing a portion of the source and drain regions and a second contact hole exposing a portion of the data line; forming a source electrode from a transparent conductive material connected to a source region within the respective first contact hole and a data line within the second contact hole; and forming a pixel and a drain electrodes from the transparent conductive material connected to a drain region within the respective first contact hole.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: March 15, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Joon-Young Yang, Yong-In Park, Sang-Hyun Kim
  • Patent number: 7906818
    Abstract: Memory arrays and methods of forming memory arrays are disclosed. One such memory array has a first string of serially-coupled first memory cells and a second string of serially-coupled second memory cells sharing a single conductive pillar which forms a channel for both strings of serially-coupled memory cells. For example, a first memory cell can have a first control gate on the first side of the conductive pillar and a first charge trap interposed between the first side of the conductive pillar and the first control gate. A second memory cell can have a second control gate on the second side of the conductive pillar and a second charge trap interposed between the second side of the conductive pillar and the second control gate. The first and second charge traps are electrically isolated from each other and the first and second control gates can be electrically isolated from each other.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: March 15, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Theodore T. Pekny
  • Patent number: 7898039
    Abstract: A nonvolatile memory device includes a string selection gate and a ground selection gate on a semiconductor substrate, and a plurality of memory cell gates on the substrate between the string selection gate and the ground selection gate. First impurity regions extend into the substrate to a first depth between ones of the plurality of memory cell gates. Second impurity regions extend into the substrate to a second depth that is greater than the first depth between the string selection gate and a first one of the plurality of memory cell gates immediately adjacent thereto, and between the ground selection gate and a last one of the plurality of memory cell gates immediately adjacent thereto. Related fabrication methods are also discussed.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: March 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Yean Oh, Jai-Hyuk Song, Chang-Sub Lee, Chang-Hyun Lee, Hyun-Jae Kim
  • Publication number: 20110042755
    Abstract: In an embodiment of the present invention, a method comprises patterning a first plurality of semiconductor structures in an array portion of a semiconductor substrate using a first photolithographic mask. The method further comprises patterning a second plurality of semiconductor structures over a logic portion of a semiconductor substrate using a second photolithographic mask. The method further comprises patterning a sacrificial layer over the first plurality of semiconductor structures using the second photolithographic mask. The sacrificial layer is patterned simultaneously with the second plurality of semiconductor structures.
    Type: Application
    Filed: November 5, 2010
    Publication date: February 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 7893504
    Abstract: Disclosed are a non-volatile semiconductor memory device capable of simplifying the complicated structure of a transistor, and a fabrication method for the same.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: February 22, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Yong-Geun Lee
  • Patent number: 7888711
    Abstract: A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 15, 2011
    Inventors: Robin Cheung, Darrell Rinerson, Travis Byonghyop Oh, Jonathan Bornstein, David Hansen
  • Patent number: 7889557
    Abstract: A memory device capable of enlarging an interval between a source selection transistor and a memory cell adjacent to the source selection transistor, enlarging an interval between a drain selection transistor and a memory cell adjacent to the drain selection transistor, or enlarging the intervals between the source selection transistor and the memory cell adjacent to the source selection transistor and between the drain selection transistor and the memory cell adjacent to the drain selection transistor, prevents the memory cell adjacent to the source or drain selection transistor from being degraded in programming speed due to program disturbance.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 15, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hee Sik Park, Keon Soo Shim, Jong Soon Leem
  • Publication number: 20110031560
    Abstract: A mask-defined read-only memory array is formed on a substrate, and includes a first ROM bit and a second ROM bit of opposite polarities. The first ROM bit has a first MOS transistor and a first block layer formed over a first region of the substrate. A second source/drain region of the first MOS transistor and a first diffusion region are formed in a first region of the substrate on opposite sides of the first block layer. The second ROM bit includes a second MOS transistor.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 10, 2011
    Inventors: Ching-Hsiang Hsu, Ching-Sung Yang, Shih-Jye Shen
  • Patent number: 7884425
    Abstract: In one embodiment, a semiconductor memory device includes a substrate having first and second active regions. The first active region includes a first source and drain regions and the second active region includes a second source and drain regions. A first interlayer dielectric is located over the substrate. A first conductive structure extends through the first interlayer dielectric. A first bit line is on the first interlayer dielectric. A second interlayer dielectric is on the first interlayer dielectric. A contact hole extends through the second and first interlayer dielectrics. The device includes a second conductive structure within the contact hole and extending through the first and second interlayer dielectrics. A second bit line is on the second interlayer dielectric. A width of the contact hole at a bottom of the second interlayer dielectric is less than or substantially equal to a width at a top of the second interlayer dielectric.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi, Choong-Ho Lee, Ju-Hyuck Chung, Hee-Soo Kang, Dong-uk Choi
  • Patent number: 7884441
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a plurality of device isolation layers disposed in a semiconductor substrate, the device isolation layers extending in a word line direction and spaced apart from each other; a plurality of floating gate devices extending in a bit line direction perpendicular to the device isolation layer and spaced apart from each other; a source region and a drain region disposed at sides of the floating gate device; an insulation layer disposed on the floating gate device and the source region, and a polysilicon line extending in the word line direction and connected to the drain region.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 8, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Nam Yoon Kim
  • Publication number: 20110024841
    Abstract: A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 3, 2011
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Frank Bin YANG, Andrew M. WAITE, Scott LUNING
  • Patent number: 7880264
    Abstract: A memory circuit arrangement and a fabrication method are disclosed. The memory circuit arrangement has a memory cell area. The memory cell area contains memory cell transistors, one column of which are selected using a triple gate area selection transistor. The transistor has gate area that extends into isolating trenches. The isolating trenches isolate the memory cell in different columns of the memory cell array.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ronald Kakoschke, Franz Schuler
  • Publication number: 20110012202
    Abstract: A memory cell has N?6 transistors, in which two are access transistors, at least one pair [say (N?2)/2] are pull-up transistors, and at least another pair [say (N?2)/2] are pull-down transistors. The pull-up and pull-down transistors are all coupled between the two access transistors. Each of the access transistors and the pull-up transistors are the same type, p-type or n-type. Each of the pull-down transistors is the other type, p-type or n-type. The access transistors are floating body devices. The pull-down transistors are non-floating body devices. The pull-up transistors may be floating or non-floating body devices. Various specific implementations and methods of making the memory cell are also detailed.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 20, 2011
    Inventors: Josephine B. Chang, Leland Chang, Steven J. Koester, Jeffrey W. Sleight
  • Patent number: 7872290
    Abstract: A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: January 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Jin-Jun Park
  • Patent number: 7868960
    Abstract: An active matrix substrate includes a plurality of transistors. A source electrode is connected with a data signal line, and a drain electrode is connected with a pixel electrode in each transistor. The source electrode is located on a semiconductor layer, and at least a portion of the drain electrode is overlapped with the gate electrode. A gate insulating film covering the gate electrode of each transistor has a thin section having a reduced film thickness, at a portion where the gate insulating film is overlapped with each gate electrode. An overlapping area of the thin section with the source electrode is smaller than an overlapping area of the thin section with the drain electrode. Thus, the active matrix substrate can prevent the generation of short-circuits between the signal lines (between the data signal line and a scanning signal line) in a TFT forming region, while guaranteeing TFT characteristics.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: January 11, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshihide Tsubata, Yoshihiro Okada
  • Patent number: 7869279
    Abstract: A memory device including a plurality of memory cells, each with access and program PMOS transistors situated in a common N-Well formed in a P-substrate, and an n-erase pocket formed directly in the P-substrate. Each cell includes a program PMOS including gate, and first and second P+ regions formed in an N-Well, wherein the first P+ region is electrically connected to a corresponding bit line. Each cell further comprises an access PMOS including a gate, and first and second P+ regions formed within the same n-doped well as the first and second P+ regions of the program PMOS, wherein the first P+ region is electrically connected to the second P+ region of the program PMOS, and the gate is electrically connected to a corresponding word line. Each cell further includes an n-doped erase pocket including gate, and first and second N+ regions electrically connected to a corresponding erase line, and the gate is electrically connected to the gate of the program PMOS, forming the floating gate of the cell.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 11, 2011
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Kola Nirmal Ratnakumar
  • Patent number: 7863671
    Abstract: A method for fabricating a NAND type flash memory device includes defining a select transistor region and a memory cell region in a semiconductor substrate, forming a tunnel insulating layer, a floating gate conductive layer, and a dielectric layer over a semiconductor substrate, etching the dielectric layer, thereby forming an opening exposing the floating gate conductive layer, forming a low resistance layer in the opening, forming a control gate conductive layer over the semiconductor substrate, and etching the control gate conductive layer, the dielectric layer, the floating gate conductive layer, and the tunnel insulating layer to form gate stacks of memory cells and source/drain select transistors.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 4, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam-Kyeong Kim, Won Sic Woo
  • Publication number: 20100327371
    Abstract: A nonvolatile memory including a plurality of memory transistors in series, wherein source/drain and channel regions therebetween are of a first type and a select transistor, at each end of the plurality of memory transistors in series, wherein channels regions of each of the select transistors is of the first type. The first type may be n-type or p-type. The nonvolatile memory may further include a first dummy select transistor at one end of the plurality of memory transistors in series between one of the select transistors and the plurality of memory transistors in series and a second dummy select transistor at the other end of the plurality of memory transistors in series between the other select transistor and the plurality of memory transistors in series.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 30, 2010
    Inventors: Chang-Hyun Lee, Jung-dal Choi
  • Patent number: 7851833
    Abstract: A semiconductor device includes a first transistor unit including first field effect transistors with first gate electrodes electrically connected together, first sources electrically connected together, and first drains electrically connected together, the first gate electrodes being electrically connected to the first drains, a second transistor unit including second field effect transistors with second gate electrodes electrically connected together, second sources electrically connected together, and second drains electrically connected together, the second gate electrodes being electrically connected to the first gate electrodes, and dummy gate electrodes electrically isolated from the first gate electrodes and the second gate electrodes. The first gate electrodes, the second gate electrodes, and the dummy gate electrodes are arranged parallel to one another, and at least one dummy gate electrode is located between any one of the first gate electrodes and any one of the second gate electrodes.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhide Abe, Tadahiro Sasaki, Kazuhiko Itaya
  • Patent number: 7851852
    Abstract: In one embodiment a transistor is formed with a gate structure having an opening in the gate structure. An insulator is formed on at least sidewalls of the opening and a conductor is formed on the insulator.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 14, 2010
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Prasad Venkatraman
  • Publication number: 20100308417
    Abstract: In a full CMOS SRAM having a lateral type cell (memory cell having three partitioned wells arranged side by side in a word line extending direction and longer in the word line direction than in the bit line direction) including first and second driver MOS transistors, first and second load MOS transistors and first and second access MOS transistors, two capacitors are arranged spaced apart from each other on embedded interconnections to be storage nodes, with lower and upper cell plates cross-coupled to each other.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 9, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventor: Takahiro YOKOYAMA
  • Patent number: 7847363
    Abstract: Borderless contacts for word lines or via contacts for bit lines are formed using interconnect patterns, a part of which is removed. A semiconductor memory includes: a plurality of active regions AAi, AAi+1, . . . , AAn, which extend on a memory cell array along the column length; a plurality of word line patterns WL1, WL2, . . . , extend along the row length and are non-uniformly arranged; a plurality of select gate line patterns SG1, SG2, . . . , are arranged parallel to the plurality of word line patterns; borderless contacts are formed near the ends of the word line patterns on the memory cell array, and are in contact with part of an interconnect extended from the end of the memory cell array, but are not in contact with interconnects adjacent to that interconnect; and bit line contacts are formed within contact forming regions provided by removing part of the plurality of word line patterns and select gate line patterns through double exposure.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kikuko Sugimae, Satoshi Tanaka, Koji Hashimoto, Masayuki Ichige
  • Patent number: 7847335
    Abstract: A non-volatile semiconductor memory device includes a gate stack formed on a substrate, semiconductor spacers, an oxide-nitride-oxide stack, and a contact pad. The semiconductor spacers are adjacent to sides of the gate stack and over the substrate. The oxide-nitride-oxide stack is located between the spacers and the gate stack, and located between the spacers and the substrate, such that the oxide-nitride-oxide stack has a generally L-shaped cross-section on at least one side of the gate stack. The contact pad is over and in electrical contact with the gate electrode and the semiconductor spacers. The contact pad may be further formed into recessed portions of the oxide-nitride-oxide stack between the gate electrode and the semiconductor spacers. The contact pad may include an epitaxial silicon having a metal silicide formed thereon.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: December 7, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzyh-Cheang Lee, Tsung-Lin Lee, Jiunn-Ren Hwang
  • Patent number: 7847324
    Abstract: A MOS transistor includes plural transistor cell blocks arranged adjacently in parallel to one another, wherein the plural transistor cell blocks are configured to have plural transistor cells, plural boundaries that are parallel to the plural transistor cells, and plural back gates arranged at the plural boundaries, each of the plural transistor cell blocks has two boundaries of the plural boundaries, wherein the plural transistor cells have a substantially striped shape, and each of the plural transistor cell blocks includes: at least one drain; plural sources; and plural extended gates, wherein each of the plural transistor cells is formed from one of the plural extended gates sandwiched by one of at least one drain and one of the plural sources, one of the plural sources is adjacent to one of two boundaries, and another one of the plural sources is adjacent to another one of two boundaries.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: December 7, 2010
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Masaki Kasahara
  • Patent number: 7846782
    Abstract: A method of making a non-volatile memory device includes providing a substrate having a substrate surface, and forming a non-volatile memory array over the substrate surface. The non-volatile memory array includes an array of semiconductor diodes, and each semiconductor diode of the array of semiconductor diodes is disposed substantially parallel to the substrate surface.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 7, 2010
    Assignee: SanDisk 3D LLC
    Inventors: Steven Maxwell, Michael Konevecki, Mark H. Clark, Usha Raghuram
  • Patent number: 7847283
    Abstract: The present invention discloses a three-dimensional memory (3D-M) with polarized 3D-ROM (three-dimensional read-only memory) cells. Polarized 3D-ROM can ensure a larger unit array and therefore, a better integratibility.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 7, 2010
    Inventor: Guobiao Zhang
  • Publication number: 20100295134
    Abstract: A semiconductor memory device according to one embodiment includes: a semiconductor substrate having an active region divided by an element isolation region; a plurality of stacked-gate type memory cell transistors connected in series on the active region; select transistors connected to both ends of the plurality of memory cell transistors on the active region; and a bit line contact connected to a drain region belonging to the select transistor in the active region, a vertical cross sectional shape of a lower portion of the bit line contact in a channel width direction of the plurality of memory cell transistors being in a skirt shape.
    Type: Application
    Filed: September 15, 2009
    Publication date: November 25, 2010
    Inventors: Satoshi Nagashima, Fumitaka Arai, Hisataka Meguro, Hiroshi Akahori
  • Publication number: 20100295135
    Abstract: In a static memory cell comprising six MOS transistors, the MOS transistors have a structure in which the drain, gate and source formed on the substrate are arranged in the vertical direction and the gate surrounds the columnar semiconductor layer, the substrate comprises a first active region having a first conductive type and a second active region having a second conductive type, and diffusion layers constructing the active regions are mutually connected via a silicide layer formed on the substrate surface, thereby realizing an SRAM cell with small surface area. In addition, drain diffusion layers having the same conductive type as a first well positioned on the substrate are surrounded by a first anti-leak diffusion layer and a second anti-leak diffusion layer having a conductive type different from the first well and being shallower than the first well, and thereby controlling leakage to the substrate.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 25, 2010
    Applicant: UNISANTIS ELECTRONICS (JAPAN) LTD.
    Inventors: Fujio MASUOKA, Shintaro ARAI
  • Publication number: 20100295136
    Abstract: A method for fabrication of 3D semiconductor devices utilizing a layer transfer and steps for forming transistors on top of a pre-fabricated semiconductor device comprising transistors formed on crystallized semiconductor base layer and metal layer for the transistors interconnections and insulation layer. The advantage of this approach is reduction of the over all metal length used to interconnect the various transistors.
    Type: Application
    Filed: June 2, 2010
    Publication date: November 25, 2010
    Applicant: NuPGA Corporation
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, J. L. de Jong, Deepak C. Sekar
  • Patent number: 7838947
    Abstract: During fabrication of a mask read-only memory (ROM) device, a dielectric layer is grown on a substrate. Strip-stacked layers are formed on the dielectric layer, with each strip-stacked layer including a polysilicon and a silicon nitride layer. Source/drain regions are formed in the substrate between the strip-stacked layers, and spacers are then deposited between the strip-stacked layers. The strip-stacked layers are patterned into gates, which are disposed over every code position, with silicon nitride pillars being disposed on the gates. Additional spacers are formed on gate sidewalls. The silicon nitride pillars are removed, exposing the gates. A mask is then formed to cover active code positions, in accordance with the desired programming code. Insulating layers are then deposited through the mask onto the exposed gates. When the mask is removed, word lines are formed, interconnecting the gates without the insulating layers.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 23, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Chun-Yi Yang
  • Patent number: 7829948
    Abstract: A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Ichiro Mizushima, Makoto Mizukami
  • Patent number: RE41963
    Abstract: A semiconductor memory device is constructed to include a memory cell formed by a plurality of transistors, wherein each of gate wiring layers of all of the transistors forming the memory cell is arranged to extend in one direction.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: November 30, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tsuyoshi Yanai, Yoshio Kajii, Takashi Ohkawa