Narrow Band Gap Semiconductor (<<1ev) (e.g., Pbsnte) Patents (Class 257/441)
-
Patent number: 11164982Abstract: A flexible and stretchable imager includes a first rigid substrate carrying at least one first photodetector, a second rigid substrate carrying at least one second photodetector, and a flexible and stretchable arm connected to the first and second rigid substrates. The first rigid substrate, the second rigid substrate, and the flexible and stretchable arm are made of a same material.Type: GrantFiled: June 8, 2018Date of Patent: November 2, 2021Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Muhammad Mustafa Hussain, Galo Andrés Torres Sevilla
-
Patent number: 10886312Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region including germanium and configured to absorb photons and to generate photo-carriers from the absorbed photons; a first layer supported by at least a portion of the semiconductor substrate and the first light absorption region, the first layer being different from the first light absorption region; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, wherein the second control signal is different from the first control signal.Type: GrantFiled: October 18, 2019Date of Patent: January 5, 2021Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
-
Patent number: 10246557Abstract: Disclosed is a curable sealant composition including: (i) a thiol-terminated prepolymer and/or monomers thereof, wherein the thiol-terminated prepolymer is a polythioether or a polysulfide; (ii) an “ene” crosslinker having a molecular weight of about 100 to about 5000; and (iii) a pH indicator molecule including a quantum dot functionalized with a pH-responsive ligand. Methods for determining a sufficient cure state of a composition by combining the thiol-terminated prepolymer and/or monomers thereof and the “ene” crosslinker with a pH indicator molecule, including a quantum dot functionalized with a pH-responsive ligand, and (ii) then subjecting a resultant mixture of (i) to curing conditions until the mixture changes its color are also disclosed.Type: GrantFiled: December 1, 2015Date of Patent: April 2, 2019Assignee: THE BOEING COMPANYInventors: Katherine L. Frank, Andrew M. Zweig
-
Patent number: 9887309Abstract: Disclosed is at least one embodiment of an infrared (IR) photovoltaic (PV) detector, comprising a IV-VI Lead (Pb)-salt layer disposed on a substrate and a charge-separation-junction (CSJ) structure associated with the IV-VI Pb-salt layer, wherein the CSJ structure comprises a plurality of element areas disposed upon or within the IV-VI Pb-salt layer, wherein the plurality of element areas are spaced apart from each other. Each element area may be connected to a first Ohmic contact thereby forming a plurality of interconnected first Ohmic contacts, and a second Ohmic contact may be disposed upon a portion of the IV-VI Pb-salt layer. In another non-limiting embodiment, a PV detector, comprising a heterojunction region that comprises at least one IV-VI Pb-salt material layer coupled to at least one non-Pb-salt layer, wherein the at least one IV-VI Pb-salt layer and the at least one non-Pb-salt layer form a p-n junction or Schottky junction with a type II band gap alignment.Type: GrantFiled: December 18, 2015Date of Patent: February 6, 2018Assignee: The Board of Regents of the University of OkalahomaInventors: Zhisheng Shi, Jijun Qiu, Binbin Weng
-
Patent number: 8969470Abstract: A quantum dot-polymer nanocomposite for optical chemical and biological sensing is formed by stably incorporating functionalized quantum dots into a pH sensitive hydrogel polymer network. At least one monomer of the pH sensitive hydrogel has functional groups selectively chosen to correspond to functionalized groups on the quantum dots to enable conjugation between the hydrogel polymer network and the functionalized quantum dots. The resulting quantum dot-polymer nanocomposite is placed in a solution having a known pH and addition of a chemical composition or biological agent of interest generates a change in pH of that solution. The nanocomposite expands or contracts responsive to the pH change. The pH change is optically detected by measuring the intensity level of fluorescence from the quantum dots when the nanocomposite is subjected to an excitation light source.Type: GrantFiled: June 12, 2013Date of Patent: March 3, 2015Assignee: The Mitre CorporationInventor: Sichu Li
-
Patent number: 8866151Abstract: According to one embodiment, a semiconductor device includes a semiconductor layer of a first conductivity type, a first region of a second conductivity type selectively provided in a first major surface of the semiconductor layer, a second region of the second conductivity type selectively provided in the first major surface and connected to the first region, a first electrode provided in contact with the semiconductor layer and the first region, a second electrode provided in contact with the second region, and a third electrode electrically connected to a second major surface of the semiconductor layer opposite to the first major surface.Type: GrantFiled: March 20, 2012Date of Patent: October 21, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Takao Noda, Ryoichi Ohara, Kenya Sano, Toru Sugiyama
-
Publication number: 20140252529Abstract: The disclosure describes methods for preparing lead salt materials which are sensitive to the mid-infrared spectrum which can be used to manufacture high-uniformity, high-detectivity, polycrystalline lead salt photoconductive and photovoltaic photodetectors.Type: ApplicationFiled: February 28, 2014Publication date: September 11, 2014Inventors: Zhisheng Shi, Jijun Qiu, Binbin Weng, Zijian Yuan
-
Patent number: 8816461Abstract: A dichromatic photodiode and method for dichromatic photodetection are disclosed. A wide bandgap junction comprises a lattice matched junction operable to detect a first light spectrum. A narrow bandgap junction is coupled to the wide bandgap junction, and comprises a photodiode structure. The narrow bandgap junction is operable to detect a second light spectrum.Type: GrantFiled: September 13, 2011Date of Patent: August 26, 2014Assignee: The Boeing CompanyInventors: Ping Yuan, Xiaogang Bai, Rengarajan Sudharsanan
-
Patent number: 8786043Abstract: Avalanche photodiodes (APDs) having at least one top stressor layer disposed on a germanium (Ge)-containing absorption layer are described herein. The top stressor layer can increase the tensile strain of the Ge-containing absorption layer, thus extending the absorption of APDs to longer wavelengths beyond 1550 nm. In one embodiment, the top stressor layer has a four-layer structure, including an amorphous silicon (Si) layer disposed on the Ge-containing absorption layer; a first silicon dioxide (SiO2) layer disposed on the amorphous Si layer, a silicon nitride (SiN) layer disposed on the first SiO2 layer, and a second SiO2 layer disposed on the SiN layer. The Ge-containing absorption layer can be further doped by p-type dopants. The doping concentration of p-type dopants is controlled such that a graded doping profile is formed within the Ge-containing absorption layer to decrease the dark currents in APDs.Type: GrantFiled: September 6, 2012Date of Patent: July 22, 2014Assignee: SiFotonics Technologies Co, Ltd.Inventors: Mengyuan Huang, Pengfei Cai, Dong Pan
-
Patent number: 8759936Abstract: Integrated circuit devices include thermal image sensors that utilize quantum dots therein to provide negative resistance characteristics to at least portions of the sensors. The thermal image sensor may include a sensing unit configured to absorb radiation incident on a first surface thereof and first and second electrodes electrically coupled to the sensing unit. The sensing unit includes a plurality of quantum dots therein, which may extend between the first and second electrodes. These quantum dots may be configured to impart a negative resistance characteristic to the sensing unit. In particular, the sensing unit may include a sensing layer having first and second opposing ends, which are electrically coupled to the first and second electrodes, respectively, and the plurality of quantum dots may be distributed within the sensing layer.Type: GrantFiled: March 18, 2011Date of Patent: June 24, 2014Assignee: Samsung Electronics Co., Ltd.Inventor: Choong Rae Cho
-
Patent number: 8755240Abstract: An optical memory device and a method of recording/reproducing information by using the optical memory device. The optical memory device includes a substrate; a first barrier layer formed on the substrate; a quantum well layer; a second barrier layer; a quantum dot layer; and a third barrier layer. The quantum well layer has an energy band gap which is wider than that of the quantum dot layer, and the second barrier layer has an energy band gap which is wider than that of the quantum well layer, so that electrons in excitons which are generated in the quantum dot layer by light of a certain wavelength are captured by the quantum well layer to record information, and then, recorded information may be erased or reproduced by irradiating light of a certain wavelength to the optical memory device.Type: GrantFiled: April 14, 2010Date of Patent: June 17, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jae-Cheol Bae, Joo-Ho Kim, Jin-Kyung Lee
-
Patent number: 8710603Abstract: A magnetic element is disclosed wherein first and second interfaces of a free layer with a perpendicular Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to increase thermal stability in a magnetic tunnel junction (MTJ). The free layer may be a single layer or a composite and is comprised of one or more glassing agents that have a first concentration in a middle portion thereof and a second concentration less than the first concentration in regions near first and second interfaces. As a result, a CoFeB free layer, for example, selectively crystallizes along first and second interfaces but maintains an amorphous character in a middle region containing a glass agent providing the annealing temperature is less than the crystallization temperature of the middle region. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.Type: GrantFiled: February 29, 2012Date of Patent: April 29, 2014Assignee: Headway Technologies, Inc.Inventors: Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
-
Patent number: 8698260Abstract: A magnetic element in a spintronic device or serving as a propagation medium in a domain wall motion device is disclosed wherein first and second interfaces of a free layer with a perpendicular Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to increase thermal stability in a magnetic tunnel junction. The free layer may be a single layer or a composite and is comprised of a glassing agent that has a first concentration in a middle portion thereof and a second concentration less than the first concentration in regions near first and second interfaces. A CoFeB free layer selectively crystallizes along first and second interfaces but maintains an amorphous character in a middle region containing a glass agent providing the annealing temperature is less than the crystallization temperature of the middle region.Type: GrantFiled: July 13, 2012Date of Patent: April 15, 2014Assignee: Headway Technologies, Inc.Inventors: Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
-
Patent number: 8680553Abstract: An object of the present invention is to provide a germanium laser diode that can be easily formed on a substrate such as silicon by using a normal silicon process and can emit light efficiently. A germanium light-emitting device according to the present invention is a germanium laser diode characterized in that tensile strain is applied to single-crystal germanium serving as a light-emitting layer to be of a direct transition type, a thin semiconductor layer made of silicon, germanium or silicon-germanium is connected adjacently to both ends of the germanium light-emitting layer, the thin semiconductor layer has a certain degree of thickness capable of preventing the occurrence of quantum confinement effect, another end of the thin semiconductor layer is connected to a thick electrode doped with impurities at a high concentration, the electrode is doped to a p type and an n type, a waveguide is formed so as not to be in direct contact with the electrode, and a mirror is formed at an end of the waveguide.Type: GrantFiled: October 21, 2009Date of Patent: March 25, 2014Assignee: Hitachi, Ltd.Inventors: Shinichi Saito, Masahiro Aoki, Nobuyuki Sugii, Katsuya Oda, Toshiki Sugawara
-
Patent number: 8530818Abstract: Techniques and architectures for providing a reflective target area of an integrated circuit die assembly. In an embodiment, a reflective bevel surface of a die allows an optical signal to be received from the direction of a side surface of a die assembly for reflection into a photodetector. In another embodiment, one or more grooves in a coupling surface of the die provide respective leverage points for aligning a target area of the bevel surface with a detecting surface of the photodetector.Type: GrantFiled: June 28, 2010Date of Patent: September 10, 2013Assignee: Intel CorporationInventors: John Heck, Ansheng Liu, Mario J. Paniccia
-
Patent number: 8492865Abstract: An image sensor array includes a substrate layer, a metal layer, an epitaxial layer, a plurality of imaging pixels, and a contact dummy pixel. The metal layer is disposed above the substrate layer. The epitaxial layer is disposed between the substrate layer and the metal layer. The imaging pixels are disposed within the epitaxial layer and each include a photosensitive element for collecting an image signal. The contact dummy pixel is dispose within the epitaxial layer and includes an electrical conducting path through the epitaxial layer. The electrical conducting path couples to the metal layer above the epitaxial layer.Type: GrantFiled: August 2, 2010Date of Patent: July 23, 2013Assignee: OmniVision Technologies, Inc.Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
-
Patent number: 8450138Abstract: Provided herein are embodiments of a three-dimensional bicontinuous heterostructure, a method of producing same, and the application of this structure. The three-dimensional bicontinuous heterostructure includes two interpenetrating layers which are spatially continuous, include only protrusions or peninsulas, and have no islands. The method of producing the three-dimensional bicontinuous heterostructure includes forming an essentially planar continuous bottom layer of a first material; forming a layer of this first material on top of the bottom layer that is textured to produce protrusions for subsequent interpenetration with a second material, coating this second material onto this structure, and forming a coating with the second material that ensures that only the second material is contacted by subsequent layer. One of the materials includes visible and/or infrared-absorbing semiconducting quantum dot nanoparticles, and one of materials is a hole conductor and the other is an electron conductor.Type: GrantFiled: February 8, 2012Date of Patent: May 28, 2013Assignee: InVisage Technologies, Inc.Inventors: Edward Sargent, Steven Ashworth McDonald, Shiguo Zhang, Larissa Levina, Gerasimos Konstantatos, Paul Cyr
-
Patent number: 8299497Abstract: A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.Type: GrantFiled: June 30, 2010Date of Patent: October 30, 2012Assignee: Sandia CorporationInventors: John F. Klem, Jin K. Kim
-
Patent number: 8134179Abstract: A photodiode in which a pn junction is formed between the doped region (DG) formed in the surface of a crystalline semiconductor substrate and a semiconductor layer (HS) deposited above said doped region. An additional doping (GD) is provided in the edge region of the doped zone, by means of which additional doping the pn junction is shifted deeper into the substrate (SU). With the greater distance of the pn junction from defects at phase boundaries that is achieved in this way, the dark current within the photodiode is reduced.Type: GrantFiled: April 28, 2006Date of Patent: March 13, 2012Assignee: austriamicrosystems AGInventors: Jochen Kraft, Bernhard Löffler, Gerald Meinhardt
-
Patent number: 8043942Abstract: Disclosed is a method for producing core-shell nanowires in which an insulating film is previously patterned to block the contacts between nanowire cores and nanowire shells. According to the method, core-shell nanowires whose density and position is controllable can be produced in a simple manner. Further disclosed are nanowires produced by the method and a nanowire device comprising the nanowires. The use of the nanowires leads to an increase in the light emitting/receiving area of the device. Therefore, the device exhibits high luminance/efficiency characteristics.Type: GrantFiled: October 31, 2007Date of Patent: October 25, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Eun Kyung Lee, Jai Yong Han, Byoung Lyong Choi, Kyung Sang Cho
-
Patent number: 8034651Abstract: A light receiving device 1 includes a support substrate 12 provided thereon with a photodetector 11 including a photodetecting portion 111 and a base substrate 112 on which the photodetecting portion 111 is placed; and a transparent substrate 13 disposed so as to oppose the face of the support substrate 12 on which the photodetector 11 is provided. Between the support substrate 12 and the transparent substrate 13, a frame portion 14 is provided so as to surround the photodetector 11. The frame portion 14 is a photo-curing adhesive, and directly adhered to the transparent substrate 13 and the support substrate 12. Such structure provides a light receiving device capable of exhibiting the desired performance, and a method of manufacturing such light receiving device can also be provided.Type: GrantFiled: February 19, 2008Date of Patent: October 11, 2011Assignee: Sumitomo Bakelite Co., Ltd.Inventors: Toyosei Takahashi, Rie Takayama, Mitsuo Sugino, Masakazu Kawata
-
Publication number: 20110227116Abstract: An object of the present invention is to provide a germanium laser diode that can be easily formed on a substrate such as silicon by using a normal silicon process and can emit light efficiently. A germanium light-emitting device according to the present invention is a germanium laser diode characterized in that tensile strain is applied to single-crystal germanium serving as a light-emitting layer to be of a direct transition type, a thin semiconductor layer made of silicon, germanium or silicon-germanium is connected adjacently to both ends of the germanium light-emitting layer, the thin semiconductor layer has a certain degree of thickness capable of preventing the occurrence of quantum confinement effect, another end of the thin semiconductor layer is connected to a thick electrode doped with impurities at a high concentration, the electrode is doped to a p type and an n type, a waveguide is formed so as not to be in direct contact with the electrode, and a mirror is formed at an end of the waveguide.Type: ApplicationFiled: October 21, 2009Publication date: September 22, 2011Applicant: HITACHI, LTD.Inventors: Shinichi Saito, Masahiro Aoki, Nobuyuki Sugii, Katsuya Oda, Toshiki Sugawa
-
Patent number: 8003434Abstract: A photo-detector comprising: a photo absorbing layer comprising an n-doped semiconductor exhibiting a valence band energy level; a barrier layer, a first side of the barrier layer adjacent a first side of the photo absorbing layer, the barrier layer exhibiting a valence band energy level substantially equal to the valence band energy level of the doped semiconductor of the photo absorbing layer; and a contact area comprising a doped semiconductor, the contact area being adjacent a second side of the barrier layer opposing the first side, the barrier layer exhibiting a thickness and a conductance band gap sufficient to prevent tunneling of majority carriers from the photo absorbing layer to the contact area and block the flow of thermalized majority carriers from the photo absorbing layer to the contact area. Alternatively, a p-doped semiconductor is utilized, and conductance band energy levels of the barrier and photo absorbing layers are equalized.Type: GrantFiled: February 16, 2010Date of Patent: August 23, 2011Inventor: Shimon Maimon
-
Patent number: 7795639Abstract: A photodiode designed to capture incident photons includes a stack of at least three superposed layers of semiconductor materials having a first conductivity type. The stack includes: an interaction layer designed to interact with incident photons so as to generate photocarriers; a collection layer to collect the photocarriers; a confinement layer designed to confine the photocarriers in the collection layer. The collection layer has a band gap less than the band gaps of the interaction layer and confinement layer. The photodiode also includes a region which extends transversely relative to the planes of the layers. The region is in contact with the collection layer and confinement layer and has a conductivity type opposite to the first conductivity type so as to form a p-n junction with the stack.Type: GrantFiled: September 12, 2007Date of Patent: September 14, 2010Assignee: Commissariat A l'Energie AtomiqueInventor: Johan Rothman
-
Publication number: 20100224950Abstract: Aspects of the disclosure are directed to an apparatus that is used to provide a circuit layer via a supportive substrate or material layer having an upper surface and having edge surfaces configured and arranged to define patterned aperture channels. The material layer includes an array of patterned islands which provide an upper surface of the material layer for securing and supporting circuitry. The patterned islands are flexible due, for example, to patterned flexures located between and connecting the islands.Type: ApplicationFiled: March 4, 2010Publication date: September 9, 2010Inventors: Rostam Dinyari, Peter Peumans, Kevin Huang
-
Patent number: 7777287Abstract: An analytical system-on-a-chip can be used as an analytical imaging device, for example, for detecting the presence of a chemical compound. A layer of analytical material is formed on a transparent layer overlying a solid state image sensor. The analytical material can react in known ways with at least one reactant to block light or to allow light to pass through to the array. The underlying sensor array, in turn, can process the presence, absence or amount of light into a digitized signal output. The system-on-a-chip may also include software that can detect and analyze the output signals of the device.Type: GrantFiled: July 12, 2006Date of Patent: August 17, 2010Assignee: Micron Technology, Inc.Inventor: Terry Gilton
-
Patent number: 7768089Abstract: A semiconductor device comprises a semiconductor substrate comprised of an interposer having one surface and a semiconductor element provided on the one surface of the interposer, the semiconductor element including a light receiving portion for receiving light thereon; a transparent substrate having light-transmitting property and one surface facing the light receiving portion, the transparent substrate arranged in a spaced-apart relationship with the one surface of the interposer through a gap formed between the one surface of the interposer and the one surface of the transparent substrate; and a spacer formed in a shape of a frame, the spacer positioned between the one surface of the interposer and the one surface of the transparent substrate for regulating the gap, and the spacer having an inner surface and an outer surface, wherein the one surface of the interposer, the one surface of the transparent substrate and the inner surface of the spacer form a space which is hermetically sealed, and wherein theType: GrantFiled: June 19, 2008Date of Patent: August 3, 2010Assignee: Sumitomo Bakelite Company, Ltd.Inventors: Takashi Hirano, Toyosei Takahashi, Toshihiro Sato, Masakazu Kawata
-
Patent number: 7768048Abstract: An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.Type: GrantFiled: September 9, 2004Date of Patent: August 3, 2010Assignee: Asahi Kasei EMD CorporationInventors: Koichiro Ueno, Naohiro Kuze, Yoshitaka Moriyasu, Kazuhiro Nagase
-
Patent number: 7750425Abstract: A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.Type: GrantFiled: November 13, 2006Date of Patent: July 6, 2010Assignee: The Trustees of Princeton UniversityInventors: Stephen R. Forrest, Guodan Wei
-
Patent number: 7741594Abstract: The invention relates to a detector comprising a multiple quantum well structure operating on interband or intersubband transitions by absorption of radiation having a wavelength ? having a polarization comprising a component perpendicular to the plane of the multiple quantum well structure, and comprising optical coupling means for coupling said radiation, wherein the coupling means comprise a set of first diffractive lamellar features that are distributed along at least a first direction and a set of second diffractive lamellar features that are distributed along at least a second direction, said first and second directions being mutually perpendicular and lying in a plane parallel to the plane of the multiple quantum well structure.Type: GrantFiled: May 26, 2004Date of Patent: June 22, 2010Assignee: ThalesInventors: Philippe Bois, Eric Costard, Alfredo De Rossi, Alexandru Nedelcu
-
Patent number: 7692272Abstract: A non-volatile memory element comprises a bottom electrode 12; a top electrode 15; and a recording layer 13 containing phase change material and a block layer 14 that can block phase change of the recording layer 13, provided between the bottom electrode 12 and the top electrode 15. The block layer 14 is constituted of material having an electrical resistance that is higher than that of material constituting the recording layer 13. The block layer 14 suppresses the radiation of heat towards the top electrode 15 and greatly limits the phase change region when a write current is applied. The result is a high heating efficiency. The top electrode 15 itself can be used to constitute a bit line, or a separate bit line can be provided.Type: GrantFiled: January 19, 2006Date of Patent: April 6, 2010Assignee: Elpida Memory, Inc.Inventors: Isamu Asano, Natsuki Sato, Wolodymyr Czubatyj, Jeffrey P. Fournier
-
Patent number: 7687871Abstract: A photo-detector comprising: a photo absorbing layer comprising an n-doped semiconductor exhibiting a valence band energy level; a barrier layer, a first side of the barrier layer adjacent a first side of the photo absorbing layer, the barrier layer exhibiting a valence band energy level substantially equal to the valence band energy level of the doped semiconductor of the photo absorbing layer; and a contact area comprising a doped semiconductor, the contact area being adjacent a second side of the barrier layer opposing the first side, the barrier layer exhibiting a thickness and a conductance band gap sufficient to prevent tunneling of majority carriers from the photo absorbing layer to the contact area and block the flow of thermalized majority carriers from the photo absorbing layer to the contact area. Alternatively, a p-doped semiconductor is utilized, and conductance band energy levels of the barrier and photo absorbing layers are equalized.Type: GrantFiled: March 19, 2006Date of Patent: March 30, 2010Inventor: Shimon Maimon
-
Patent number: 7687874Abstract: In a mesa type PIN-PD formed using a heavily doped semiconductor material, a high frequency response is degraded as slow carriers occur in a heavily doped layer when light incident into a light receiving section transmits through an absorbing layer and reaches the heavily doped layer on a side near the substrate. In a p-i-n multilayer structure, a portion corresponding to a light receiving section of a heavily doped layer on a side near a substrate is previously made thinner than the periphery of the light receiving section by an etching or selective growth technique, over which an absorbing layer and another heavily doped layer are grown to form the light receiving section of mesa structure. This makes it possible to form a good ohmic contact and to realize a PIN-PD with excellent high frequency response characteristics.Type: GrantFiled: February 5, 2007Date of Patent: March 30, 2010Assignee: Opnext Japan, Inc.Inventors: Kazuhiro Komatsu, Yasushi Sakuma, Daisuke Nakai, Kaoru Okamoto, Ryu Washino
-
Patent number: 7679662Abstract: Disclosed herein is a solid-state imaging element which includes a plurality of drive signal inputs, a plurality of bus lines, and a plurality of vertical transfer register electrodes. In the solid-state imaging element, a charge accumulated in light-receiving elements in a pixel region is vertically transferred by the drive signals input to the electrodes. Each of the electrodes has a contact part connected to the second contact and having a width smaller than a width of the electrodes in the pixel region, and a blank region is formed between predetermined adjacent two of the contact parts so that a width of the blank region is larger than a distance between respective two of the contact parts other than the predetermined adjacent two of the contact parts. The first contact is disposed on the blank region.Type: GrantFiled: November 9, 2006Date of Patent: March 16, 2010Assignee: Sony CorporationInventors: Sadamu Suizu, Masaaki Takayama
-
Publication number: 20100032652Abstract: An infrared photodetector including a layer structure of an intermediate layer, and a quantum dot layer having a narrower band gap than the intermediate layer and including a plurality of quantum dots alternately stacked, and detecting photocurrent generated when infrared radiation is applied to the layer structure to thereby detect the infrared radiation, the infrared photodetector further including a first barrier layer provided on one side of the quantum dot layer and having a larger band gap than the intermediate layer; and a second barrier layer provided on the other side of the quantum dot layer and having a larger band gap than the intermediate layer.Type: ApplicationFiled: August 3, 2009Publication date: February 11, 2010Applicants: TECHNICAL RESEARCH & DEVELOPMENT INSTITUTE MINISTRY OF DEFENSE OF JAPAN, FUJITSU LIMITEDInventors: Toshihiro Okamura, Mitsuhiro Nagashima, Michiya Kibe, Hironori Nishino, Yasuhito Uchiyama, Yusuke Matsukura
-
Publication number: 20090256231Abstract: A photo-detector with a reduced G-R noise comprises two n-type narrow bandgap layers surrounding a middle barrier layer having an energy bandgap at least equal to the sum of the bandgaps of the two narrow bandgap layers. Under the flat band conditions the conduction band edge of each narrow bandgap layer lies below the conduction band edge of the barrier layer by at least the bandgap energy of the other narrow bandgap layer. When biased with an externally applied voltage, the more negatively biased narrow bandgap layer is the contact layer and the more positively biased narrow bandgap layer is the photon absorbing layer.Type: ApplicationFiled: March 29, 2007Publication date: October 15, 2009Applicant: Semi-Conductor Devices-An Elbit Systems-Rafael PartnershipInventor: Philip Klipstein
-
Patent number: 7592632Abstract: A small-sized and high-efficiency light emitting device capable of easily emitting green light includes a resonator including a photonic crystal having a refractive-index periodic structure and a point defect member formed in the photonic crystal to disturb the refractive-index periodic structure, and an active member provided inside the resonator and formed by an In containing nitride semiconductor, wherein a wavelength determined by a band gap energy of the active member is included in a photonic band gap range of the photonic crystal, and is set to be shorter than a peak wavelength at a shortest-wavelength side of a resonance mode of the resonator in the photonic band gap range.Type: GrantFiled: September 25, 2007Date of Patent: September 22, 2009Assignee: Canon Kabushiki KaishaInventor: Akinari Takagi
-
Publication number: 20090072338Abstract: A method for manufacturing a semiconductor photodetector includes: forming an insulating film on a semiconductor substrate; forming an electrode on and in contact with a predetermined area of a surface of the semiconductor substrate; forming a resist on the insulating film after forming the electrode; forming a power supply layer of a metal on the resist and the electrode; plating a surface of a portion of the power supply layer with a metal coating, after forming the power supply layer, the portion overlying and being in contact with the electrode; after the plating, etching and removing a part of the power supply layer leaving a portion that is covered with the metal coating and is an extension of the electrode; and removing the resist after etching the power supply layer.Type: ApplicationFiled: February 27, 2008Publication date: March 19, 2009Applicant: MITSUBISHI ELECTRIC CORPORATIONInventors: Matobu Kikuchi, Yasuo Nakajima, Yoshiyuki Nakashima, Hitoshi Sakuma
-
Patent number: 7304368Abstract: Memory elements including a first electrode and a second electrode. A chalcogenide material layer is between the first and second electrodes and a tin-chalcogenide layer is between the chalcogenide material layer and the second electrode. A selenide layer is between the tin-chalcogenide layer and the chalcogenide material layer. Optionally, a metal layer, for example a silver layer, is between the tin-chalcogenide layer and the second electrode. Methods for forming the memory elements are also provided.Type: GrantFiled: August 11, 2005Date of Patent: December 4, 2007Assignee: Micron Technology, Inc.Inventor: Kristy A. Campbell
-
Patent number: 7190048Abstract: Methods and apparatus for providing a resistance variable memory device with agglomeration prevention and thermal stability. According to one embodiment, a resistance variable memory device is provided having at least one tin-chalcogenide layer proximate at least one chalcogenide glass layer. The invention also relates to methods of forming such a memory device.Type: GrantFiled: July 19, 2004Date of Patent: March 13, 2007Assignee: Micron Technology, Inc.Inventor: Kristy A. Campbell
-
Patent number: 7122844Abstract: A susceptor for holding semiconductor wafers in an MOCVD reactor during growth of epitaxial layers on the wafers is disclosed. The susceptor comprises a base structure made of a material having low thermal conductivity at high temperature, and has one or more plate holes to house heat transfer plugs. The plugs are made of a material with high thermal conductivity at high temperatures to transfer heat to the semiconductor wafers. A metalorganic organic chemical vapor deposition reactor is also disclosed utilizing a susceptor according to the present invention.Type: GrantFiled: May 13, 2002Date of Patent: October 17, 2006Assignee: Cree, Inc.Inventors: Shuji Nakamura, Steven DenBaars, Max Batres, Michael Coulter
-
Patent number: 7087833Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.Type: GrantFiled: December 9, 2004Date of Patent: August 8, 2006Assignee: Nanosys, Inc.Inventors: Erik C. Scher, Mihai Buretea, Stephen A. Empedocles
-
Patent number: 7087832Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.Type: GrantFiled: December 9, 2004Date of Patent: August 8, 2006Assignee: Nanosys, Inc.Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
-
Patent number: 7056815Abstract: A method for forming a semi-conductor material is provided that comprises forming a donor substrate constructed of GaAs, providing a receiver substrate, implanting nitrogen into the donor substrate to form an implanted layer comprising GaAs and nitrogen. The implanted layer is bonded to the receiver substrate and annealed to form GaAsN and nitrogen micro-blisters in the implanted layer. The micro-blisters allow the implanted layer to be cleaved from the donor substrate.Type: GrantFiled: November 12, 2003Date of Patent: June 6, 2006Assignee: The Regents of the University of MichiganInventors: Xiaojun Weng, Rachel S. Goldman
-
Patent number: 6878871Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.Type: GrantFiled: September 4, 2003Date of Patent: April 12, 2005Assignee: Nanosys, Inc.Inventors: Erik Scher, Mihai A. Buretea, Calvin Chow, Stephen Empedocles, Andreas Meisel, J. Wallace Parce
-
Patent number: 6870239Abstract: An avalanche photodiode comprises, in various implementations, a p-doped absorption region fabricated from a first material and joined along a hetero-junction with one side of an intrinsic charge-carrier multiplication region fabricated from a second material. Situated on an opposite side of the multiplication region is an n-doped diode cathode. Under reverse bias, the p-doped and n-doped regions assume, respectively, a negative charge and a positive charge and an electric field is present in the multiplication region. The first and second materials are selected to one of (i) minimize and (ii) render non-existent any conduction-band-dependent potential barrier opposing the diffusion of electrons from the absorption region into the multiplication region.Type: GrantFiled: April 5, 2004Date of Patent: March 22, 2005Assignee: Solid State Scientific CorporationInventor: William Clark
-
Patent number: 6818975Abstract: The present invention provides a bump forming apparatus (101, 501) which can prevent charge appearance semiconductor substrates (201, 202) from pyroelectric breakdown and physical failures, a method carried out by the bump forming apparatus for removing charge of charge appearance semiconductor substrates, a charge removing unit for charge appearance semiconductor substrates, and a charge appearance semiconductor substrate. At least when the wafer is cooled after the bump bonding is connected on the wafer, electric charge accumulated on the wafer (202) because of the cooling is removed through direct contact with a post-forming bumps heating device (170), or the charge is removed by a decrease in temperature control so that charge can be removed in a noncontact state. Therefore, an amount of charge of the wafer can be reduced in comparison with the conventional art, so that the wafer is prevented from pyroelectric breakdown and damage such as a break or the like to the wafer itself.Type: GrantFiled: January 2, 2002Date of Patent: November 16, 2004Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Shoriki Narita, Yasutaka Tsuboi, Masahiko Ikeya, Takaharu Mae, Shinji Kanayama
-
Publication number: 20040113210Abstract: The present invention is a novel field effect transistor having a channel region formed from a narrow bandgap semiconductor film formed on an insulating substrate. A gate dielectric layer is formed on the narrow bandgap semiconductor film. A gate electrode is then formed on the gate dielectric. A pair of source/drain regions formed from a wide bandgap semiconductor film or a metal is formed on opposite sides of the gate electrode and adjacent to the low bandgap semiconductor film.Type: ApplicationFiled: December 5, 2003Publication date: June 17, 2004Inventors: Robert S. Chau, Doulgas Barlage, Been-Yih Jin
-
Patent number: 6750486Abstract: A semiconductor device with p-channel and n-channel field effect devices formed on a common substrate, where the drain and source regions of the n-channel field effect device are formed within a silicon epitaxial layer formed on a silicon layer germanium relax which is formed on a silicon germanium buffer layer with a graduated germanium concentration. Additionally, drain and source regions of the p-channel field effect device are formed within a silicon-germanium compound layer formed on the substrate and the silicon epitaxial cap layer formed on the silicon-germanium compound layer.Type: GrantFiled: December 8, 2000Date of Patent: June 15, 2004Assignee: Sony CorporationInventors: Minoru Sugawara, Takashi Noguchi
-
Patent number: 6750075Abstract: A heterostructure or multilayer semiconductor structure having lattice matched layers with different bandgaps is grown by MOCVD. More specifically, a wide bandgap material such as AlInSb or GaInSb is grown on a substrate to form a lower-contact layer. An n-type active layer is lattice matched to the lower contact layer. The active layer should be of a narrow bandgap material, such as InAsSb, InTlSb, InBiSb, or InBiAsSb. A p-type upper contact layer is then grown on the active layer and a multi-color infrared photodetector has been fabricated.Type: GrantFiled: May 28, 2002Date of Patent: June 15, 2004Inventor: Manijeh Razeghi