With Doping Profile To Adjust Barrier Height Patents (Class 257/450)
  • Patent number: 8749675
    Abstract: A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: June 10, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Masanori Ogura, Shin Kikuchi, Tetsuya Itano
  • Patent number: 8416329
    Abstract: Unit cells each having a plurality of photodiodes 101a and 101b, a plurality of transfer MOSFETs 102a and 102b provided in correspondence to the plurality of photodiodes, respectively and a common amplifying MOSFET 104 for amplifying and outputting signals read out from the plurality of diodes are arranged two-dimensionally, and, plural photodiodes are disposed around the photodiode 101b and trapping regions 130, 134, 135 and 132 are for trapping excessive carriers from the photodiode 101b are provided between the photodiode 101b and the plural photodiodes, respectively.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroki Hiyama, Masanori Ogura, Seiichiro Sakai
  • Patent number: 8390708
    Abstract: A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Masanori Ogura, Shin Kikuchi, Tetsuya Itano
  • Patent number: 8344398
    Abstract: A method of making a diode begins by depositing an AlxGa1-xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n? GaN layer, an AlxGa1-xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au—Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n?, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal, and an ohmic contact is deposited on the n+ layer.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 1, 2013
    Assignee: Cree, Inc.
    Inventors: Primit Parikh, Sten Heikman
  • Patent number: 7978241
    Abstract: A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: July 12, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Masanori Ogura, Shin Kikuchi, Tetsuya Itano
  • Patent number: 7928442
    Abstract: Provided is an optical device having a strained buried channel area. The optical device includes: a semiconductor substrate of a first conductive type; a gate insulating layer formed on the semiconductor substrate; a gate of a second conductive type opposite to the first conductive type, formed on the gate insulating layer; a high density dopant diffusion area formed in the semiconductor substrate under the gate and doped with a first conductive type dopant having a higher density than the semiconductor substrate; a strained buried channel area formed of a semiconductor material having a different lattice parameter from a material of which the semiconductor substrate is formed and extending between the gate insulating layer and the semiconductor substrate to contact the high density dopant diffusion area; and a semiconductor cap layer formed between the gate insulating layer and the strained buried channel area.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: April 19, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Bongki Mheen, Jeong-Woo Park, Hyun-Soo Kim, Gyungock Kim
  • Publication number: 20100301445
    Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Patent number: 7834367
    Abstract: A method of making a diode begins by depositing an AlxGa1?xN nucleation layer on a SiC substrate, then depositing an n+ GaN buffer layer, an n? GaN layer, an AlxGa1?xN barrier layer, and an SiO2 dielectric layer. A portion of the dielectric layer is removed and a Schottky metal deposited in the void. The dielectric layer is affixed to the support layer with a metal bonding layer using an Au-Sn utectic wafer bonding process, the substrate is removed using reactive ion etching to expose the n+ layer, selected portions of the n+, n?, and barrier layers are removed to form a mesa diode structure on the dielectric layer over the Schottky metal,; and an ohmic contact is deposited on the n+ layer.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: November 16, 2010
    Assignee: Cree, Inc.
    Inventors: Primit Parikh, Sten Heikman
  • Patent number: 7812873
    Abstract: Unit cells each having a plurality of photodiodes 101a and 101b, a plurality of transfer MOSFETs 102a and 102b provided in correspondence to the plurality of photodiodes, respectively and a common amplifying MOSFET 104 for amplifying and outputting signals read out from the plurality of diodes are arranged two-dimensionally, and, plural photodiodes are disposed around the photodiode 101b and trapping regions 130, 134, 135 and 132 are for trapping excessive carriers from the photodiode 101b are provided between the photodiode 101b and the plural photodiodes, respectively.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: October 12, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroki Hiyama, Masanori Ogura, Seiichiro Sakai
  • Patent number: 7679662
    Abstract: Disclosed herein is a solid-state imaging element which includes a plurality of drive signal inputs, a plurality of bus lines, and a plurality of vertical transfer register electrodes. In the solid-state imaging element, a charge accumulated in light-receiving elements in a pixel region is vertically transferred by the drive signals input to the electrodes. Each of the electrodes has a contact part connected to the second contact and having a width smaller than a width of the electrodes in the pixel region, and a blank region is formed between predetermined adjacent two of the contact parts so that a width of the blank region is larger than a distance between respective two of the contact parts other than the predetermined adjacent two of the contact parts. The first contact is disposed on the blank region.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 16, 2010
    Assignee: Sony Corporation
    Inventors: Sadamu Suizu, Masaaki Takayama
  • Patent number: 7586172
    Abstract: The photodiode comprises an upper pn junction (D1) formed between an upper layer and an intermediate layer supported by one portion of a semiconductor substrate. A lower junction is formed between the intermediate layer and the substrate portion. The forward bias voltage of the upper junction (D1) is lower than the forward bias voltage of the lower junction (D2). The charges are permitted to be stored in the photodiode until the said upper junction is forward-biased so as to favor (A1) the recombination of the carriers coming from the intermediate layer with the carriers of the upper layer.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 8, 2009
    Assignee: STMicroelectronics SA
    Inventor: Francois Roy
  • Patent number: 7531885
    Abstract: A primary object of the present invention is to provide a photoelectric conversion apparatus with less leak current in a floating diffusion region. In order to obtain the above object, a photoelectric conversion apparatus according to the present invention includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a floating diffusion region formed from a second semiconductor region having a second conductivity type for converting the signal charge generated by the photodiode into a signal voltage, the second semiconductor region being formed in the first semiconductor region, and an electrode formed above the first semiconductor region through an insulating film and having an effect of increasing a concentration of majority carriers in the first semiconductor region, in which the electrode is not formed above a depletion region formed from the second semiconductor region.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: May 12, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akira Okita, Katsuhito Sakurai, Hiroki Hiyama, Hideaki Takada
  • Patent number: 7460162
    Abstract: A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: December 2, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Masanori Ogura, Shin Kikuchi, Tetsuya Itano
  • Patent number: 7420215
    Abstract: A transparent conductive film substantially made from In2O3, SnO2 and ZnO, having a molar ratio In/(In+Sn+Zn) of 0.65 to 0.8 and also a molar ratio Sn/Zn of 1 or less: The transparent conductive film has a favorable electric contact property with an electrode or line made from Al or Al alloy film. Further, a semiconductor device having an electrode or line made from the transparent conductive film has high reliability and productivity.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: September 2, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunori Inoue, Nobuaki Ishiga, Kensuke Nagayama, Toru Takeguchi, Kazumasa Kawase
  • Patent number: 7332782
    Abstract: A dye-sensitized solar cell with high conversion efficiency is provided. The dye-sensitized solar cell according to the present invention has, between an electrode (2) formed on a surface of a transparent substrate (1) and a counter electrode (6), a light-absorbing layer (3) containing light-absorbing particles carrying dye and an electrolyte layer (5), characterized in that the light-absorbing layer (3) containing light-scattering particles (4) different in size from the light-absorbing particles. In such a dye-sensitized solar cell according to the present invention, the energy of light, which passes through a light-absorbing layer in a conventional cell structure, can be strongly absorbed by the dye in the light-absorbing layer of the present invention. This will increase the conversion efficiency and output current of the dye-sensitized solar cell.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 19, 2008
    Assignee: Sony Corporation
    Inventor: Takashi Tomita
  • Patent number: 7332785
    Abstract: A dye-sensitized solar cell with high conversion efficiency is provided. The dye-sensitized solar cell according to the present invention has, between an electrode (2) formed on a surface of a transparent substrate (1) and a counter electrode (6), a light-absorbing layer (3) containing light-absorbing particles carrying dye and an electrolyte layer (5), characterized in that the light-absorbing layer (3) containing light-scattering particles (4) different in size from the light-absorbing particles. In such a dye-sensitized solar cell according to the present invention, the energy of light, which passes through a light-absorbing layer in a conventional cell structure, can be strongly absorbed by the dye in the light-absorbing layer of the present invention. This will increase the conversion efficiency and output current of the dye-sensitized solar cell.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: February 19, 2008
    Assignee: Sony Corporation
    Inventor: Takashi Tomita
  • Patent number: 7312507
    Abstract: A dye-sensitized solar cell with high conversion efficiency is provided. The dye-sensitized solar cell according to the present invention has, between an electrode (2) formed on a surface of a transparent substrate (1) and a counter electrode (6), a light-absorbing layer (3) containing light-absorbing particles carrying dye and an electrolyte layer (5), characterized in that the light-absorbing layer (3) containing light-scattering particles (4) different in size from the light-absorbing particles. In such a dye-sensitized solar cell according to the present invention, the energy of light, which passes through a light-absorbing layer in a conventional cell structure, can be strongly absorbed by the dye in the light-absorbing layer of the present invention. This will increase the conversion efficiency and output current of the dye-sensitized solar cell.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: December 25, 2007
    Assignee: Sony Corporation
    Inventor: Takashi Tomita
  • Patent number: 7217982
    Abstract: A photodetector (10) includes a substrate (12) having a surface; a first layer (14) of semiconductor material that is disposed above the surface, the first layer containing a first dopant at a first concentration for having a first type of electrical conductivity; and a second layer (16) of semiconductor material overlying the first layer. The second layer contains a second dopant at a second concentration for having a second type of electrical conductivity and forms a first p-n junction (15) with the first layer. The second layer is compositionally graded through at least a portion of a thickness thereof from wider bandgap semiconductor material to narrower bandgap in a direction away from the p-n junction. The compositional grading can be done in a substantially linear fashion, or in a substantially non-linear fashion, e.g., in a stepped manner.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 15, 2007
    Assignee: Raytheon Company
    Inventors: Scott M. Taylor, Kenneth Kosai, James A. Finch
  • Patent number: 7187052
    Abstract: A primary object of the present invention is to provide a photoelectric conversion apparatus with less leak current in a floating diffusion region. In order to obtain the above object, a photoelectric conversion apparatus according to the present invention includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a floating diffusion region formed from a second semiconductor region having a second conductivity type for converting the signal charge generated by the photodiode into a signal voltage, the second semiconductor region being formed in the first semiconductor region, and an electrode formed above the first semiconductor region through an insulating film and having an effect of increasing a concentration of majority carriers in the first semiconductor region, in which the electrode is not formed above a depletion region formed from the second semiconductor region.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: March 6, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akira Okita, Katsuhito Sakurai, Hiroki Hiyama, Hideaki Takada
  • Patent number: 7053293
    Abstract: GaAs substrates with compositionally graded buffer layers for matching lattice constants with high-Indium semiconductor materials such as quantum well infrared photoconductor devices and thermo photo voltaic devices are disclosed.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: May 30, 2006
    Assignee: Bae Systems information and Electronic Systems Intergration Inc.
    Inventor: Parvez N Uppal
  • Patent number: 7012314
    Abstract: A method of making a semiconductor device having a predetermined epitaxial region, such as an active region, with reduced defect density includes the steps of: (a) forming a dielectric cladding region on a major surface of a single crystal body of a first material; (b) forming a first opening that extends to a first depth into the cladding region; (c) forming a smaller second opening, within the first opening, that extends to a second depth greater than the first depth and that exposes an underlying portion of the major surface of the single crystal body; (d) epitaxially growing regions of a second semiconductor material in each of the openings and on the top of the cladding region; (e) controlling the dimensions of the second opening so that defects are confined to the epitaxial regions grown within the second opening and on top of the cladding region, a first predetermined region being located within the first opening and being essentially free of defects; (D planarizing the top of the device to remove all
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: March 14, 2006
    Assignee: Agere Systems Inc.
    Inventors: Jeffrey Devin Bude, Malcolm Carroll, Clifford Alan King
  • Publication number: 20040251508
    Abstract: A dye-sensitized solar cell with high conversion efficiency is provided. The dye-sensitized solar cell according to the present invention has, between an electrode (2) formed on a surface of a transparent substrate (1) and a counter electrode (6), a light-absorbing layer (3) containing light-absorbing particles carrying dye and an electrolyte layer (5), characterized in that the light-absorbing layer (3) containing light-scattering particles (4) different in size from the light-absorbing particles. In such a dye-sensitized solar cell according to the present invention, the energy of light, which passes through a light-absorbing layer in a conventional cell structure, can be strongly absorbed by the dye in the light-absorbing layer of the present invention. This will increase the conversion efficiency and output current of the dye-sensitized solar cell.
    Type: Application
    Filed: July 22, 2004
    Publication date: December 16, 2004
    Inventor: Takashi Tomita
  • Publication number: 20040155311
    Abstract: The invention relates to an opto-electronic component for converting electromagnetic radiation into an intensity-dependent photocurrent, comprising a substrate (1) with a microelectronic circuit whose surface is provided with a first layer (7) which is electrically contacted thereto and made of amorphous silicon a-i:H or alloys thereof, and at least one other optically active layer (8) is disposed upstream from said first layer in the direction of incident light thereof (7). The invention also relates to the production thereof. The aim of the invention is to improve upon an opto-electronic component of tho above-mentioned variety in order to obtain high spectral sensitivity within the visible light range and, correspondingly, significantly reduce sensitivity to radiation in the infrared range without incurring any additional construction costs.
    Type: Application
    Filed: April 12, 2004
    Publication date: August 12, 2004
    Inventors: Peter Rieve, Jens Prima, Konstantin Seibel, Marcus Walder
  • Patent number: 6683326
    Abstract: The present invention relates to a high-sensitivity top-electrode and bottom-illuminated type photodiode. The device consists of a highly doped buffer layer, a photo-detecting layer on a semi-insulating substrate. An electrode is formed on the conductive domain that is formed in the photo-detecting layer, and another electrode is formed on the partly exposed peripheral area of the highly-doped buffer layer by removing a part of the photo-detecting layer. As the semi-insulating substrate absorbs less light in the substrate, a decrease of sensitivity by the substrate absorption can be prevented.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: January 27, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuhiro Iguchi, Yoshiki Kuhara
  • Patent number: 6545331
    Abstract: Disclosed is a solid state imaging device, comprising: a photodetection diode; and an insulated gate field effect transistor provided adjacent to the photodetection diode for optical signal detection. In this case, a carrier pocket is provided in a second well region, and an element isolation insulating film is formed to isolate adjacent unit pixels from each other. In addition, an element isolation region of an opposite conductivity type is formed to isolate a second semiconductor layer of one conductivity type in such a way as to include the lower surface of the element isolation insulating film and reach a first semiconductor layer.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: April 8, 2003
    Assignee: Innotech Corporation
    Inventor: Takashi Miida
  • Publication number: 20030047791
    Abstract: The present invention provides an improved optoelectronic device and a method of manufacture therefor. The optoelectronic device includes a doped buffer layer located over a substrate having an optical window formed therein and an absorber layer located over the doped buffer layer. The optoelectronic device further includes a doped region located over the absorber layer and having a dopant tail that extends substantially through the absorber layer, and the doped buffer layer and the dopant tail are doped to augment an optical power threshold for bandwidth collapse of the optoelectronic device.
    Type: Application
    Filed: September 13, 2001
    Publication date: March 13, 2003
    Applicant: Agere Systems Optoelectronics Guardian Corp.
    Inventors: Edward J. Flynn, Leonard A. Gruezke, David V. Lang, Bora M. Onat, P. Douglas Yoder
  • Patent number: 6225670
    Abstract: The present invention discloses a semiconductor based detector for radiation with a small but effective barrier between the radiation sensitive volume in the semiconductor and the regions and junctions with readout circuitry, and with no or a lower barrier between the semiconductor substrate and the regions and junctions adapted and meant for collecting the charge carriers generated by the radiation in the semiconductor substrate.
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: May 1, 2001
    Assignee: IMEC
    Inventor: Bart Dierickx
  • Patent number: 6146957
    Abstract: Since the PN junction of a photodiode is formed of a silicon substrate having a low impurity concentration and an epitaxial layer, the width of the depletion layer in the PN junction is formed wider, the parasitic capacitance by the junction capacitance is lowered, and the diffusion length of the silicon substrate is formed longer. Besides, a buried layer containing a high impurity concentration is formed by a high energy ion implantation method in such a depth that the buried layer cannot be depleted by a reverse voltage applied to the PN junction, which is served as a region to lead out the anode, which accordingly results in a low parasitic resistance at the anode. Thereby, the invention provides a semiconductor device including a photodetector and a method of manufacturing the same that achieves a high photoelectric conversion sensitivity and an excellent frequency characteristic at the same time.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: November 14, 2000
    Assignee: Sony Corporation
    Inventor: Youichi Yamasaki
  • Patent number: 6107652
    Abstract: A metal-semiconductor-metal photodetector including an absorbent layer, a barrier layer of greater forbidden band energy on which there are deposited Schottky electrodes and a transition layer of graded composition, the photodetector including a doping plane situated in the vicinity of the join between the absorbent layer and the transition layer of graded composition.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: August 22, 2000
    Assignee: France Telecom
    Inventors: Andre Scavennec, Abdelkader Temmar
  • Patent number: 6107643
    Abstract: A photoconductive switch, having at least a part of a first layer doped with dopants providing substantially no free charge carriers for charge transport between the electrodes at the normal operation temperature of the switch, has the nature of the doping, i.e., concentration, type (n or p). The dopants, varied from the first side to an opposite, second side of the first layer for co-operating with the intensity distribution of the light emitted by an illumination source, strikes the first side versus energy so as to obtain a substantially even creation of free charge carriers throughout the depth of the first layer from the first to the second side when illuminated by the illumination source.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: August 22, 2000
    Assignee: ABB AB
    Inventors: Per Skytt, Erik Johansson, Mark Irwin
  • Patent number: 5814873
    Abstract: A solid-state infrared sensor using a Schottky barrier diode. The sensor has a first layer of a semiconductor of a first conductivity type and a second layer of a metal or a metal silicide and the first and second layer are joined to each other to form the Schottky barrier diode. Further, the sensor includes a third layer disposed in the depletion layer formed in the first layer out of contact with the Schottky junction interface. The third layer contains an impurity which is introduced for positioning an effective barrier formed in the depletion layer under an image force, closely to the junction interface. Intensity of an infrared radiation is detected using a multiple reflection effect of hot carriers.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: September 29, 1998
    Assignee: NEC Corporation
    Inventor: Kazuo Konuma
  • Patent number: 5796155
    Abstract: An improvement of the design of Schottky barrier infrared detector (SBIR) arrays, as taught by Roosild, et al. We describe modifications of the detector unit cell design which maximize the fraction of detector electrode area exhibiting full spectral emission response. In particular we recommend changes in the impurity density profile, or "doping", under the Schottky electrode. The new detector cell design can result in a two-fold increase in the photoemission of SBIR arrays, which have small detector cell dimensions.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: August 18, 1998
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Freeman D. Shepherd, Jonathan M. Mooney
  • Patent number: 5747840
    Abstract: The quantum efficiency of a photodiode is substantially increased by forming the photodiode on a heavily-doped layer of semiconductor material which, in turn, is formed on a semiconductor substrate. The heavily-doped layer of semiconductor material tends to repel information carriers in the photodiode from being lost to the substrate, and prevents noise carriers from the substrate from diffusing up into the photodiode. In addition, the red and blue photoresponses are balanced by adjusting the depth of the photodiode.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: May 5, 1998
    Assignee: Foveonics, Inc.
    Inventor: Richard Billings Merrill
  • Patent number: 5539221
    Abstract: An avalanche photodiode is provided which consists of a staircase APD with a periodic multilayer structure graded in composition from InAlAs to InGa.sub.x Al.sub.(1-x) As (x>0.1) as the multiplication layer to improve the dark current characteristic. Another photodiode with separate photoabsorption and multiplication regions is provided with an electric-field relaxation layer whose bandgap is wider than that of the photoabsorption and has a triple structure with a highly-doped layer sandwiched between lightly-doped layers. This photodiode incorporates in detail on an n-type InP substrate, an avalanche multiplication layer 13 of a periodic multilayer structure graded in composition from n.sup.- -InAlAs to InGa.sub.x Al.sub.(1-x) As, a p.sup.- -InGaAs photoabsorption layer 17, and an InP electric-field relaxation triple layer 16 consisting of n.sup.-, p.sup.+, and p.sup.- layers between the avalanche multiplication layer 13 and the photoabsorption layer 17.
    Type: Grant
    Filed: April 7, 1994
    Date of Patent: July 23, 1996
    Assignee: NEC Corporation
    Inventors: Masayoshi Tsuji, Kikuo Makita