Including High Voltage Or High Power Devices Isolated From Low Voltage Or Low Power Devices In The Same Integrated Circuit Patents (Class 257/500)
  • Patent number: 7804131
    Abstract: A multi-chip module that includes a conductive element connecting at least two semiconductor devices, the conductive element including enhancements for improving the mechanical coupling between the conductive element and the molded housing of the MCM.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: September 28, 2010
    Assignee: International Rectifier Corporation
    Inventors: Chuan Cheah, Kunzhong Hu
  • Patent number: 7777294
    Abstract: On a semiconductor substrate, a well is formed. In the well, one MOS transistor including a gate electrode, a source region, a source field limiting layer and a source/drain region, and another MOS transistor including a gate electrode, a drain electrode, a drain field limiting layer and a source/drain region are formed. The one and another MOS transistors are connected in series through the source/drain region common to the two transistors. Accordingly, a semiconductor device can be provided in which increase in pattern layout area is suppressed when elements including a high-breakdown voltage MOS transistor are to be connected in series.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: August 17, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Masatoshi Taya
  • Patent number: 7768094
    Abstract: A semiconductor integrated circuit includes a rectangular low speed circuit area including a low speed circuit comprising a low speed transistor having a first source extension region and a first drain extension region, and a rectangular high speed circuit area adjacent to the low speed circuit area and including a high speed circuit comprising a high speed transistor having a second source extension region and a second drain extension region thinner than the first source and drain extension regions.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: August 3, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshihiko Iinuma
  • Patent number: 7759759
    Abstract: An integrated circuit includes a high voltage NPN bipolar transistor and a low voltage device. The NPN bipolar transistor includes a lightly doped p-well as the base region of the transistor while the low voltage devices are built using standard, more heavily doped p-wells. By using a process including a lightly doped p-well and a standard p-well, high and low voltage devices can be integrated onto the same integrated circuit. In one embodiment, the lightly doped p-well and the standard p-well are formed by performing ion implantation using a first dose to form the lightly doped p-well, masking the lightly doped p-well, and performing ion implantation using a second dose to form the standard p-well. The second dose is the difference of the dopant concentrations of the lightly doped p-well and the standard p-well. Other high voltage devices can also be built by incorporating the lightly doped p-well structure.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 20, 2010
    Assignee: Micrel Incorporated
    Inventor: Hideaki Tsuchiko
  • Patent number: 7754572
    Abstract: A semiconductor device has a semiconductor substrate, a pair of diffusion layers formed in a predetermined regions of the semiconductor substrate, a gate insulation film formed on a region of the semiconductor substrate being interposed between the pair of the diffusion layers, a gate electrode formed on the gate insulation film, insulation films formed on the sides of the gate electrode, each of the insulation films being constructed from one or more layers, sidewall spacers formed on the sides of the gate electrode while the insulation films are interposed between the sidewall spacers and the gate electrode, and highly doped diffusion layers formed in the diffusion layers except for the parts under the insulation films and the sidewall spacers.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 13, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hisayuki Maekawa
  • Patent number: 7750429
    Abstract: A pedestal is formed out of the pad layer such that two edges of the pedestal coincide with a border of the wells as implanted. An extended pedestal is formed over the pedestal by depositing a conformal dielectric layer. The area of the extended pedestal is exposed the semiconductor surface below is recessed to a recess depth. Other trenches including at least one intra-well isolation trench are lithographically patterned. After a reactive ion etch, both an inter-well isolation trench and at least one intra-well isolation trench are formed. The width of the inter-well isolation trench may be reduced due to the deeper bottom surface compared to the prior art structures. The boundary between the p-well and the n-well below the inter-well isolation structure is self-aligned to the middle of the inter-well isolation structure.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Zhijiong Luo, Haining S. Yang
  • Publication number: 20100164052
    Abstract: An integrated circuit (IC) includes a substrate having a semiconducting surface, a first array of devices on and in the semiconducting surface including first and second coacting current conducting nodes, a plurality of layers disposed on the substrate and including at a electrically conductive layers and dielectric layer, and a plurality of bump pads on or in the top surface of the dielectric layers. In the IC, the electrically conductive layers define electrical traces, where a first portion of the electrical traces contact a first portion of the bump pads exclusively to a portion of the first coacting current conducting nodes, where a second portion of the electrical traces contact a second portion of the bump pads exclusively to a portion of the second coacting current conducting nodes, and where the electrical traces are electrically isolated from one another by the dielectric layers.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: STEFAN W. WIKTOR, VLADIMIR A. MURATOV, ANTHONY L. COYLE, BERNHARD P. LANGE
  • Patent number: 7745902
    Abstract: A system and method is disclosed for providing improved trench isolation of semiconductor devices. An isolation trench of the present invention is manufactured as follows. A substrate of a semiconductor device is provided and a trench is etched in the substrate. Then a silicon liner is grown in the trench. The trench is then filled with polysilicon material. Polysilicon material is also deposited on top of the filled trench to protect the silicon dioxide liner from the effects of subsequent etch procedures and oxidation procedures. The initial height of the polysilicon material is selected to be large enough to allow the polysilicon material to survive the subsequent etch procedures and oxidation procedures.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: June 29, 2010
    Assignee: National Semiconductor Corporation
    Inventor: Richard W. Foote
  • Patent number: 7741896
    Abstract: According to one embodiment, there is provided a high voltage drive circuit comprising drive and sense electrodes formed substantially in a single plane. The device effects signal transfer between drive and receive circuits through the drive and sense electrodes by capacitive means, and permits high voltage devices, such as IGBTs, to be driven thereby without the use of high voltage transistors, thereby eliminating the need to use expensive fabrication processes such as SOI when manufacturing high voltage gate drive circuits and ICs. The device may be formed in a small package using, by way of example, using CMOS or other conventional low-cost semiconductor fabrication and packaging processes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 22, 2010
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Fun Kok Chow, Gek Yong Ng, Richard Kok Keong Lum
  • Patent number: 7741694
    Abstract: A semiconductor integrated circuit device according to the present invention includes an N-type embedded diffusion region between a substrate and an epitaxial layer in first and second island regions serving as small signal section. The N-type embedded diffusion region connects to N-type diffusion regions having supply potential. The substrate and the epitaxial layer are thus partitioned by the N-type embedded diffusion region having supply potential in the island regions serving as small signal section. This structure prevents the inflow of free carriers (electrons) generated from a power NPN transistor due to the back electromotive force of the motor into the small signal section, thus preventing the malfunction of the small signal section.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: June 22, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Ryo Kanda, Shigeaki Okawa, Kazuhiro Yoshitake
  • Patent number: 7741178
    Abstract: A method for fabricating a vertical channel transistor in a semiconductor device includes forming a plurality of pillars arranged in a first direction and a second direction crossing the first direction over a substrate, wherein each of the pillars includes a hard mask pattern thereon, forming a bit line region in the substrate between the pillars, forming a first sidewall insulation layer on a sidewall of each of the pillars, forming an insulation layer for filling a space between the pillars, forming a mask pattern for exposing the substrate between lines of the pillars arranged in the first direction over a resulting structure including the insulation layer, etching the insulation layer and the substrate using the mask pattern as an etch barrier to form a trench for defining a bit line in the substrate, and forming a second sidewall insulation layer over a resulting structure including the trench.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 22, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hong-Gu Yi
  • Publication number: 20100148254
    Abstract: A semiconductor device and a method of manufacturing the same. The method includes preparing a semiconductor substrate having high-voltage and low-voltage device regions, forming a field insulating layer in the high-voltage device region, forming a first gate oxide layer on the semiconductor substrate, exposing the semiconductor substrate in the low-voltage device region by etching part of the first gate oxide layer and also etching part of the field insulating layer to form a stepped field insulating layer, forming a second gate oxide layer on the first gate oxide layer in the high-voltage device region and on the exposed semiconductor substrate in the low-voltage device region, and forming a gate over the stepped field insulating layer and part of the second gate oxide layer in the high-voltage device region adjoining the field insulating layer.
    Type: Application
    Filed: October 1, 2009
    Publication date: June 17, 2010
    Inventor: Cho Eung Park
  • Publication number: 20100148298
    Abstract: A semiconductor device is composed of a pair of semiconductor chips (402, 404) arranged parallel on the same flat plane; a high voltage bus bar (21) bonded on the surface on the collector side of one semiconductor chip (402); a low voltage bus bar (23) connected to the surface on the emitter side of the other semiconductor chip (404) with a bonding wire (27); a first metal wiring board (24-1) connected to the surface on the emitter side of the semiconductor chip (402) with a bonding wire (26); a second metal wiring board (24-2) bonded on the surface on the collector side of the semiconductor chip (404); a third metal wiring board (24-3) connected to the first metal wiring board (24-1); a fourth metal wiring board (24-4) connected by being bent from an end portion of the second metal wiring board (24-2); and an output bus bar (24) having output terminals (405) extending from each end portion of the third metal wiring board (24-3) and that of the fourth metal wiring board (24-4).
    Type: Application
    Filed: May 17, 2007
    Publication date: June 17, 2010
    Applicant: .Honda Motor Co., Ltd.,
    Inventors: Fumitomo Takano, Shinya Watanabe, Tsukasa Aiba, Joji Nakashima, Hiroshi Otsuka
  • Patent number: 7737871
    Abstract: An integrated circuit comprises a first microcontroller unit located on a first die. The first microcontroller unit includes a first processing core for providing a parallel stream of data. A second microcontroller unit is located on a second die and includes a second processing core for receiving the parallel stream of data. Voltage isolation circuitry transmits data from the parallel data stream between the first microcontroller and the second microcontroller in a serial data stream and provides galvanic isolation between the first microcontroller unit and the second microcontroller unit.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 15, 2010
    Assignee: Silicon Laboratories Inc.
    Inventors: Ka Y. Leung, Donald E. Alfano, David P. Bresemann
  • Patent number: 7737526
    Abstract: An isolation structure for a semiconductor device comprises a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate. A MOSFET is formed in the isolated pocket.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 15, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7732858
    Abstract: A high voltage integrated circuit contains a freewheeling diode embedded in a transistor. It further includes a control block controlling a high voltage transistor and a power block—including the high voltage transistor—isolated from the control block by a device isolation region. The high voltage transistor includes a semiconductor substrate of a first conductivity type, a epitaxial layer of a second conductivity type on the semiconductor substrate, a buried layer of the second conductivity type between the semiconductor substrate and the epitaxial layer, a collector region of the second conductivity type on the buried layer, a base region of the first conductivity type on the epitaxial layer, and an emitter region of the second conductivity type formed in the base region. The power block further includes a deep impurity region of the first conductivity type near the collector region to form a PN junction.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: June 8, 2010
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Taeg-hyun Kang, Sung-son Yun
  • Patent number: 7732890
    Abstract: The high voltage integrated circuit comprises a P substrate. An N well barrier is disposed in the substrate. Separated P diffusion regions forming P wells are disposed in the substrate for serving as the isolation structures. The low voltage control circuit is located outside the N well barrier. A floating circuit is located inside the N well barrier. In order to develop a high voltage junction barrier in between the floating circuit and the substrate, the maximum space of devices of the floating circuit is restricted.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 8, 2010
    Assignee: System General Corp.
    Inventors: Chiu-Chih Chiang, Chih-Feng Huang, You-Kuo Wu, Long Shih Lin
  • Patent number: 7725124
    Abstract: An object of the present invention is to provide a transmitter-receiver RF-IC having a built-in regulator, which can reduce a minimum value of an input voltage of the regulator without increasing its area, the input voltage being supplied from a battery, the transmitter-receiver RF-IC being capable of normal operation with the input voltage, whereby the operating time of a mobile terminal can be improved as compared with the prior art. According to the present invention, in order to achieve the above object, an output end of a regulator built into a RF-IC is first led to the outside of the RF-IC. Then, the output end is led to an area in proximity to the circuit block by use of wiring on a mobile terminal substrate whose resistance is low, or by use of wiring on a module whose resistance is low, thereby shortening the wiring length inside the RF-IC.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: May 25, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Taizo Yamawaki, Yoshiaki Harasawa
  • Patent number: 7719077
    Abstract: Disclosed is a method for the production of a semiconductor component provided with at least one first vertical power component (5,9) and at least one lateral, active component (6) and/or at least one second vertical power component (10) between which is placed at least one trench (2) filled with an insulation (4). Also disclosed is a semiconductor component produced with the method. The semiconductor component is distinguished by an eccentric or concentric arrangement of the respective functional components (5,6,9,10) which are separated from each other by a trench insulation. To produce such a semiconductor component, at least one trench (2), which completely encompasses at least one part area of the front side and then is filled with an insulation (4) is etched into a silicon substrate (1). In the further course of the method, the entire area of the silicon substrate (1) is thinned (1) from said back side to said insulation (4), i.e. to the bottom side of the insulation.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: May 18, 2010
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Klaus Kohlmann Von-Platen, Helmut Bernt, Detlef Friedrich
  • Patent number: 7718494
    Abstract: A method for forming a high-voltage drain metal-oxide-semiconductor (HVD-MOS) device includes providing a semiconductor substrate; forming a well region of a first conductivity type; and forming an embedded well region in the semiconductor substrate and only on a drain side of the HVD-MOS device, wherein the embedded region is of a second conductivity type opposite the first conductivity type. The step of forming the embedded well region includes simultaneously doping the embedded well region and a well region of a core regular MOS device, and simultaneously doping the embedded well region and a well region of an I/O regular MOS device, wherein the core and I/O regular MOS devices are of the first conductivity type. The method further includes forming a gate stack extending from over the embedded well region to over the well region.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: May 18, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung Chih Tsai, Michael Yu, Chih-Ping Chao, Chih-Sheng Chang
  • Publication number: 20100109083
    Abstract: Disclosed are a semiconductor device and a method for manufacturing the same. The semiconductor device includes at least two of first and second conductive-type high-voltage transistors and first and second conductive-type low-voltage transistors. The first conductive-type high-voltage transistor include a first conductive-type well in a semiconductor substrate, a device isolation film in the first conductive-type well, a gate pattern on the first conductive-type well, second conductive-type drift regions in the semiconductor substrate at opposite sides of the gate pattern, second conductive-type source and drain regions in the second conductive-type drift region, a pick-up region to receive a bias voltage, and a first latch-up inhibiting region under the pick-up region. Accordingly, it is possible to reduce and prevent latchup without using a double guard ring and to eliminate an additional process to form first and second latch-up inhibiting regions.
    Type: Application
    Filed: October 1, 2009
    Publication date: May 6, 2010
    Inventors: San Hong Kim, Jong Min Kim
  • Patent number: 7705409
    Abstract: Some embodiments of the present invention provide high voltage transistors including a semiconductor substrate and a device isolation film defining an active region in the semiconductor substrate. A gate electrode extends along a central portion of the active region while maintaining a predetermined width on the semiconductor substrate. A second well is formed on both sides of the gate electrode in the semiconductor substrate, and partially extends to a bottom surface of the device isolation film. The active region in the semiconductor substrate comprises a first active region disposed under the gate electrode, and separating the device isolation film and a second active region defined by the first active region and the device isolation film. Methods of manufacturing high voltage transistors are also provided.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: April 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Oh-kyum Kwon, Yong-chan Kim, Joon-suk Oh, Myung-hee Kim, Hye-young Park
  • Patent number: 7704814
    Abstract: Disclosed is a method for manufacturing a semiconductor device including a low-voltage MOS transistor and a high-voltage MOS transistor.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 27, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventors: Hyun Soo Shin, Jae Won Han
  • Patent number: 7687847
    Abstract: A method of fabricating a semiconductor device is described. A substrate having a memory cell region and a high voltage circuit region are provided. First and second source/drain regions are formed in the substrate within these two regions. A silicon oxide layer, a first conductive layer and a top layer are sequentially formed over the substrate. A floating gate is defined in the memory cell region and the top layer and the first conductive layer of the high voltage circuit region are removed. The exposed silicon oxide layer is thickened. Thereafter, the top layer is removed and then a barrier layer is formed on the exposed surface of the floating gate. A second conductor layer is formed over the substrate, and then a gate is defined in the high voltage circuit region and a control gate is defined in the memory cell region.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 30, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Fang Lee, Dave Hsu, Asam Lin
  • Publication number: 20100059851
    Abstract: A CMOS circuit comprises at least one high voltage transistor (having gate and drain operating voltages of greater than 8V) and at least one high frequency capable transistor (having a maximum switching frequency of between 100 MHz and 1000 GHz) wherein said transistors are integrated on the same semiconductor substrate so as to allow the simple integration of high voltage circuits and RF (radio frequency) CMOS circuits on the same integrated circuit.
    Type: Application
    Filed: June 27, 2007
    Publication date: March 11, 2010
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: John Nigel Ellis, Paul Ronald Stribley, Jun Fu
  • Patent number: 7675221
    Abstract: Disclosed is an improved construction of an ultrasonic transducer, wherein a charge is not easily injected into an insulating film even when the bottom of a membrane comes in contact with a lower electrode, and a manufacturing method thereof without using the wafer laminating technique. The ultrasonic transducer includes a lower electrode; a cavity layer formed on the first electrode; an insulating film covering the cavity layer; and an upper electrode formed on the insulating film, wherein, the cavity layer includes projections formed into an insulating film protruded from the cavity layer. In addition, an opening is formed into the upper electrode, and this upper electrode having the opening formed therein is deposited at a position not being superposed with the projections of the insulating film when seen from the top.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: March 9, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Shuntaro Machida, Hiroyuki Enomoto, Yoshitaka Tadaki, Tatsuya Nagata
  • Patent number: 7671441
    Abstract: A semiconductor power device includes a semiconductor body with a plurality of gate trenches formed therein. Disposed within each gate trench is a spacer gate that extends along at least a portion of the sidewalls of the gate trench but not along at least a portion of the bottom surface of the trench. The spacer gate of each gate trench may also include a layer of silicide along outer surfaces thereof. The semiconductor body may include a channel region and each gate trench may extend through the channel region and into the semiconductor body. Formed at the bottom of each gate trench within the semiconductor body may be a tip implant of the same conductivity as the semiconductor body. In addition, a deep body implant of the same conductivity as the channel region may be formed at the base of the channel region.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: March 2, 2010
    Assignee: International Rectifier Corporation
    Inventor: Timothy Henson
  • Patent number: 7663861
    Abstract: An MIM capacitance element (capacitance lower electrode, capacitance insulation film and capacitance upper electrode) is provided on a first insulation film on a semiconductor substrate. An interlayer insulation film is provided so as to cover the MIM capacitance element and flattened. The interlayer insulation film is provided with a first connection plug connected to the capacitance upper electrode, a first wiring layer, and a second wiring layer. A second insulation film is provided on the interlayer insulation film. The second insulation film is provided with first and second openings. A wiring pull-out portion which connects the first connection plug and the second wiring layer to each other is provided on the second insulation film.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: February 16, 2010
    Assignee: Panasonic Corporation
    Inventor: Shinji Nishiura
  • Patent number: 7663220
    Abstract: A semiconductor module includes: a semiconductor element (13) having a working unit (11) and a guard ring unit (12); and heat radiation members (15, 14) arranged on an upper surface and a lower surface of the semiconductor element for cooling the semiconductor element. A passivation film (20) covers the guard ring but does not cover the working unit. The upper heat radiation member (15) is made of a flat metal plate connected to the working unit without contact with the passivation film. The upper heat radiation member is connected to the lower heat radiation member (14) in the thermo-conducting way.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: February 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Kitamura, Shinichi Yataka, Takao Endo, Yuujiro Tominaga, Toshihide Tanaka, Koichiro Sato
  • Patent number: 7656004
    Abstract: A display device includes a display panel, first and second gate drivers and a data driver. The display panel includes pixel regions respectively having first, second and third pixels. The first pixel is coupled to first, second gate lines and a data line. The second gate line is adjacent to the first gate line. The second pixel is coupled to the first gate line and a first data line. The third pixel is coupled to the first gate line and a second data line. The first gate driver provides the first gate line with a first gate driving signal, and the second gate driver provides the second gate line with a second gate driving signal. The data driver provides first and second data lines with image signal. The display quality of the display device may be enhanced and the number of the data lines may be reduced.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin Jeon, Hyung-Guel Kim
  • Patent number: 7655993
    Abstract: In a process of forming MISFETs that have gate insulating films that are mutually different in thickness on the same substrate, the formation of an undesirable natural oxide film at the interface between the semiconductor substrate and the gate insulating film is suppressed. A gate insulating film of MISFETs constituting an internal circuit is comprised of a silicon oxynitride film. Another gate insulating film of MISFETs constituting an I/O circuit is comprised of a laminated silicon oxynitride film and a high dielectric film. A process of forming the two types of gate insulating films on the substrate is continuously carried out in a treatment apparatus of a multi-chamber system. Accordingly, the substrate will not be exposed to air. Therefore, it is possible to suppress the inclusion of undesirable foreign matter and the formation of a natural oxide film at the interface between the substrate and the gate insulating films.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: February 2, 2010
    Assignee: Renesas Technology Corporation
    Inventors: Ryoichi Furukawa, Satoshi Sakai, Satoshi Yamamoto
  • Publication number: 20100019343
    Abstract: A semiconductor device comprises: a first transistor in a substrate; a second transistor in said substrate; and a further device in said substrate, wherein the second transistor and the further device are arranged to operate at a second voltage which is higher than a first voltage, wherein the first voltage is the (normal) voltage of operation of the first transistor, and wherein the first transistor is isolated from the second voltage.
    Type: Application
    Filed: September 13, 2007
    Publication date: January 28, 2010
    Inventors: John Nigel Ellis, Piet De Pauw
  • Patent number: 7652289
    Abstract: In a conventional analog buffer circuit composed of polycrystalline semiconductor TFTs, a variation in the output is large. Thus, a measure such as to provide a correction circuit has been taken. However, there has been such a problem that a circuit and driver operation are complicated. Therefore, a gate length and a gate width of a TFT composing an analog buffer circuit is set to be larger. Also, a multi-gate structure is adopted thereto. In addition, the arrangement of channel regions is devised. Thus, the analog buffer circuit having a small variation is obtained without using a correction circuit, and a semiconductor device having a small variation can be provided.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: January 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 7649247
    Abstract: A power MOSFET is provided on a semiconductor die to withstand radiation exposure. The semiconductor die is mounted on a die flag of a leadframe. The MOSFET includes a substrate and epitaxial layer formed over the substrate. A source region is formed in a surface of the semiconductor die. The source region is coupled to the die flag. A contact pad is formed on the source region. A base region is formed in the surface of the semiconductor die adjacent to the source region. The base region is electrically connected to the contact pad. A drain region is formed in the surface of the semiconductor die. The drain region is coupled to a first wire bond pad on the leadframe. A gate structure is formed over a channel between the source region and drain region. The gate structure is coupled to a second wire bond pad on the leadframe.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: January 19, 2010
    Assignee: Great Wall Semiconductor Corporation
    Inventors: Samuel J. Anderson, David N. Okada
  • Publication number: 20100001364
    Abstract: One aspect of a semiconductor device includes an active region located in a semiconductor substrate and having an isolation region located therebetween. The active regions have corners adjacent the isolation region. An oxide layer is located over the active regions and the corners, which may also include edges of the active regions, and a ratio of a thickness of the oxide layer over the corners to a thickness of the oxide layer over the active regions ranges from about 0.6:1 to about 0.8:1. A gate is located over the active region and the oxide layer.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 7, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Mindricelu P. Eugen, Damien T. Gilmore, Bill A. Wofford
  • Patent number: 7638430
    Abstract: The present invention relates to a method of forming contact plugs of a semiconductor device. According to the method, a first insulating layer is formed over a semiconductor substrate in which a cell region and a peri region are defined and a first contact plug is formed in the peri region. The first insulating layer is etched using an etch process, thus forming contact holes through which junctions are exposed in the cell region and the first contact plug is exposed in the peri region. Second contact plugs are formed in the contact holes. The second contact plug formed within the contact hole of the peri region are removed using an etch process. A spacer is formed on sidewalls of the contact holes. Third contact plugs are formed within the contact holes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 29, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Heon Kim
  • Publication number: 20090302383
    Abstract: In a high-voltage NMOS transistor with low threshold voltage, it is proposed to realize the body doping that defines the channel region in the form of a deep p-well, and to arrange an additional shallow p-doping as a channel stopper on the transistor head, wherein this additional shallow p-doping is produced in the semiconductor substrate at the end of the deep p-well that faces away from the channel region, and extends up to a location underneath a field oxide region that encloses the active window. The leakage current of the parasitic transistor at the transistor head is suppressed with the channel stopper.
    Type: Application
    Filed: November 13, 2006
    Publication date: December 10, 2009
    Inventors: Martin Knaipp, Georg Röhrer
  • Publication number: 20090289310
    Abstract: A silicon-germanium non-formation region not formed with a silicon germanium layer and a silicon-germanium formation region formed with a silicon germanium layer are provided in a silicon chip, an internal circuit and an input/output buffer are arranged in the silicon-germanium formation region, and a pad electrode and an electrostatic protection element are arranged in the silicon-germanium non-formation region.
    Type: Application
    Filed: March 11, 2009
    Publication date: November 26, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takayuki Hiraoka, Toshikazu Fukuda
  • Patent number: 7622774
    Abstract: Disclosed is a semiconductor device of n-type MOSFET structure, which comprises a semiconductor substrate having a device isolation region, diffusion regions formed in the semiconductor substrate, gate electrodes formed above the semiconductor substrate, and a F-containing NiSi layer formed on the diffusion regions and containing F atoms at a concentration of 3.0×1013 cm?2 or more in areal density, wherein a depth from the junction position formed between the diffusion region and the semiconductor substrate to the bottom of the F-containing NiSi layer is confined within the range of 20 to 100 nm, and the concentration of F atoms at an interface between the F-containing NiSi layer and the semiconductor substrate is 8.0×1018 cm?3 or more.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 24, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakatsu Tsuchiaki
  • Publication number: 20090267148
    Abstract: A semiconductor integrated circuit device may include: a substrate that includes a high-voltage device region and a low-voltage device region defined on the substrate; a first buried impurity layer formed in at least a portion of the high-voltage device region and coupled to a first voltage; a second buried impurity layer formed in at least a portion of the low-voltage device region and coupled to a second voltage less than the first voltage; and a well formed on the second buried impurity layer in the low-voltage device region and coupled to a third voltage less than the second voltage.
    Type: Application
    Filed: March 19, 2009
    Publication date: October 29, 2009
    Inventors: Yong-Don Kim, Yong-Chan Kim, Joung-Ho Kim, Mueng-Ryul Lee, Eung-Kyu Lee, Jong-Wook Lim
  • Publication number: 20090261446
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method includes forming a portion of the unidirectional transistor and a portion of a bidirectional transistor in or over a semiconductor material simultaneously. Other embodiments are described and claimed.
    Type: Application
    Filed: October 21, 2008
    Publication date: October 22, 2009
    Inventor: Bishnu P. Gogoi
  • Publication number: 20090261447
    Abstract: Signal lines (13) and (14) to be used for supplying a signal between an analog circuit and a digital circuit are provided in different regions from power-ground lines (11) and (12) to be used for supplying a power to the analog circuit and the digital circuit in such a manner that the signal lines (13) and (14) do not cross the power-ground lines (11) and (12). For example, the power-ground lines (11) and (12) are provided along an outer periphery of a semiconductor chip (10) and the analog circuit and the digital circuit are disposed on the inside of the power-ground lines (11) and (12), and the signal lines (13) and (14) are provided between the analog circuit and the digital circuit.
    Type: Application
    Filed: February 25, 2009
    Publication date: October 22, 2009
    Applicant: NSC CO., LTD.
    Inventors: Takeshi Ikeda, Hiroshi Miyagi
  • Patent number: 7605426
    Abstract: A power semiconductor device includes: a semiconductor substrate; a gate insulating film; a control electrode insulated from the semiconductor substrate by the gate insulating film; a first main electrode provided on a lower surface side of the semiconductor substrate; and a second main electrode provided on an upper surface side of the semiconductor substrate.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: October 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Masakatsu Takashita, Yasuto Sumi, Masaru Izumisawa, Hiroshi Ohta
  • Patent number: 7602018
    Abstract: A high withstand-voltage semiconductor device has a gate electrode in a semiconductor layer of one conductivity type, a drain diffusion layer and a source diffusion layer, a thick gate insulating layer between the drain diffusion layer and the gate electrode, and a low-concentration offset diffusion layer of the opposite conductivity type in a region including the drain diffusion layer. A buried layer of the one conductivity type, which has a higher concentration than the semiconductor layer, is provided directly under the gate electrode at approximately the same depth as the depth of the offset diffusion layer. The buried layer disperses field concentration at the drain junction to thereby ensure a higher withstand voltage.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: October 13, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Takeshi Iida
  • Publication number: 20090236681
    Abstract: A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.
    Type: Application
    Filed: July 22, 2008
    Publication date: September 24, 2009
    Applicant: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Chih-Ping Lin, Pi-Kuang Chuang, Hung-Li Chang, Shih-Ming Chen, Hsiao-Ying Yang
  • Patent number: 7592684
    Abstract: A semiconductor device is provided in which high breakdown voltage transistors and low voltage driving transistors are formed on the same substrate. The device includes a semiconductor layer, first element isolation regions for defining a high breakdown voltage transistor forming region in the semiconductor layer, second element isolation regions including trench dielectric layers for defining a low voltage driving transistor forming region in the semiconductor layer, high breakdown voltage transistors formed in the high breakdown voltage transistor forming region, low voltage driving transistors formed in the low voltage driving transistor forming region, and offset dielectric layers for alleviating the electric field of the high breakdown voltage transistors formed in the high breakdown voltage transistor forming region, wherein upper ends of the offset dielectric layers are beak shaped.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 22, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Takafumi Noda, Masahiro Hayashi, Akihiko Ebina, Masahiko Tsuyuki
  • Publication number: 20090224332
    Abstract: An n-type embedded layer is formed in an N-LV region of a SRAM cell region after an element isolation insulating film is formed on a p-type Si substrate. Thereafter, a p-well and an n-well are formed. In formation of a channel-doped layer, ion implantation is also performed into the N-LV region of the SRAM cell region in parallel with ion implantation into an N-LV of a logic circuit region. Ion-implantation is further performed into the N-LV region of the SRAM cell region in parallel with ion implantation into an N-MV of an I/O region.
    Type: Application
    Filed: February 9, 2009
    Publication date: September 10, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Tomohiko Tsutsumi, Toru Anezaki, Hideyuki Kojima, Taiji Ema
  • Patent number: 7572684
    Abstract: Nonvolatile memory devices, and methods of forming the same are disclosed. A memory device includes a substrate having a cell region, a low voltage region and a high voltage region. A ground selection transistor, a string selection transistor and a cell transistor are in the cell region, a low voltage transistor is in the low voltage region, and a high voltage transistor is in the high voltage region. A common source contact is on the ground selection transistor and a low voltage contact is on the low voltage transistor. A bit line contact is on the string selection transistor, a high voltage contact is on the high voltage transistor, and a bit line is on the bit line contact. A first insulating layer is on the substrate, and a second insulating layer is on the first insulating layer. The common source contact and the first low voltage contact extend to a height of the first insulating layer, and the bit line contact and the first high voltage contact extend to a height of the second insulating layer.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dal Chol, Jong-Sun Sel, Chang-Seok Kang
  • Patent number: 7571415
    Abstract: A layout of a power device is provided. The layout includes a substrate, a unit array, a plurality of first, second, third and fourth signal paths, and a first, second, third and fourth port. The unit array with a plurality of rows is disposed on the substrate. Each row of the unit array includes a plurality of units. The first and second signal paths on the substrate are disposed on a first side and a second side of corresponding odd-numbered rows of the unit array. The third and the fourth signal paths on the substrate are disposed above a corresponding row of the unit array. The first to fourth ports on the substrate are electrically connected to the first to fourth signal paths respectively.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: August 4, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Houshang Aghahassan, Albert Kuo Huei Yen, Chung-Che Reed, Tsung-Chien Wu
  • Patent number: 7560792
    Abstract: Dual gate dielectric layers are formed on a semiconductor substrate for MOS transistor fabrication. A first dielectric layer (30) is formed on a semiconductor substrate (10). A first plasma nitridation process is performed on said first dielectric layer. The first dielectric layer (30) is removed in regions of the substrate and a second dielectric layer (50) is formed in these regions. A second plasma nitridation process is performed on the first dielectric layer and the second dielectric layer. MOS transistors (160, 170) are then fabricated using the dielectric layers (30, 50).
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Rajesh Khamankar, Douglas T. Grider, Hiroaki Niimi, April Gurba, Toan Tran, James J. Chambers