Responsive To Non-electrical Signal (e.g., Chemical, Stress, Light, Or Magnetic Field Sensors) Patents (Class 257/414)
  • Patent number: 11067377
    Abstract: A device for accounting for environmental capacitances caused by an external object when detecting the presence and surface location of an electrically conductive coating on a transparent and/or translucent medium includes: a capacitive sensor that provides multiple capacitances; electronics that are responsive to the capacitances; an excitation source that generates a train of pulses, voltage or current to determine capacitances at the capacitive sensor; a selective indicator; and, a capacitive sensing plate that affects, or is affected by, the pulses, voltage or current from the excitation source.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: July 20, 2021
    Assignee: EDTM, Inc.
    Inventors: Jeffrey A. Simpson, Mark A. Imbrock, Nathan Strimpel, Jed Martens
  • Patent number: 11063159
    Abstract: An optoelectronic device package includes an optoelectronic device having an active region on a first surface of a substrate, a bond pad area on the first surface that includes at least one contact pad electrically connected to the active region, and a cap having a first cap surface and a second cap surface, the first cap surface being secured to the first surface of the substrate, the cap covering the optoelectronic device. At least one of the cap and the substrate has an angled sidewall extending at an angle relative to an axis parallel to an optical path. The at least one contact pad is exposed by and adjacent to the angled sidewall. An electrical line extends from each of the at least one contact pad along the angled sidewall and to the second cap surface that does not overlap the active region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: July 13, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Hagit Gershtenman-Avsian, Andrey Grinman, Alexander Feldman, Alan D. Kathman, David Ovrutsky
  • Patent number: 11011647
    Abstract: A semiconductor device structure is disclosed. The semiconductor device structure includes a mesa extending above a substrate. The mesa has a channel region between a first side and second side of the mesa. A first gate is on a first side of the mesa, the first gate comprising a first gate insulator and a first gate conductor comprising graphene overlying the first gate insulator. The gate conductor may comprise graphene in one or more monolayers. Also disclosed are a method for fabricating the semiconductor device structure; an array of vertical transistor devices, including semiconductor devices having the structure disclosed; and a method for fabricating the array of vertical transistor devices.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: May 18, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 11011601
    Abstract: The present disclosure, in some embodiments, relates to a semiconductor structure. The semiconductor structure includes a substrate. As viewed from a top-view, the substrate has a first sidewall, one or more second sidewalls, and a plurality of third sidewalls. The first sidewall extends along a first direction and defines a first side of a trench. The one or more second sidewalls extends along the first direction and define a second side of the trench. The plurality of third sidewalls are oriented in parallel and extends in a second direction perpendicular to the first direction. The plurality of third sidewalls protrude outward from the second side of the trench and define a plurality of parallel releasing openings that are separated along the first direction by the substrate. The trench continuously extends in opposing directions past the plurality of parallel releasing openings.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 18, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Te-Hao Lee
  • Patent number: 11011645
    Abstract: The present disclosure discloses a thin film transistor and a manufacturing method thereof, an array substrate and a display device, and belongs to the field of semiconductor display technology. The active layer of the thin film transistor is made of a CIGS material. By manufacturing the active layer of the thin film transistor with the CIGS material, and the crystal defects of the CIGS are less than LTPS and IGZO, the mobility of the thin film transistor is higher, and the switching speed of the thin film transistor is faster, thereby being advantageous to further improve the resolution of the display device.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: May 18, 2021
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Qingrong Ren, Guangcai Yuan, Feng Guan, Dongsheng Li, Jianming Sun
  • Patent number: 10998386
    Abstract: In one embodiment, an electronic display includes a first plurality of hexagon-shaped pixels and a second plurality of hexagon-shaped pixels that are coplanar with the first plurality of hexagon-shaped pixels. The first plurality of hexagon-shaped pixels each include an infrared (IR) emitter subpixel that is operable to emit IR light. The second plurality of hexagon-shaped pixels each include an IR detector subpixel that is operable to detect IR light. Each IR emitter subpixel and each IR detector subpixel includes an anode layer and a cathode layer. Each particular IR emitter subpixel includes an IR emissive layer located between the anode layer and the cathode layer of the particular IR emitter subpixel. Each particular IR detector subpixel includes an IR detector layer located between the anode layer and the cathode layer of the particular IR detector subpixel.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 4, 2021
    Assignee: Lockheed Martin Corporation
    Inventors: Mark A. Lamkin, Kyle M. Ringgenberg, Jordan D. Lamkin
  • Patent number: 10996183
    Abstract: A detection device includes a plurality of detection units formed on a semiconductor circuit, a correction capacitive element that indicates a correction capacitance value for correcting detected capacitance values detected by the detection units, a difference acquisition circuit that acquires a difference value between each of the detected capacitance values and the correction capacitance value, and a conversion circuit that converts the difference value into a digital signal. The correction capacitive element, the difference acquisition circuit, and the conversion circuit are formed on the semiconductor circuit.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 4, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Noboru Iwata, Tatsuhito Arimura
  • Patent number: 10958239
    Abstract: A bulk acoustic wave resonator includes: support members disposed between air cavities; a resonant part including a first electrode, a piezoelectric layer, and a second electrode sequentially disposed above the air cavities and on the support members; and a wiring electrode connected either one or both of the first electrode and the second electrode, and disposed above one of the air cavities, wherein a width of an upper surface of the support members is greater than a width of a lower surface of the support members, and side surfaces of the support members connecting the upper surface and the lower surface to each other are inclined.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 23, 2021
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tae Yoon Kim, Moon Chul Lee, Yoon Sok Park
  • Patent number: 10958213
    Abstract: A clock oscillator includes with a pullable BAW oscillator to generate an output signal with a target frequency. The BAW oscillator is based on a BAW resonator and voltage-controlled variable load capacitance, responsive to a capacitance control signal to provide a selectable load capacitance. An oscillator driver (such as a differential negative gm transconductance amplifier), is coupled to the BAW oscillator to provide an oscillation drive signal. The BAW oscillator is responsive to the oscillation drive signal to generate the output signal with a frequency based on the selectable load capacitance. The oscillator driver can include a bandpass filter network with a resonance frequency substantially at the target frequency.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 23, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ben-yong Zhang, Seong-Ryong Ryu, Ali Kiaei, Ting-Ta Yen, Kai Yiu Tam
  • Patent number: 10955304
    Abstract: A piezo-resistor-based sensor, and a method to fabricate such sensor, comprise a sensor having at least a sensing element provided on a flexible structure, such as a membrane or cantilever or the like. The sensing element includes at least one piezo-resistor comprising at least a first region of the flexible structure doped with dopant atoms of a first type. The flexible structure furthermore comprises a second doped region within it, at least partially overlapping the first doped region, forming a shield for shielding the sensing element from external electrical field interference, wherein dopant atoms of the second doped region are of a second type opposite to the dopant atoms of the first doped region, for generating a charge depletion layer within the flexible structure at the overlapping region between the first doped region and the second doped region.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 23, 2021
    Assignee: Melexis Technologies NV
    Inventor: Maliheh Ramezani
  • Patent number: 10955288
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for generating a cross-sensor standardization model. For example, one disclosed embodiment includes a system that includes at least one processor; at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations comprising selecting a representative sensor from a group of sensors comprising at least one of same primary optical elements and similar synthetic optical responses and calibrating a cross-sensor standardization model based on a matched data pair for each sensor in the group of sensors and for the representative sensor. In one embodiment, the at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations further comprises generating the matched data pair, wherein the matched data pair comprises calibration input data and calibration output data.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 23, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins
  • Patent number: 10932721
    Abstract: Methods, systems, and apparatus for high-resolution patterning of various substrates with functional materials, including nanomaterials. A technique of preparing a patterned substrate in a high-resolution mold for stick and transfer process is disclosed with promotes integrity of the high-resolution pattern onto the substrate. One example of a substrate is an adhesive tape. The transferred pattern(s) are scalable and can be implemented in different fabrication processes. One example is a roll-to-roll processes. In one embodiment, the transferred pattern comprises nanomaterials and the substrate comprises a flexible substrate for use in flexible and conformal assemblies for a wide variety of applications including, but not limited to, electrical-based sensors on non-planar inanimate surfaces, plant body surface, or human or animal skin.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: March 2, 2021
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Seval Oren, Liang Dong
  • Patent number: 10927004
    Abstract: A method for bonding wafers eutectically, including the steps: (a) providing a first wafer having a first bonding layer and a second wafer having a second bonding layer and a spacer; (b) bringing the first wafer in juxtaposition with the second wafer, the spacer resting against the first bonding layer; (c) pressing the first wafer and the second wafer together, until the first bonding layer and the second bonding layer abut, the spacer penetrating the first bonding layer; (d) bonding the first wafer to the second wafer eutectically, by forming a eutectic alloy of at least parts of the first bonding layer and the second bonding layer. Also described is a eutectically bonded wafer composite and a micromechanical device having such a eutectically bonded wafer composite.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: February 23, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Axel Grosse, Volker Schmitz
  • Patent number: 10921548
    Abstract: A focusing mechanism includes: a driving source in which three or more cantilever-like piezoelectric actuators are radially arranged; and an optical lens unit that consists of an outer frame, an optical lens, a lens holder provided around the optical lens and holding the optical lens, and an elastic body connecting the lens holder to the outer frame and elongating and contracting in a radial direction of the optical lens, wherein surfaces of driving distal ends of the cantilever-like piezoelectric actuators, which are perpendicular to a direction of an optical axis of the optical lens, are in contact with the lens holder, and the cantilever-like piezoelectric actuators move the optical lens in the direction of the optical axis of the optical lens by the drive of the cantilever-like piezoelectric actuators to perform focusing.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: February 16, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Yoshikazu Hishinuma
  • Patent number: 10916375
    Abstract: An electronic device includes a chip component and a metal terminal. The chip component includes a terminal electrode formed on an element body. The metal terminal is connectable with the terminal electrode of the chip component. The metal terminal includes a terminal body and a pair of holding pieces. The terminal body faces an end surface of the terminal electrode of the chip component. The pair of holding pieces is formed on the terminal body and sandwiches the chip component. A width, a protrusion length, or a protrusion area of one of the pair of holding pieces is different from that of the other holding piece.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: February 9, 2021
    Assignee: TDK CORPORATION
    Inventors: Norihisa Ando, Sunao Masuda, Masahiro Mori, Kayou Matsunaga, Kosuke Yazawa
  • Patent number: 10914939
    Abstract: A compact and robust microelectromechanical reflector system that comprises a support, a reflector, a peripheral edge of the reflector including edge points, and suspenders including piezoelectric actuators and suspending the reflector from the support. Two pairs of suspenders are fixed from two fixing points to the support such that in each pair of suspenders, first ends of a pair of suspenders are fixed to a fixing point common to the pair. A first axis of rotation is aligned to a line running though the two fixing points, and divides the reflector to a first reflector part and a second reflector part. In each pair of suspenders, a second end of one suspender is coupled to the first reflector part and a second end of the other suspender is coupled to the second reflector part.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: February 9, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Altti Torkkeli, Matti Liukku
  • Patent number: 10903816
    Abstract: A thin-film package includes: a substrate; a wiring layer disposed on the substrate; a microelectromechanical systems (MEMS) element disposed on a surface of the substrate; a partition wall disposed on the substrate to surround the MEMS element, and formed of a polymer material; a cap forming a cavity with the substrate and the partition wall; and an external connection electrode connected to the wiring layer. The external connection electrode includes at least one inclined portion disposed on at least one inclined surface formed on any one or any combination of any two or more of the substrate, the partition wall, and the cap.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 26, 2021
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Wook Park, Jae Chang Lee, Jae Hyun Jung, Seong Hun Na
  • Patent number: 10900884
    Abstract: A method, structure and system for capacitive sensing is provided. A system includes: a two-dimensional electrode structure, wherein the two-dimensional sensing structure includes a channel for capacitive sensing, at least one integrated circuit connected to the two dimensional sensing structure and configured to mitigate external interference associated with the capacitive sensing by i) receiving a input signal from the two-dimensional electrode structure or ii) providing a select signal to the two-dimensional structure, and a data acquisition device connected to the two-dimensional electrode structure via the integrated circuit configuration and configured to receive an output signal from the integrated circuit.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Frank Libsch, Venkat K. Balagurusamy
  • Patent number: 10882072
    Abstract: The invention relates to a process for producing a structured shaped body or a layer of this type from a precursor of a metal oxide or mixed oxide selected from compounds of metals selected from among magnesium, strontium, barium, aluminum, gallium, indium, silicon, tin, lead and the transition metals. The process includes at least the following steps: (a) dissolving at least one compound of the at least one metal in an organic solvent and/or exchanging a ligand of the one or more dissolved metallic compounds for a stabilizing ligand, (b) adding a ligand that has at least one photochemically polymerizable group and at least one such group that allows a stable complex formation to the solution and forming a sol with or from the product of this reaction (precursor), (c) applying the sol on a substrate, and (d) exposing the sol anisotropically in such a way that a polymerization of the photochemically polymerizable groups takes place in the exposed areas.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 5, 2021
    Assignee: Multiphoton Optics GmbH
    Inventors: Ruth Houbertz, Daniela Trotschel
  • Patent number: 10886071
    Abstract: An electronic component includes a capacitor array having a plurality of multilayer capacitors consecutively arranged in a first direction, the plurality of multilayer capacitors each comprising a body, and first and second external electrodes respectively comprising first and second head portions, and first and second band portions respectively extending from the first and second head portions to portions of upper and lower surfaces and portions of side surfaces of the body, a first metal frame coupled to the plurality of first band portions by binding the first band portions in belt form so as to be connected to the plurality of first external electrodes, and a second metal frame coupled to the plurality of second band portions by binding the second band portions in belt form so as to be connected to the plurality of second external electrodes.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 5, 2021
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ki Young Kim, Woo Chui Shin, Beom Joon Cho, Sang Soo Park
  • Patent number: 10865103
    Abstract: The present disclosure provides a packaging method, including: providing a first semiconductor substrate; forming a bonding region on the first semiconductor substrate, wherein the bonding region of the first semiconductor substrate includes a first bonding metal layer and a second bonding metal layer; providing a second semiconductor substrate having a bonding region, wherein the bonding region of the second semiconductor substrate includes a third bonding layer; and bonding the first semiconductor substrate to the second semiconductor substrate by bringing the bonding region of the first semiconductor substrate in contact with the bonding region of the second semiconductor substrate; wherein the first and third bonding metal layers include copper (Cu), and the second bonding metal layer includes Tin (Sn). An associated packaging structure is also disclosed.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Ming Chen, Yuan-Chih Hsieh, Chung-Yi Yu
  • Patent number: 10868240
    Abstract: A manufacturing method results in a magnetoresistance element having conductive contacts disposed between the magnetoresistance element and a semiconductor substrate.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: December 15, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Yen Ting Liu, Maxim Klebanov, Bryan Cadugan, Sundar Chetlur, Harianto Wong
  • Patent number: 10861356
    Abstract: Provided is a transfer printing substrate and a method for producing the same, in order to improve yield of picking up of the micro-components and further improve quality of image display. The transfer printing substrate includes a carrying substrate, a plurality of supporting structures, and a plurality of micro-components corresponding to the plurality of support structures in one-to-one correspondence, wherein each of the plurality of supporting structures includes a fixing part and a suspended supporting part, wherein an end of the fixing part is fixed on the carrying substrate, an end of the suspended supporting part is connected to the fixing part, the other end of the suspended supporting part supports a corresponding one of the plurality of micro-components, and a first moving space is provided between the suspended supporting part and the carrying substrate. The transfer printing substrate is used for transferring the micro-components.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 8, 2020
    Assignee: SHANGHAI TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Xingda Xia, Junhui Lou, Zeshang He
  • Patent number: 10853616
    Abstract: A fingerprint sensor package and method are provided. The fingerprint sensor package comprises a fingerprint sensor along with a fingerprint sensor surface material and electrical connections from a first side of the fingerprint sensor to a second side of the fingerprint sensor. A high voltage chip is connected to the fingerprint sensor and then the fingerprint sensor package with the high voltage chip are connected to a substrate, wherein the substrate has an opening to accommodate the presence of the high voltage chip.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yu-Feng Chen, Chih-Hua Chen, Hao-Yi Tsai, Chung-Shi Liu
  • Patent number: 10847313
    Abstract: An electronic component and a mounting board for mounting of the same are provided. The electronic component includes a body including external electrodes disposed on surfaces of the body opposing each other in a first direction, respectively, and metal frames connected to the external electrodes, respectively. The metal frames include supports bonded to the external electrodes and mounting portions extending from lower ends of the supports in the first direction and are spaced apart from the body and the external electrodes. The supports include a lower support portion disposed on a lower side of the body and an upper support portion disposed on an upper side of the body, and the lower support portion has a thickness in a second direction perpendicular to the first direction relatively greater than a thickness of the upper support portion in the first direction.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: November 24, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ho Yoon Kim, Sang Soo Park, Woo Chul Shin
  • Patent number: 10830838
    Abstract: A magnetic sensor includes a magnetic field conversion unit, a magnetic field detection unit, and a magnetic film. The magnetic field conversion unit includes a yoke that receives an input magnetic field and generates an output magnetic field. The input magnetic field contains an input magnetic field component in a direction parallel to Z direction. The output magnetic field contains an output magnetic field component in a direction parallel to X direction. The magnetic field detection unit includes a magnetic detection element that receives the output magnetic field and generates a detection value corresponding to the output magnetic field component. The magnetic film absorbs part of magnetic flux resulting from a noise magnetic field, which is a magnetic field in a direction to which the magnetic detection element has sensitivity and which is other than the output magnetic field component.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: November 10, 2020
    Assignee: TDK CORPORATION
    Inventors: Keisuke Uchida, Kenzo Makino
  • Patent number: 10823560
    Abstract: A tilt sensor includes: a pressure sensor disposed to be relatively movable with respect to a detection target object and configured to detect pressure of a fluid; and a tilt information detection unit configured to detect tilt information (for example, a tilt angle) of the detection target object according to an output of the pressure sensor and movement information of the pressure sensor.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 3, 2020
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Takeshi Uchiyama, Manabu Oumi, Yoko Shinohara, Masayuki Suda, Ayako Nobe, Yoshiyuki Kaiho
  • Patent number: 10816415
    Abstract: A flexible sensor for monitoring operating parameters, including pressure and temperature, of a flexible structure, such as a tire, provides electrodes and an active area that are formed of flexible materials. In particular, the active area may be formed from an elastomeric piezoresistive material, such as an ionic liquid-polymer. The flexible properties of the sensor allow it to be readily incorporated into the body of a tire during manufacture. This allows the operating parameters of the tire to be monitored, such as in real-time, while the tire is in operation. Furthermore, the sensor is formed of materials that allow the sensor to be formed using additive manufacturing techniques, such as 3D (three-dimensional) printing. As such, the sensor may be 3D printed together with another structure, such as a tire tread, so that the sensor is integrated therein.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: October 27, 2020
    Assignee: THE UNIVERSITY OF AKRON
    Inventor: Jae-Won Choi
  • Patent number: 10797271
    Abstract: A manufacturing method for OLED display panel is disclosed, which first performs patterning on the encapsulation colloid of the encapsulant to divide encapsulation colloid into a plurality of target encapsulation areas, with each target encapsulation area corresponding to each OLED substrate unit, and a gap area outside of target encapsulation areas, performing disintegration treatment from the other side of encapsulation colloid on a portion of encapsulation colloid belonging to gap area so that the surface losing adhesiveness, then attaches encapsulation colloid to OLED substrate, and finally, obtains a plurality of OLED display panels by cutting. This method is simple to perform, reduces the size compatibility requirement of the laminator and avoids the use of extra manipulator and carrier fixture, which reduces the product cost incurred by fixture cleaning, transport, storage and other complex operations, and improves the product of the alignment accuracy, is good for automated production.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 6, 2020
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Weijing Zeng
  • Patent number: 10784231
    Abstract: The present invention addresses the problem of enlarging a sensing area in an ultrasonic probe so as to achieve a higher definition. This ultrasonic diagnostic equipment is provided with an ultrasonic probe that comprises: a CMUT chip (2a) that has drive electrodes (3e)-(3j), etc., arranged in a grid-like configuration on a rectangular CMUT element section (21); and a CMUT chip (2b) that has drive electrodes (3p)-(3u), etc., arranged in a grid-like configuration on the rectangular CMUT element section (21), that is adjacent to the CMUT chip (2a), and in which the drive electrodes (3e)-(3j) of the adjacent CMUT chip (2a) are electrically connected to the respective drive electrodes (3p)-(3u) via bonding wires (4f)-(4i), etc.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 22, 2020
    Assignee: HITACHI, LTD.
    Inventors: Yasuhiro Yoshimura, Akifumi Sako, Naoaki Yamashita, Tatsuya Nagata
  • Patent number: 10782269
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 22, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Patent number: 10773952
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: September 15, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, Jr., Jonathan Hale Hammond
  • Patent number: 10770573
    Abstract: For example, an Electrostatically Formed Nanowire (EFN) may include a source region; at least one drain region; a wire region configured to drive a current between the source and drain regions via a conductive channel; a first lateral-gate area extending along a first surface of the wire region between the source and drain regions; a second lateral-gate area extending along a second surface of the wire region between the source and drain regions; and a sensing area in opening in a backside of a silicon substrate under the wire region and the first and second lateral-gate areas, the sensing area configured to, in reaction to a predefined substance, cause a change in a conductivity of the conductive channel.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: September 8, 2020
    Assignees: TOWER SEMICONDUCTOR LTD., RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Zohar Shaked, Yakov Roizin, Menachem Vofsy, Alexey Heiman, Yossi Rosenwaks, Klimentiy Shimanovich, Yhonatan Vaknin
  • Patent number: 10771666
    Abstract: The present disclosure provides a camera module and an electrical bracket thereof. The electrical bracket is provided with a clear aperture. The electrical bracket not only has the functions of a conventional circuit board (conduction of the electrical signal of an electronic device such as a chip and a motor), but also has the effects of a conventional base to support an optical filter and serve as a motor base bracket.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 8, 2020
    Assignee: NINGBO SUNNY OPOTECH CO., LTD.
    Inventors: Mingzhu Wang, Baozhong Zhang, Zhen Huang, Feifan Chen, Nan Guo, Zhenyu Chen, Ye Wu
  • Patent number: 10760930
    Abstract: Disclosed are sensor packages, methods of manufacturing the same, and methods of manufacturing lid structures. The sensor package comprises a package substrate, a gas sensor on the package substrate, a lid on the package substrate and having a hole extending between a first inner surface and a first outer surface of the lid, the first inner surface of the lid facing toward the package substrate and the first outer surface of the lid facing away from the package substrate, and a waterproof film in the hole of the lid. The waterproof film is formed on the first inner surface and the first outer surface of the lid.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 1, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungeun Jo, Youngshin Kwon, Minjin Kim, Woonbae Kim, Youngdoo Jung, Eunhee Jung, Inho Choi
  • Patent number: 10761275
    Abstract: The disclosed embodiments relate to an integrated circuit structure and methods of forming them in which photonic devices are formed on the back end of fabricating a CMOS semiconductor structure containing electronic devices. Doped regions associated with the photonic devices are formed using microwave annealing for dopant activation.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: September 1, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej Sandhu
  • Patent number: 10755688
    Abstract: A microphone unit in which a microphone body is built in a housing is provided. The microphone body detects a sound entering the housing via a sound hole of the housing. An optical detector that detects light entering the housing via the sound hole is disposed in the housing. Therefore, a detection can be made that the sound hole is blocked by monitoring a detection level of the optical detector, based on a change in the detection level of the optical detector.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 25, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Yoshiyuki Hayashi
  • Patent number: 10734161
    Abstract: A multilayer electronic component includes first and second frame terminals, and first and second electronic components. The first frame terminal includes a first side frame and a first bottom frame extended from a lower end of the first side frame. The second frame terminal includes a second side frame facing the first side frame and a second bottom frame extended from a lower end of the second side frame. The first electronic component is disposed between the first and second side frames, and the second electronic component is stacked on the first electronic component and disposed between the first and second side frames. Conductive adhesives are provided between the first and second side frames and the first and second electronic components, but a conductive adhesive is not formed between the first and second side frames and portions of the first electronic component close to a mounting surface.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: August 4, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Beom Joon Cho, Ki Young Kim, Jae Young Na, Jin Mo Ahn
  • Patent number: 10717641
    Abstract: In some embodiments, a sensor includes a microelectromechanical system (MEMS) structure, a cover, and a bump stop. The MEMS structure is configured to move responsive to electromechanical stimuli. The cover is positioned on the MEMS structure. The cover is configured to mechanically protect the MEMS structure. The bump stop is disposed on a substrate and the bump stop is configured to stop the MEMS structure from moving beyond a certain point. The bump stop is further configured to stop the MEMS structure from making physical contact with the substrate. Moreover, the cover is configured to apply a force to the MEMS structure responsive to a voltage being applied to the cover.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 21, 2020
    Assignee: InvenSense, Inc.
    Inventors: Alexander Castro, Chae Ahn
  • Patent number: 10676348
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 9, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, Jr., Jonathan Hale Hammond
  • Patent number: 10663358
    Abstract: A method of sensing a pressure applied to a surface comprises monitoring an electrical signal generated by redistribution of mobile ions in a piezoionic layer under the surface. An externally applied local pressure at a portion of the layer induces redistribution of mobile ions in the piezoionic layer. It is determined that the surface is pressured based on detection of the electrical signal. A piezoionic sensor includes a sensing surface; a piezoionic layer disposed under the sensing surface such that an externally applied local pressure on a portion of the sensing surface causes detectable redistribution of mobile ions in the piezoionic layer; and electrodes in contact with the layer, configured to monitor electrical signal generated by the redistribution of mobile ions in the piezoionic layer.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 26, 2020
    Assignee: The University of British Columbia
    Inventors: John Madden, Mirza Sarwar, Yuta Dobashi, Edmond Cretu, Shahriar Mirabbasi, Ettore Glitz, Meisam Farajollahi
  • Patent number: 10651507
    Abstract: A method for integrating a thin film microbattery with electronic circuitry includes forming a release layer over a handler, forming a thin film microbattery over the release layer of the handler, removing the thin film microbattery from the handler, depositing the thin film microbattery on an interposer, forming electronic circuitry on the interposer, and sealing the thin film microbattery and the electronic circuitry to create individual microbattery modules.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Qianwen Chen, Bing Dang, John U. Knickerbocker
  • Patent number: 10637101
    Abstract: A method for integrating a thin film microbattery with electronic circuitry includes forming a release layer over a handler, forming a thin film microbattery over the release layer of the handler, removing the thin film microbattery from the handler, depositing the thin film microbattery on an interposer, forming electronic circuitry on the interposer, and sealing the thin film microbattery and the electronic circuitry to create individual microbattery modules.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: April 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Qianwen Chen, Bing Dang, John U. Knickerbocker
  • Patent number: 10635221
    Abstract: An array substrate includes: a plurality of sub-pixel units arranged in an array, in which every two adjacent rows of the sub-pixel units form one sub-pixel-unit group, and two gate lines that are configured to respectively provide gate signals for the two rows of the sub-pixel units are disposed between the two rows of the sub-pixel units; a plurality of touch driving electrodes, disposed between the sub-pixel-unit groups that are provided on the array substrate, and arranged in a row direction of the sub-pixel units; and a plurality of touch sensing electrodes, disposed on the array substrate, arranged in a column direction of the sub-pixel units, and insulated from the touch driving electrodes and the gate lines.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 28, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Shengji Yang, Xue Dong, Haisheng Wang
  • Patent number: 10629567
    Abstract: Apparatus(es) and method(s) relate generally to via arrays on a substrate. In one such apparatus, the substrate has a conductive layer. First plated conductors are in a first region extending from a surface of the conductive layer. Second plated conductors are in a second region extending from the surface of the conductive layer. The first plated conductors and the second plated conductors are external to the first substrate. The first region is disposed at least partially within the second region. The first plated conductors are of a first height. The second plated conductors are of a second height greater than the first height. A second substrate is coupled to first ends of the first plated conductors. The second substrate has at least one electronic component coupled thereto. A die is coupled to second ends of the second plated conductors. The die is located over the at least one electronic component.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 21, 2020
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar
  • Patent number: 10629372
    Abstract: A laminated electronic component includes a laminate including internal electrodes and dielectric layers laminated alternately and a first main surface, an external electrode that continuously covers at least one end surface of the laminate in a longitudinal direction and a portion of the first main surface adjacent to the one end surface, and a conductive elastic structure connected to the external electrode at at least corner portions of the first main surface in a portion where the external electrode covers the first main surface. The elastic structure includes a base portion connected to the external electrode to extend along the first main surface, and a branch portion branched from the base portion and extending at a position spaced from the first main surface to connect to another electrode, and having elasticity.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 21, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yasuo Fujii
  • Patent number: 10618804
    Abstract: A method of manufacturing a semiconductor structure includes receiving a substrate, receiving a heater, receiving an electrode, and receiving a sensing material. The substrate have a first surface, a second surface opposite to the first surface and a plurality of vias extending from the second surface toward the first surface and filled with a conductive or semiconductive material and a first oxide layer, the first oxide layer surrounding the conductive or semiconductive material in the plurality of vias, and a second oxide layer disposed over the first surface and the second surface. The heater is disposed within a membrane over the first surface of the substrate and electrically connected with the substrate. The electrode is over the heater and the membrane; and the sensing material covers a portion of the electrode.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Fei-Lung Lai, Shiang-Chi Lin
  • Patent number: 10622046
    Abstract: The invention relates to a magnetic memory cell (30), comprising: a stack (31) including a magnetic layer section (34) between a conductive layer section (32) and a section (36) of a layer that is different from the conductive layer, the magnetic layer having a magnetisation (35) perpendicular to the plane of the layers; a metallisation section (42) on which the stack is placed; and first, second, third and fourth metallisation arms (44D to 44G), each arm having a median axis (45D to 45G), wherein, for each arm, a current flowing towards the stack in the direction of the median axis sees that portion of the stack which is closest the arm mostly on its left for the first and second arms (44E, 44G), and mostly on its right for the third and fourth arms (44D, 44F).
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: April 14, 2020
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT√Ā L'√ČNERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Gilles Gaudin, Ioan Mihai Miron, Olivier Boulle, Safeer Chenattukuzhiyil
  • Patent number: 10602036
    Abstract: An electronic module includes a mounting surface, a cover disposed above the mounting surface, wherein the cover includes a protruding portion extending from a lower surface of the cover to a predetermined distance, and an adhesion part adhering the protruding portion to the mounting surface.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 24, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Heung Woo Park, Jung Gon Choi
  • Patent number: 10589993
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 17, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, Jr., Jonathan Hale Hammond