Ii-vi Compound Semiconductor (e.g., Hgcdte) Patents (Class 257/442)
  • Patent number: 11289605
    Abstract: A thin film transistor substrate and its manufacturing method are provided. The thin film transistor substrate avoids semiconductor defects caused by acid corrosion of a metal oxide channel during an etching process of forming a source/drain electrode, and effectively prevents copper from diffusing downward into the metal oxide channel under high temperature conditions. Such configuration eliminates a need to additionally use a barrier material, reduces production costs, and prevents short-circuiting resulting from a residual barrier material.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: March 29, 2022
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Qianyi Zhang
  • Patent number: 11094736
    Abstract: A device and method of manufacturing are disclosed. The device contains a buffer layer containing a first material, a detector structure disposed above the buffer layer, a readout integrated circuit coupled with the detector structure, a layer above the readout integrated circuit comprising a second material, and a silicon layer above the layer.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: August 17, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Brett Z. Nosho, Pierre-Yves Delaunay
  • Patent number: 10692915
    Abstract: An imaging device includes a first substrate including a photoelectric conversion layer that includes a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type and in which a plurality of photoelectric conversion units are provided; a second substrate that is joined to the first substrate and in which a readout circuit substrate that outputs a signal based on information detected by the plurality of photoelectric conversion units is provided; and an element isolation portion defined by a first opening provided so as to penetrate the second substrate and at least one of the first semiconductor layer and the second semiconductor layer, and each of the plurality of photoelectric conversion units is separated from each other by the element isolation portion.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 23, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Takahiro Yajima
  • Patent number: 10557215
    Abstract: Provided are a high resistance CdTe-based compound single crystal with miniaturized Te precipitates and a method for producing the same. According to one embodiment of the present invention, a CdTe based compound single crystal is provided including a precipitate having a particle size of less than 0.1 ?m obtained from an analysis by a light scattering tomography method. In the CdTe based compound single crystal, resistivity may be 1×107 ?cm or more. In addition, in the CdTe based compound single crystal, a precipitate having a particle size of 0.1 ?m or more obtained from the analysis by the light scattering tomography method is not detected. In the CdTe based compound single crystal, the precipitate may be a Te precipitate.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: February 11, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kouji Murakami, Akira Noda
  • Patent number: 9883993
    Abstract: Notch filter coatings for use in sunscreen applications are provided herein. An exemplary composition includes multiple zinc oxide particles suspended within a medium forming sunscreen composition; and a combination of multiple notch filter coating materials individually applied as a distinct layer to each of the multiple zinc oxide particles to create a multi-layered structure surrounding each of the multiple zinc oxide particles within the sunscreen composition, wherein the multi-layered structure: reflects light at a user-determined wavelength range based on the wavelength range at which each of the multiple notch filter coating materials reflects light; and allows wavelengths of light (i) within at least a portion of the ultraviolet spectrum and (ii) outside of the user-determined wavelength range to be absorbed by the multiple zinc oxide particles.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Ning Li, Devendra Sadana, Teodor K. Todorov
  • Patent number: 9673347
    Abstract: Disclosed are minority carrier based mercury-cadmium telluride (HgCdTe) infrared detectors and arrays, and methods of making, are disclosed. The constructions provided by the invention enable the detectors to be used at higher temperatures, and/or be implemented on less expensive semiconductor substrates to lower manufacturing costs. An exemplary embodiment a substrate, a bottom contact layer disposed on the substrate, a first mercury-cadmium telluride layer having a first bandgap energy value disposed on the bottom contact layer, a second mercury-cadmium telluride layer having a second bandgap energy value that is greater than the first bandgap energy value disposed on the first mercury-cadmium telluride layer, and a collector layer disposed on the second mercury-cadmium telluride layer, wherein the first and second mercury-cadmium telluride layers are each doped with an n-type dopant.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: June 6, 2017
    Assignee: DRS Network & Imaging Systems, LLC
    Inventors: Michael A. Kinch, Christopher A. Schaake
  • Patent number: 9653511
    Abstract: A complementary metal oxide semiconductor (CMOS) image sensor with peninsular ground contacts includes (a) a substrate having a plurality of pixel units arranged in rows of pixel units and (b) a plurality of ground contacts for grounding the pixel units, wherein the ground contacts are formed in respective peninsular regions of the substrate within respective ones of the pixel units, and wherein each of the peninsular regions is only partly enclosed by a shallow trench isolation and the peninsular regions have alternating orientation along each of the rows of pixel units.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 16, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Dyson Hsinchin Tai
  • Patent number: 9443923
    Abstract: A semiconductor structure having a first semiconductor body having an upper surface with a non <211> crystallographic orientation and a second semiconductor body having a surface with a <211> crystallographic orientation, the surface of the second semiconductor body being bonded to a bottom surface of the first semiconductor body. A layer comprising CdTe is epitaxially disposed on the upper surface of the second semiconductor body. The second semiconductor body is CZ silicon, has a thickness less than 10 microns and has a diameter of at least eight inches. A getter having micro-cavities has a bottom surface formed on an upper surface of the first semiconductor body and has an upper surface bonded to a bottom surface of the second semiconductor body.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: September 13, 2016
    Assignee: RAYTHEON COMPANY
    Inventor: Jeffrey M. Peterson
  • Patent number: 9252182
    Abstract: Photo-conducting infrared sensors are provided including a substrate (e.g., silicon) with one or more trenches formed on a first surface. An infrared-reflective film can be deposited directly or indirectly onto and conforming in shape with the first surface of the substrate. A lead chalcogenide film can be deposited directly or indirectly over the top of the infrared-reflective film and conforming in shape with the first surface of the substrate. Accordingly, the infrared-reflective film is directly or indirectly sandwiched between the substrate and the lead chalcogenide film.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 2, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Thomas J. Knight, Christopher F. Kirby
  • Patent number: 9178101
    Abstract: A device including at least one heterostructure p/n diode, including a substrate based on HgCdTe including for each diode: a first part having a first cadmium concentration; a concentrated part, having a second cadmium concentration, greater than the first concentration, forming a heterostructure with the first part; a p+ doped zone situated in the concentrated part and extending into the first part, forming a p/n junction with an n-doped position of the first part, or a base plate; and the concentrated part is only located in the p+ doped zone and forms a substantially constant cadmium concentration well.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: November 3, 2015
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Laurent Mollard, Nicolas Baier, Johan Rothman
  • Patent number: 9112098
    Abstract: Disclosed are minority carrier based mercury-cadmium telluride (HgCdTe) infrared detectors and arrays, and methods of making, are disclosed. The constructions provided by the invention enable the detectors to be used at higher temperatures, and/or be implemented on less expensive semiconductor substrates to lower manufacturing costs. An exemplary embodiment a substrate, a bottom contact layer disposed on the substrate, a first mercury-cadmium telluride layer having a first bandgap energy value disposed on the bottom contact layer, a second mercury-cadmium telluride layer having a second bandgap energy value that is greater than the first bandgap energy value disposed on the first mercury-cadmium telluride layer, and a collector layer disposed on the second mercury-cadmium telluride layer, wherein the first and second mercury-cadmium telluride layers are each doped with an n-type dopant.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: August 18, 2015
    Assignee: DRS Network & Imaging Systems, LLC
    Inventors: Michael A. Kinch, Christopher A. Schaake
  • Patent number: 9105801
    Abstract: A method for fabricating a Cu—In—Ga—Se film solar cell is provided. The method comprises: a) fabricating a molybdenum back electrode on a substrate; b) fabricating a Cu—In—Ga—Se absorbing layer on the back electrode by fractional sputtering in a plurality of sputter chambers; c) performing an annealing; d) fabricating an In2Se3 or ZnS buffer layer on the Cu—In—Ga—Se absorbing layer; e) fabricating an intrinsic zinc oxide high impedance layer on the In2Se3 or ZnS buffer layer; f) fabricating an indium tin oxide film low impedance layer on the intrinsic zinc oxide high impedance layer; g) fabricating an aluminum electrode on the indium tin oxide film low impedance layer.
    Type: Grant
    Filed: January 11, 2014
    Date of Patent: August 11, 2015
    Inventors: Liuyu Lin, Zhun Zhang
  • Patent number: 9035351
    Abstract: A semiconductor device having a p base region and an n+ emitter region that come into contact with an emitter electrode and are selectively provided in a surface layer of an n? drift layer. A gate electrode is provided on a portion of the front surface of the n? drift layer which is interposed between the n+ emitter regions, with a gate insulating film interposed therebetween. In some exemplary embodiments, an n+ buffer layer and a p collector layer which have a higher impurity concentration than the n? drift layer are sequentially provided on a surface of the n? drift layer opposite to the front surface on which the n+ emitter region is provided. The impurity concentration of the n+ buffer layer is equal to or greater than 7×1016 cm?3 and equal to or less than 7×1017 cm?3. Accordingly, it is possible to obtain high field decay resistance.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 19, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 8759936
    Abstract: Integrated circuit devices include thermal image sensors that utilize quantum dots therein to provide negative resistance characteristics to at least portions of the sensors. The thermal image sensor may include a sensing unit configured to absorb radiation incident on a first surface thereof and first and second electrodes electrically coupled to the sensing unit. The sensing unit includes a plurality of quantum dots therein, which may extend between the first and second electrodes. These quantum dots may be configured to impart a negative resistance characteristic to the sensing unit. In particular, the sensing unit may include a sensing layer having first and second opposing ends, which are electrically coupled to the first and second electrodes, respectively, and the plurality of quantum dots may be distributed within the sensing layer.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Choong Rae Cho
  • Patent number: 8698263
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 8592677
    Abstract: A substrate includes a semiconductor layer, a plurality of dielectric layers disposed on one side of the semiconductor layer and separated from each other and a photoactive layer disposed between the dielectric layers and including a compound of a Group III element and a Group V element. Also disclosed are a solar cell including the same and a manufacturing method thereof.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung Gyun Suh, Dong Ho Kim, Ji Eun Chang
  • Patent number: 8575750
    Abstract: A radiation detector made of High Purity Germanium (HPGe) has been specially machined to be this invented multilayer Inter-Coaxial configuration. With this special configuration, extra large volume HPGe detectors of diameters to be 6 inches, 9 inches, and even 12 inches, can be produced with current achievable HPGe crystal purity and quality, in which the entire detector crystal will be depleted and properly over biased for effective photo-induced signal collection with just less than 5000V bias applied. This invention makes extra large efficiency of 200%, 300%, and maybe even higher than 500% possible with HPGe gamma ray detectors with reasonable great resolution performances procurable based on current HPGe crystal supply capability. The invention could also be applied to any other kind of semiconductor materials if any of them could be purified enough for this application in the future.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 5, 2013
    Inventors: Yongdong Zhou, Xiao Zhou
  • Patent number: 8563844
    Abstract: Embodiments of a thin-film heterostructure thermoelectric material and methods of fabrication thereof are disclosed. In general, the thermoelectric material is formed in a Group IIa and IV-VI materials system. The thermoelectric material includes an epitaxial heterostructure and exhibits high heat pumping and figure-of-merit performance in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity over broad temperature ranges through appropriate engineering and judicious optimization of the epitaxial heterostructure.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 22, 2013
    Assignees: Phononic Devices, Inc., Board of Regents of the University of Oklahoma
    Inventors: Allen L. Gray, Robert Joseph Therrien, Patrick John McCann
  • Patent number: 8513775
    Abstract: Provided is a CdTe-based semiconductor substrate for epitaxial growth, which is capable of growing good-quality epitaxial crystals without urging a substrate user to implement etching treatment before the epitaxial growth. A CdTe-based semiconductor substrate, in which tracks of linear polishing damage with a depth of 1 nm or more are not observed within a viewing range of 10 ?m×10 ?m when a surface of the substrate is observed by an atomic force microscope, and orange peel defects are not observed when the surface of the substrate is visually observed under a fluorescent lamp, can grow the good-quality epitaxial crystals.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 20, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenji Suzuki, Hideyuki Taniguchi, Hideki Kurita, Ryuichi Hirano
  • Patent number: 8441089
    Abstract: This bispectral detector comprises a plurality of unitary elements for detecting a first and a second electromagnetic radiation range, consisting of a stack of upper and lower semiconductor layers of a first conductivity type which are separated by an intermediate layer that forms a potential barrier between the upper and lower layers; and for each unitary detection element, two upper and lower semiconductor zones of a second conductivity type opposite to the first conductivity type, are arranged respectively so that they are in contact with the upper faces of the upper and lower layers so as to form PN junctions, the semiconductor zone being positioned, at least partially, in the bottom of an opening that passes through the upper and intermediate layers. The upper face of at least one of the upper and lower layers is entirely covered in a semiconductor layer of the second conductivity type.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 14, 2013
    Assignee: Commissariat a l′Energie Atomique et Aux Energies Alternatives
    Inventors: Olivier Gravrand, Jacques Baylet
  • Patent number: 8410357
    Abstract: Disclosed is a novel thin film photovoltaic device and a process of making. The device comprises an interface layer between the absorber layer and the electrode resulting in an improved back contact and improved device efficiency. The interface layer comprises a material comprising a Ma-(Group VIA)b compound, where M is a transition metal the Group VIA designates Te, Se and/or S.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Solexant Corp.
    Inventors: Puthur D. Paulson, Craig Leidholm, Damoder Reddy, Charlie Hotz
  • Patent number: 8274138
    Abstract: A high quality II-VI semiconductor nanowire is disclosed. A plurality of II-VI semiconductor nanowires is provided, with each being fixed to a support. Each nanowire terminates in a free end and a metal alloy nanoparticle is fixed to each nanowire at its free end.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: September 25, 2012
    Assignee: Eastman Kodak Company
    Inventor: Keith B. Kahen
  • Patent number: 8164152
    Abstract: A liquid crystal display and a method of manufacturing the same are provided. The liquid crystal display includes an insulating substrate, a gate electrode formed on the insulating substrate, an oxide semiconductor layer formed on the gate electrode, an etch stopper formed on the oxide semiconductor layer in a channel area, a common electrode formed on the insulating substrate, source and drain electrodes separated from each other on the etch stopper and extending to an upper portion of the oxide semiconductor layer, a passivation layer formed on the etch stopper, the common electrode, the source and drain electrodes, and a pixel electrode formed on the passivation layer and connected to the drain electrode.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Hun Lee, Do-Hyun Kim
  • Patent number: 8143686
    Abstract: In one aspect, the present invention provides a method of processing a substrate, e.g., a semiconductor substrate, by irradiating a surface of the substrate (or at least a portion of the surface) with a first set of polarized short laser pulses while exposing the surface to a fluid to generate a plurality of structures on the surface, e.g., within a top layer of the surface. Subsequently, the structured surface can be irradiated with another set of polarized short laser pulses having a different polarization than that of the initial set while exposing the structured surface to a fluid, e.g., the same fluid initially utilized to form the structured surface or a different fluid. In many embodiments, the second set of polarized laser pulses cause the surface structures formed by the first set to break up into smaller-sized structures, e.g., nano-sized features such as nano-sized rods.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: March 27, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, Mengyan Shen
  • Patent number: 8125043
    Abstract: An element of photodetection of a radiation having a wavelength in vacuum close to a value ?0, including: a semiconductor layer of index ns and of a thickness ranging between ?0/4 ns and ?0/20 ns; on one side of the semiconductor layer, a first medium of index n1 smaller than ns, transparent to said wavelength; on the other side of the semiconductor layer: a region of a second medium of index n2 smaller than ns, having a width L substantially equal to ?0/ns and, on either side of said region, a third medium, of index n3 greater than index n2, forming a reflective interface with the second medium.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 28, 2012
    Assignee: Commissariat a l'Energie Atomique et Aux Energies Alternatives
    Inventors: Salim Boutami, Roch Espiau De Lamaestre, Jérôme Le Perchec
  • Patent number: 8093095
    Abstract: Device and method of forming a device in which a substrate (10) is fabricated with at least part of an electronic circuit for processing signals. A bulk single crystal material (14) is formed on the substrate, either directly on the substrate (10) or with an intervening thin film layer or transition region (12). A particular application of the device is for a radiation detector.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 10, 2012
    Assignee: Kromek Limited
    Inventors: Arnab Basu, Max Robinson, Ben Cantwell, Andy Brinkman
  • Patent number: 8093559
    Abstract: The present invention provides a two-terminal infrared detector capable of detecting a plurality of bands, such as three bands, over the visible and short-wave infrared bands. Detection of three colors enables one to construct composite imagery that provide significantly added contract in comparison to typical grayscale images. In some variations, the device includes multiple absorber and barrier layers that consist of distinct engineered semiconductor alloys which are closely lattice matched to InP.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: January 10, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Rajesh D. Rajavel
  • Patent number: 8093671
    Abstract: Device and method of forming a device in which a substrate (10) is fabricated with at least part of an electronic circuit for processing signals. A bulk single crystal material (14) is formed on the substrate, either directly on the substrate (10) or with an intervening thin film layer or transition region (12). A particular application of the device is for a radiation detector.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 10, 2012
    Assignee: Kromek Limited
    Inventors: Arnab Basu, Max Robinson, Benjamin John Cantwell, Andy Brinkman
  • Patent number: 8044477
    Abstract: One aspect of the present invention provides a device that includes a substrate; a first semiconducting layer; a transparent conductive layer; a transparent window layer. The transparent window layer includes cadmium sulfide and oxygen. The device has a fill factor of greater than about 0.65. Another aspect of the present invention provides a method of making the device.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 25, 2011
    Assignee: General Electric Company
    Inventors: Dalong Zhong, Gautam Parthasarathy, Richard Arthur Nardi, Jr.
  • Patent number: 8030684
    Abstract: The present invention relates to a stable mesa-type photodetector with lateral diffusion junctions. The invention has found that without resorting to the complicated regrowth approach, a simple Zn diffusion process can be used to create high-quality semiconductor junction interfaces at the exposed critical surface or to terminate the narrow-bandgap photon absorption layers. The invention converts the epi material layers near or at the vicinity of the etched mesa trench or etched mesa steps into a different dopant type through impurity diffusion process. Preferably the diffused surfaces are treated with a subsequent surface passivation. This invention can be applied to both top-illuminating and bottom-illuminating configurations.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: October 4, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Syn-Yem Hu, Zhong Pan
  • Patent number: 7936528
    Abstract: A graded order-sorting filter for hyperspectral imagers and methods of making the same are provided. The graded order-sorting filter includes a substrate wafer having a first side and a second side and is formed of a material that is substantially transparent to light photons. The graded order-sorting filter also includes an absorption filter deposited outwardly from the first side of the substrate wafer. The absorption filter is tapered along a taper direction and formed of a graded composition semiconductor material with a bandgap graded to decrease outwardly from the substrate wafer and/or graded along the taper direction. The graded composition semiconductor material is substantially transparent to the light photons for photon energies substantially less than the bandgap. The above filter can also be aligned to a two-dimensional array of pixels to form a hyperspectral imager.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 3, 2011
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: William E Tennant
  • Patent number: 7915747
    Abstract: A substrate for forming a semiconductor layer includes a plurality of linear convexes or grooves on a surface of the substrate by crystal growth. The plurality of linear convexes or grooves are formed along a direction of a cleavage plane of the semiconductor layer.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 29, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keiichi Matsushita
  • Publication number: 20110031401
    Abstract: A radiation detector is provided that includes a photodiode having a radiation absorber with a graded multilayer structure. Each layer of the absorber is formed from a semiconductor material, such as HgCdTe. A first of the layers is formed to have a first predetermined wavelength cutoff. A second of the layers is disposed over the first layer and beneath the first surface of the absorber through which radiation is received. The second layer has a graded composition structure of the semiconductor material such that the wavelength cutoff of the second layer varies from a second predetermined wavelength cutoff to the first predetermined wavelength cutoff such that the second layer has a progressively smaller bandgap than the first bandgap of the first layer. The graded multilayer radiation absorber structure enables carriers to flow toward a conductor that is used for measuring the radiation being sensed by the radiation absorber.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 10, 2011
    Applicant: DRS RSTA, INC
    Inventors: Pradip Mitra, Jeffrey D. Beck, Mark R. Skokan
  • Publication number: 20110018087
    Abstract: An element of photodetection of a radiation having a wavelength in vacuum close to a value ?0, including: a semiconductor layer of index ns and of a thickness ranging between ?0/4 ns and ?0/20 ns; on one side of the semiconductor layer, a first medium of index n1 smaller than ns, transparent to said wavelength; on the other side of the semiconductor layer: a region of a second medium of index n2 smaller than ns, having a width L substantially equal to ?0/ns and, on either side of said region, a third medium, of index n3 greater than index n2, forming a reflective interface with the second medium.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 27, 2011
    Applicant: Commissariat a L'Energie Atomique et Aux Energies Alternatives
    Inventors: Salim BOUTAMI, Roch ESPIAU DE LAMAESTRE, Jérôme LE PERCHEC
  • Patent number: 7858872
    Abstract: The present invention discloses thin film photovoltaic devices comprising Group II-VI semiconductor layers with a substrate configuration having an interface layer between the back electrode and the absorber layer capable of creating an ohmic contact in the device. The present invention discloses thin film photovoltaic devices comprising Group II-VI semiconductor layers with a superstrate configuration having an interface layer between the back electrode and the absorber layer capable of creating an ohmic contact in the device where the interface layer comprises nanoparticles or nanoparticles that are sintered.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 28, 2010
    Assignee: Solexant Corp.
    Inventors: Charlie Hotz, Puthur D. Paulson, Craig Leidholm, Damoder Reddy
  • Patent number: 7795639
    Abstract: A photodiode designed to capture incident photons includes a stack of at least three superposed layers of semiconductor materials having a first conductivity type. The stack includes: an interaction layer designed to interact with incident photons so as to generate photocarriers; a collection layer to collect the photocarriers; a confinement layer designed to confine the photocarriers in the collection layer. The collection layer has a band gap less than the band gaps of the interaction layer and confinement layer. The photodiode also includes a region which extends transversely relative to the planes of the layers. The region is in contact with the collection layer and confinement layer and has a conductivity type opposite to the first conductivity type so as to form a p-n junction with the stack.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: September 14, 2010
    Assignee: Commissariat A l'Energie Atomique
    Inventor: Johan Rothman
  • Patent number: 7781327
    Abstract: Methods of resputtering material from the wafer surface include at least one operation of resputtering material under a pressure of at least 10 mTorr. The methods can be used in conjunction with an iPVD apparatus, such as hollow cathode magnetron (HCM) or planar magnetron. The resputtered material may be a diffusion barrier material or a conductive layer material. The methods provide process conditions which minimize the damage to the dielectric layer during resputtering. The methods allow considerable etching of the diffusion barrier material at the via bottom, while not damaging exposed dielectric elsewhere on the wafer. Specifically, they provide a solution for the dielectric microtrenching problem occurring during conventional resputter process. Furthermore, the methods increase the etch rate to deposition rate ratio (E/D) and improve the etch back nonuniformity (EBNU) of resputter process. In general, the methods provide IC devices with higher reliability and decrease wafer manufacturing costs.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 24, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Sridhar Kailasam, Robert Rozbicki, Chentao Yu, Douglas Hayden
  • Patent number: 7777287
    Abstract: An analytical system-on-a-chip can be used as an analytical imaging device, for example, for detecting the presence of a chemical compound. A layer of analytical material is formed on a transparent layer overlying a solid state image sensor. The analytical material can react in known ways with at least one reactant to block light or to allow light to pass through to the array. The underlying sensor array, in turn, can process the presence, absence or amount of light into a digitized signal output. The system-on-a-chip may also include software that can detect and analyze the output signals of the device.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: August 17, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Terry Gilton
  • Patent number: 7755023
    Abstract: Electronically tunable and reconfigurable hyperspectral IR detectors and methods for making the same are presented. In one embodiment, a reconfigurable hyperspectral sensor (or detector) detects radiation from about 0.4 ?m to about 2 ?m and beyond. This sensor is configured to be compact, and lightweight and offers hyperspectral imaging capability while providing wavelength agility and tunability at the chip-level. That is, the sensor is used to rapidly image across diverse terrain to identify man-made objects and other anomalies in cluttered environments.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: July 13, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D. Rajavel, David H. Chow, Andrew T. Hunter
  • Patent number: 7750235
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: July 6, 2010
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
  • Patent number: 7741594
    Abstract: The invention relates to a detector comprising a multiple quantum well structure operating on interband or intersubband transitions by absorption of radiation having a wavelength ? having a polarization comprising a component perpendicular to the plane of the multiple quantum well structure, and comprising optical coupling means for coupling said radiation, wherein the coupling means comprise a set of first diffractive lamellar features that are distributed along at least a first direction and a set of second diffractive lamellar features that are distributed along at least a second direction, said first and second directions being mutually perpendicular and lying in a plane parallel to the plane of the multiple quantum well structure.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: June 22, 2010
    Assignee: Thales
    Inventors: Philippe Bois, Eric Costard, Alfredo De Rossi, Alexandru Nedelcu
  • Patent number: 7728384
    Abstract: A magnetic random access memory (MRAM) cell comprises a MRAM device and a single crystal self-aligned diode. The MRAM device and the single crystal self-aligned diode are connected through a contact. Only one metal line is positioned above the MRAM device of the MRAM cell. A first and second spacers positioned adjacent to the opposite sidewalls of the contact define the size of the single crystal self-aligned diode. A first and second metal silicide lines are positioned adjacent to the first and second spacers, respectively. The single crystal self-aligned diode, defined in a silicon substrate, includes a bottom implant (BI) region and a contact implant (CI) region. The CI region is surrounded by the BI region except for a side of the CI region that aligns the surface of the silicon substrate. A fabrication method, a read method, two programming methods for the MRAM cell are also disclosed.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 1, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Chiahua Ho, Yenhao Shih, Hsiang-Lan Lung
  • Patent number: 7723815
    Abstract: A wafer bonded composite structure is provided for matching a coefficient of thermal expansion of a first semiconductor chip to a coefficient of thermal expansion of a second semiconductor chip in order to provide a thermally matched hybridized semiconductor chip assembly. The wafer bonded composite structure includes a first semiconductor chip having a top and a bottom surface. The first semiconductor chip has a coefficient of thermal expansion which is less than the coefficient of thermal expansion of the second semiconductor chip. Preferably, the first semiconductor chip is an readout integrated circuit (ROIC) and the second semiconductor chip is an infrared detector chip. Further, the wafer bonded composite structure also includes a substrate wafer bonded to a bottom surface of the first semiconductor chip to form the wafer bonded composite structure itself.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: May 25, 2010
    Assignee: Raytheon Company
    Inventors: Jeffrey M Peterson, Eric F Schulte
  • Patent number: 7679662
    Abstract: Disclosed herein is a solid-state imaging element which includes a plurality of drive signal inputs, a plurality of bus lines, and a plurality of vertical transfer register electrodes. In the solid-state imaging element, a charge accumulated in light-receiving elements in a pixel region is vertically transferred by the drive signals input to the electrodes. Each of the electrodes has a contact part connected to the second contact and having a width smaller than a width of the electrodes in the pixel region, and a blank region is formed between predetermined adjacent two of the contact parts so that a width of the blank region is larger than a distance between respective two of the contact parts other than the predetermined adjacent two of the contact parts. The first contact is disposed on the blank region.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 16, 2010
    Assignee: Sony Corporation
    Inventors: Sadamu Suizu, Masaaki Takayama
  • Patent number: 7675133
    Abstract: A persistent p-type group II-VI semiconductor material is disclosed containing atoms of group II elements, atoms of group VI elements, and a p-type dopant which replaces atoms of the group VI element in the semiconductor material. The p-type dopant has a negative oxidation state. The p-type dopant causes formation of vacancies of atoms of the group II element in the semiconductor material. Fabrication methods and solid state devices containing the group II-VI semiconductor material are disclosed.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: March 9, 2010
    Inventors: Robert H. Burgener, II, Roger L. Felix, Gary M. Renlund
  • Publication number: 20090261442
    Abstract: A photosensitive diode has an active region defining a majority carrier of a first conductivity type and a minority carrier of a second conductivity type. An extraction region is disposed on a first side of the active region and extracts minority carriers from the active region. It also has majority carriers within the extraction region flowing toward the active region in a condition of reverse bias. An exclusion region is disposed on a second side of the active region and has minority carriers within the exclusion region flowing toward the active region. It receives majority carriers from the active region. At least one of the extraction and exclusion region provides a barrier for substantially reducing flow of one of the majority carriers or the minority carriers, whichever is flowing toward the active region, while permitting flow of the other minority carriers or majority carriers flowing out of the active region.
    Type: Application
    Filed: April 17, 2008
    Publication date: October 22, 2009
    Applicant: EPIR TECHNOLOGIES, INC.
    Inventors: Christoph H. Grein, Silviu Velicu, Sivalingam Sivananthan
  • Patent number: 7518207
    Abstract: The ternary alloy CdSexTe1-x(2 1 1) and the quaternary alloy Cd1-zZnzSexTe1-x have been grown on Si(2 1 1) substrates using molecular beam epitaxy (MBE). The growth of CdSeTe is facilitated using a compound CdTe effusion source and a Se effusion source while the growth of CdZnSeTe is facilitated using a compound CdTe effusion source, a compound ZnTe effusion source, and an elemental Se source. The alloy compositions (x) and (z) of CdSexTe1-x ternary compound and Cd1-zZnzSexTe1-x are controlled through the Se/CdTe and ZnTe/CdTe flux ratios. The rate of Se incorporation is higher than the rate of Te incorporation as growth temperature increases. As-grown CdSeTe with 4% Se and CdZnSeTe with 4% Zn+Se, which is substantially lattice matched to long-wavelength infrared HgCdTe materials, exhibits excellent surface morphology, low surface defect density (less than 500 cm2), and a narrow X-ray rocking curve (a full-width at half maximum of 103 arcsec).
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: April 14, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Yuanping Chen, Gregory Brill, Nibir K. Dhar
  • Publication number: 20090020841
    Abstract: The present invention relates to a stable mesa-type photodetector with lateral diffusion junctions. The invention has found that without resorting to the complicated regrowth approach, a simple Zn diffusion process can be used to create high-quality semiconductor junction interfaces at the exposed critical surface or to terminate the narrow-bandgap photon absorption layers. The invention converts the epi material layers near or at the vicinity of the etched mesa trench or etched mesa steps into a different dopant type through impurity diffusion process. Preferably the diffused surfaces are treated with a subsequent surface passivation. This invention can be applied to both top-illuminating and bottom-illuminating configurations.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 22, 2009
    Applicant: JDS Uniphase Corporation
    Inventors: Syn-Yem Hu, Zhong Pan
  • Publication number: 20080315342
    Abstract: Device and method of forming a device in which a substrate (10) is fabricated with at least part of an electronic circuit for processing signals. A bulk single crystal material (14) is formed on the substrate, either directly on the substrate (10) or with an intervening thin film layer or transition region (12). A particular application of the device is for a radiation detector.
    Type: Application
    Filed: December 21, 2006
    Publication date: December 25, 2008
    Applicant: DURHAM SCIENTIFIC CRYSTALS LIMITED
    Inventors: Arnab Basu, Max Robinson, Ben Cantwell, Andy Brinkman
  • Patent number: RE41427
    Abstract: Hybrid crystalline organic-inorganic quantum confined systems are disclosed, which contain alternating layers of a bifunctional organic ligand and a II-VI semiconducting chalcogenide, wherein the semiconducting chalcogenide layers contain chalcogenides have the formula MQ, in which M is independently selected from II-VI semiconductor cationic species and Q is independently selected from S, Se and Te; and the bifunctional organic ligands of each organic ligand layer are bonded by a first functional group to an element M of an adjacent II-VI semiconducting chalcogenide layer and by a second functional group to an element M from the adjacent opposing II-VI semiconducting chalcogenide layer, so that the adjacent opposing II-VI semiconducting chalcogenide layers are linked by the bifunctional organic ligands of the organic ligand layers. Optical absorption experiments show that these systems produce a significant blue shift in their optical absorption edges, 1.2-1.5 eV, compared to a shift of 1.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: July 13, 2010
    Assignee: Rutgers, The State University
    Inventors: Jing Li, Xiaoying Huang