Including Programmable Passive Component (e.g., Fuse) Patents (Class 257/529)
  • Patent number: 8269309
    Abstract: In order to improve the reliability of a semiconductor device having a fuse formed by a Damascene technique, a barrier insulating film and an inter-layer insulating film are deposited over a fourth-layer wiring and a fuse. The barrier insulating film is an insulating film for preventing the diffusion of Cu and composed of a SiCN film deposited by plasma CVD like the underlying barrier insulating film. The thickness of the barrier insulating film covering the fuse is larger than the thickness of the underlying barrier insulating film so as to improve the moisture resistance of the fuse.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: September 18, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiko Hotta, Kyoko Sasahara, Taichi Hayamizu, Yuichi Kawano
  • Publication number: 20120228735
    Abstract: The present invention provides fuse patterns and a method of manufacturing the same. According to the present invention, an insulating layer and a contact plug are filled between fuse patterns which are formed to have their ends broken and are isolated from each other. In case of a fail cell, the insulating layer is broken owing a difference in an electrical bias (current or voltage) between a metal wire and the fuse patterns, and a short is generated between the fuse patterns. Accordingly, embodiments avoid damage to a semiconductor substrate associated with a conventional fuse repair method employing laser energy, and the area of a fuse box can be reduced.
    Type: Application
    Filed: January 10, 2012
    Publication date: September 13, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Ki Soo CHOI
  • Patent number: 8264061
    Abstract: A device with a memory array is disclosed. In one embodiment, the memory array includes a plurality of memory cells, each including an electrode and a phase change material. The electrode may be disposed on a substrate, the electrode having a sublithographic lateral dimension parallel to the substrate. The phase change material may be coupled to the electrode and include a lateral dimension parallel to the substrate and greater than the sublithographic lateral dimension of the electrode.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: September 11, 2012
    Assignee: Round Rock Research, LLC
    Inventor: Russell C. Zahorik
  • Patent number: 8258586
    Abstract: In an embodiment of the invention, a non-volatile anti-fuse memory cell is disclosed. The memory cell consists of a programmable n-channel diode-connectable transistor. The poly-silicon gate of the transistor has two portions. One portion is doped more highly than a second portion. The transistor also has a source with two portions where one portion of the source is doped more highly than a second portion. The portion of the gate that is physically closer to the source is more lightly doped than the other portion of the poly-silicon gate. The portion of the source that is physically closer to the lightly doped portion of the poly-silicone gate is lightly doped with respect to the other portion of the source. When the transistor is programmed, a rupture in the insulator will most likely occur in the portion of the poly-silicone gate that is heavily doped.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 4, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Allan T. Mitchell, Mark A. Eskew, Keith Jarreau
  • Patent number: 8258598
    Abstract: An e-fuse and an e-fuse control circuit are provided. The e-fuse includes a polysilicon layer and a metal silicide layer stacked on the polysilicon layer. The e-fuse operates in an open state when the silicide layer is broken by burning while one portion of the polysilicon layer is exposed.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: September 4, 2012
    Assignee: MStar Semiconductor, Inc.
    Inventors: Chi Kang Liu, Chin-Wei Lin, Min-Nan Hsieh
  • Publication number: 20120217613
    Abstract: According to one exemplary embodiment, a method for forming a one-time programmable metal fuse structure includes forming a metal fuse structure over a substrate, the metal fuse structure including a gate metal segment situated between a dielectric segment and a polysilicon segment, a gate metal fuse being formed in a portion of the gate metal segment. The method further includes doping the polysilicon segment so as to form first and second doped polysilicon portions separated by an undoped polysilicon portion where, in one embodiment, the gate metal fuse is substantially co-extensive with the undoped polysilicon portion. The method can further include forming a first silicide segment on the first doped polysilicon portion and a second silicide segment on the second doped polysilicon portion, where the first and second silicide segments form respective terminals of the one-time programmable metal fuse structure.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Inventors: Wei Xia, Xiangdong Chen, Akira Ito
  • Patent number: 8241927
    Abstract: Methods are provided that relate to the capacitive monitoring of characteristic pertaining to layer formed during the back end-of-the-line (BEOL) processing of a semiconductor device. In one embodiment, a method includes the steps of forming a first capacitor array including first and second overlying contacts each formed in a different one of the plurality of BEOL layers, measuring the interlayer capacitance between the first and second overlying contacts, and converting the measured interlayer capacitance to a distance between the first and second overlying contacts.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 14, 2012
    Assignee: Global Foundries, Inc.
    Inventors: Jihong Choi, Yongsik Moon, Roderick Augur, Eden Zielinski
  • Patent number: 8242577
    Abstract: A fuse of a semiconductor device comprises: a first insulating film formed over a semiconductor substrate; a conductive pattern formed over the first insulating film; a fuse metal formed over the conductive pattern; a contact plug electrically coupling the conductive pattern and the fuse metal; and an energy absorbent pattern formed in the first insulating film and located below an area where the contact plug and the conductive pattern are interconnected. The fuse of the semiconductor device includes a void and a step difference in the lower portion of the contact connected to the fuse pattern. As a result, an energy of a laser applied in the blowing process is absorbed in the void or the step difference, which does not affect peripheral patterns, thereby preventing defects.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: August 14, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Ho Shin
  • Patent number: 8242576
    Abstract: A semiconductor structure prevents energy that is used to blow a fuse from causing damage. The semiconductor structure includes a device, guard ring, and at least one protection layer. The device is constructed on the semiconductor substrate underneath the fuse. The seal ring, which surrounds the fuse, is constructed on at least one metal layer between the device and the fuse for confining the energy therein. The protection layer is formed within the seal ring, on at least one metal layer between the device and the fuse for shielding the device from being directly exposed to the energy.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: August 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Hong Lin, Kang-Cheng Lin, Tzu-Li Lee
  • Publication number: 20120199942
    Abstract: A semiconductor device includes a lower wiring layer made of a conductive material; an upper wiring layer formed in an upper layer than the lower wiring layer; and a fuse film, at least a portion of the fuse film being formed in a plug formation layer in which a plug for connecting the lower wiring layer and the upper wiring layer is formed, and made of a conductive material including a metallic material other than copper.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 9, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Satoshi KAGEYAMA, Yuichi NAKAO
  • Patent number: 8236622
    Abstract: A semiconductor device includes an electric fuse formed on a semiconductor substrate and composed of an electric conductor. The electric fuse includes an upper layer interconnect, a via coupled to the upper interconnect and a lower layer interconnect coupled to the via, which are formed in different layers, respectively, in a condition before cutting the electric fuse, and wherein the electric fuse includes a flowing-out region formed of the electric conductor being flowed toward outside from the second interconnect and a void region formed between the first interconnect and the via or in the via, in a condition after cutting the electric fuse.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 8236602
    Abstract: A phase change memory device resistant to stack pattern collapse is presented. The phase change memory device includes a silicon substrate, switching elements, heaters, stack patterns, bit lines and word lines. The silicon substrate has a plurality of active areas. The switching elements are connected to the active areas. The heaters are connected to the switching elements. The stack patterns are connected to the heaters. The bit lines are connected to the stack patterns. The word lines are connected to the active areas of the silicon substrate.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Publication number: 20120193755
    Abstract: In a copper-based metallization system of a semiconductor device the contact pad, such as a bond pad, is formed on the basis of two lithography steps by depositing the cap metal layer stack directly on any exposed copper surface areas of the last metallization layer. After patterning of the cap layer stack therefore reliable confinement of any exposed metal region is accomplished on the basis of a conductive barrier material, while the actual passivation materials are formed and patterned subsequently, thereby avoiding any negative influence on these materials, as may be the case in some conventional approaches. Moreover, superior mechanical integrity of the contact pad in combination with superior electrical performance of any metal region in the last metallization layer is achieved.
    Type: Application
    Filed: January 17, 2012
    Publication date: August 2, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: Alessandro Dundulachi
  • Patent number: 8232649
    Abstract: A design structure is provided for interconnect structures containing various capping materials for electrical fuses and other related applications. The structure includes a first interconnect structure having a first interfacial structure and a second interconnect structure adjacent to the first structure. The second interconnect structure has second interfacial structure different from the first interfacial structure.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, William R. Tonti, Chih-Chao Yang
  • Patent number: 8232620
    Abstract: A structure. The structure includes: a substrate; a first electrode in the substrate; a dielectric layer on top of the substrate and the electrode; a second dielectric layer on the first dielectric layer, said second dielectric layer comprising a second dielectric material; a fuse element buried in the first dielectric layer, wherein the fuse element (i) physically separates, (ii) is in direct physical contact with both, and (iii) is sandwiched between a first region and a second region of the dielectric layer; and a second electrode on top of the fuse element, wherein the first electrode and the second electrode are electrically coupled to each other through the fuse element.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 8232146
    Abstract: A fuse element is laminated on a resistor and the resistor is formed in a concave shape below a region in which cutting of the fuse element is carried out with a laser. Accordingly, there can be provided a semiconductor device which occupies a small area, causes no damage on the resistor in the cutting of the fuse element, has a small contact resistance occurred between elements, and has stable characteristics, and a method of manufacturing the same.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 31, 2012
    Assignee: Seiko Intruments Inc.
    Inventor: Yuichiro Kitajima
  • Patent number: 8232619
    Abstract: Provided is a semiconductor integrated circuit. The semiconductor integrated circuit comprises: a pair of interconnections; a fuse connecting the pair of interconnections; and one or more heat dissipation patterns connecting the pair of interconnections and are disposed around the fuse.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: July 31, 2012
    Assignee: SK Hynix Inc.
    Inventors: Young Hee Yoon, Jun Gi Choi, Sang Hoon Shin
  • Patent number: 8232190
    Abstract: Three dimensional vertical e-fuse structures and methods of manufacturing the same are provided herein. The method of forming a fuse structure comprises providing a substrate including an insulator layer and forming an opening in the insulator layer. The method further comprises forming a conductive layer along a sidewall of the opening and filling the opening with an insulator material. The vertical e-fuse structure comprises a first contact layer and a second contact layer. The structure further includes a conductive material lined within a via and in electrical contact with the first contact layer and the second contact layer. The conductive material has an increased resistance as a current is applied thereto.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy J. Dalton, Jeffrey P. Gambino, Mark D. Jaffe, Stephen E. Luce, Anthony K. Stamper
  • Publication number: 20120187529
    Abstract: An improved eFuse and method of fabrication is disclosed. A cavity is formed in a substrate, which results in a polysilicon line having an increased depth in the area of the fuse, while having a reduced depth in areas outside of the fuse. The increased depth reduces the chance of the polysilicon line entering the fully silicided state. The cavity may be formed with a wet or dry etch.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Edward P. Maciejewski, Dustin Kenneth Slisher, Stefan Zollner
  • Publication number: 20120187528
    Abstract: A method forms an eFuse structure that has a pair of adjacent semiconducting fins projecting from the planar surface of a substrate (in a direction perpendicular to the planar surface). The fins have planar sidewalls (perpendicular to the planar surface of the substrate) and planar tops (parallel to the planar surface of the substrate). The tops are positioned at distal ends of the fins relative to the substrate. An insulating layer covers the tops and the sidewalls of the fins and covers an intervening substrate portion of the planar surface of the substrate located between the fins. A metal layer covers the insulating layer. A pair of conductive contacts are connected to the metal layer at locations where the metal layer is adjacent the top of the fins.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis C. Hsu, William R. Tonti, Chih-Chao Yang
  • Patent number: 8228158
    Abstract: A semiconductor device has a semiconductor substrate and a first electrical fuse and a second electrical fuse, which are provided on the semiconductor substrate. The first electrical fuse has a first upper layer wire and a first lower layer wire formed in different wire layers, and a via for connecting the first upper layer wire to the first lower layer wire. The second electrical fuse has a second upper layer wire and a second lower layer wire formed in different wire layers, and a via for connecting the second upper layer wire to the second lower layer wire. The semiconductor device has a connection portion for connecting the above described first upper layer wire of the first electrical fuse to the second lower layer wire of the second electrical fuse. The connection portion connects the first electrical fuse and the second electrical fuse in series.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Tsuda
  • Patent number: 8227890
    Abstract: The present invention provides a method of integrating an electrical fuse process into a high-k/metal gate process. The method simultaneously forms a dummy gate stack of a transistor and a dummy gate stack of an e-fuse; and simultaneously removes the polysilicon of the dummy gate stack in the transistor region and the polysilicon of the dummy gate stack in the e-fuse region. Thereafter, the work function metal layer disposed in the opening of the e-fuse region is removed; and the opening in the transistor region and the opening in the e-fuse region with metal conductive structures are filled to form an e-fuse and a metal gate of a transistor.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 24, 2012
    Assignee: United Microelectronics Corporation
    Inventors: Yung-Chang Lin, Kuei-Sheng Wu, Chang-Chien Wong
  • Patent number: 8227870
    Abstract: A method and structure to scale metal gate height in high-k/metal gate transistors. A method includes forming a dummy gate and at least one polysilicon feature, all of which are formed from a same polysilicon layer and wherein the dummy gate is formed over a gate metal layer associated with a transistor. The method also includes selectively removing the dummy gate while protecting the at least one polysilicon feature. The method further includes forming a gate contact on the gate metal layer to thereby form a metal gate having a height that is less than half a height of the at least one polysilicon feature.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Ricardo A. Donaton, William K. Henson, Yue Liang
  • Patent number: 8222713
    Abstract: A storage element and storage apparatus are provided. A storage element includes a storage layer disposed between two electrodes, and an ion source layer provided in contact with the storage layer and containing any element selected from the group consisting of Cu, Ag, and Zn, wherein the material of the electrode on the storage layer side, of the two electrodes, is composed of an amorphous tungsten alloy containing at least one element selected from the group consisting of Zr, Nb, Mo, and Ta, or an amorphous tantalum nitride. The storage element is capable of stably performing an information recording operation.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: July 17, 2012
    Assignee: Sony Corporation
    Inventors: Akira Kouchiyama, Katsuhisa Aratani
  • Publication number: 20120176180
    Abstract: There is described a passive heater-and-diode multiplexing network for selective addressing of thermally-coupled and electrically-disconnected fuses within a passive device network (resistor/capacitor/inductor) or within an application circuit.
    Type: Application
    Filed: March 4, 2010
    Publication date: July 12, 2012
    Inventors: Salman Saed, Oleg Grudin, Leslie M. Landsberger, Gennadiy Frolov, Tommy Tsang, Zhen-grong Huang
  • Patent number: 8217490
    Abstract: Under one aspect, a non-volatile nanotube switch includes a first terminal; a nanotube block including a multilayer nanotube fabric, at least a portion of which is positioned over and in contact with at least a portion of the first terminal; a second terminal, at least a portion of which is positioned over and in contact with at least a portion of the nanotube block, wherein the nanotube block is constructed and arranged to prevent direct physical and electrical contact between the first and second terminals; and control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube block can switch between a plurality of electronic states in response to a plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube block provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 10, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 8217710
    Abstract: The invention relates to a semiconductor device comprising a fuse that is implemented as a bar type pattern that forms a straight line instead of a pattern that is difficult to secure a manufacturing margin. A fuse block including a plurality of fuses comprises a plurality of first connection parts, each including a blowing area, a plurality of second connection parts, wherein the plurality of the second connection parts and the plurality of the corresponding first connection parts respectively form part of the fuse, and a common connection unit configured to electrically connect the plurality of the first connection parts and the plurality of the second connection parts.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 10, 2012
    Assignee: Hynix Semiconductor Inc
    Inventor: Byung Wook Bae
  • Patent number: 8217491
    Abstract: A semiconductor device includes a base insulating film on which a silicon fuse, silicon wiring patterns, and a silicon guard ring are formed. The silicon guard ring surrounds the silicon fuse and has silicon cutout parts so as not to contact the silicon wiring patterns. A via guard ring, which has via cutout parts located above the silicon cutout parts, is formed in an interlayer insulating film and on the silicon guard ring. A metal wiring guard ring is formed on the via guard ring and the interlayer insulating film. A silicon nitride film is formed on the interlayer insulating film so as to cover the metal wiring guard ring. An interface between the interlayer insulating film and the metal wiring guard ring at the via cutout parts is covered by the silicon nitride film.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 10, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Masashi Oshima, Masaya Ohtsuka
  • Patent number: 8213209
    Abstract: In a method of manufacturing a semiconductor device, element properties of an element property extraction pattern formed on a semiconductor wafer is extracted as element properties of a current control element corresponding to the element property extraction pattern. A supply energy to the current control element is set which is formed between nodes on the semiconductor wafer, based on the extracted element properties. The set supply energy is supplied to the current control element to irreversible control an electrical connection between the nodes through the device breakdown by the current control element.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: July 3, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Tsuda, Yoshitaka Kubota, Hiromichi Takaoka
  • Publication number: 20120162947
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: ANALOG DEVICES, INC.
    Inventors: Alan O'DONNELL, Santiago IRIARTE, Mark J. MURPHY, Colin LYDEN, Gary CASEY, Eoin Edward ENGLISH
  • Publication number: 20120161278
    Abstract: A method and a system for providing fusing after packaging of semiconductor devices are disclosed. In one embodiment, a semiconductor device is provided comprising a substrate comprising a fuse area, at least one fuse disposed in the fuse area, and at least one layer disposed over the substrate, wherein the at least one layer comprises at least one opening exposing the at least one fuse.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Thorsten Meyer, Josef Boeck, Rudolf Lachner, Herbert Schaefer
  • Patent number: 8207008
    Abstract: A solar device is provided, comprising a substrate structure having a surface region, a flexible and conformal material comprising a polymer material affixing the surface region, and one or more solar cells spatially provided by one or more films of materials characterized by a thickness dimension of 25 microns and less and mechanically coupled to the flexible and conformal material. The one or more solar cells have a flexible characteristic. The flexible characteristic maintains each of the solar cells substantially free from any damage or breakage thereto when the one or more films of materials is subjected to bending.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 26, 2012
    Assignee: Stion Corporation
    Inventor: Chester A. Farris, III
  • Patent number: 8203135
    Abstract: A semiconductor device, a semiconductor module, an electronic apparatus and methods of fabricating and manufacturing the same are provided. The semiconductor device includes a lower interconnection formed on a substrate, a plurality of control patterns formed on the lower interconnection, a plurality of lower contact plug patterns formed on the control patterns, a plurality of storage patterns formed on the lower contact plug patterns, a plurality of upper electrodes formed on the storage patterns, and a plurality of upper interconnections formed on the upper electrodes. The lower contact plug patterns each include at least two contact holes having different sizes, a plurality of sidewall patterns formed on inner sidewalls of the two contact holes and wherein the sidewall patterns have different thicknesses from one another.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: June 19, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-Rie Sim, Jung-Hoon Park, Yoon-Jong Song, Jae-Min Shin, Shin-Hee Han
  • Publication number: 20120146179
    Abstract: Electrical fuses and methods for forming an electrical fuse. The electrical fuse includes a current shunt formed by patterning a first layer comprised of a first conductive material and disposed on a top surface of a dielectric layer. A layer stack is formed on the current shunt and the top surface of the dielectric layer surrounding the current shunt. The layer stack includes a second layer comprised of a second conductive material and a third layer comprised of a third conductive material. The layer stack may be patterned to define a fuse link as a first portion of the layer stack directly contacting the top surface of the dielectric layer and a terminal as a second portion separated from the top surface of the dielectric layer by the current shunt.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tom C. Lee, Thomas L. McDevitt, William J. Murphy
  • Patent number: 8198702
    Abstract: The invention relates generally to a fuse device of a semiconductor device, and more particularly, to an electrical fuse device of a semiconductor device. Embodiments of the invention provide a fuse device that is capable of reducing programming error caused by non-uniform current densities in a fuse link. In one respect, there is provided an electrical fuse device that includes: an anode; a fuse link coupled to the anode on a first side of the fuse link; a cathode coupled to the fuse link on a second side of the fuse link; a first cathode contact coupled to the cathode; and a first anode contact coupled to the anode, at least one of the first cathode contact and the first anode contact being disposed across a virtual extending surface of the fuse link.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: June 12, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-suk Shin, Andrew-Tae Kim, Hong-jae Shin
  • Publication number: 20120133019
    Abstract: A fuse of a semiconductor device includes first fuse metals formed over an underlying structure and a second fuse metal formed between the first fuse metals. Accordingly, upon blowing, the fuse metals are not migrated under conditions, such as specific temperature and specific humidity. Thus, reliability of a semiconductor device can be improved.
    Type: Application
    Filed: February 7, 2012
    Publication date: May 31, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyung Kyu KIM
  • Publication number: 20120133018
    Abstract: A method of repairing a semiconductor device includes forming a first conductive interconnection and a second conductive interconnection spaced from the first conductive interconnection on a semiconductor substrate, forming a magnetic fuse on the first conductive interconnection and forming a first contact plug on the second conductive interconnection, forming a metal interconnection on the magnetic fuse and the first contact plug, and applying a bias to the first conductive interconnection or to the second conductive interconnection corresponding to a normal cell or a redundancy cell and the metal interconnection. The method can readily prevent the problems caused in a laser cutting method without using a method of physically cutting a fuse by radiation of a laser when a semiconductor device fuse is repaired.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 31, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Dong Min LEE
  • Patent number: 8188569
    Abstract: The invention relates to a memory device, in particular to a resistively switching memory device such as a Phase Change Random Access Memory (“PCRAM”). In one disclosed method, a nanowire of non-conducting material is formed serving as a mould for producing a nanotube of conducting material. A volume of switching active material is deposited on top of the nanotube, so that the ring-shaped front face of the nanotube couples to the switching active material and thus forms a bottom electrode contact.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 29, 2012
    Assignee: Qimonda AG
    Inventor: Harald Seidl
  • Publication number: 20120126364
    Abstract: An IC capacitor bank includes a plurality of high-k metal-insulator-metal (MIM) capacitors connected to a pair of conductive traces. A fusible trace located on an end of one of the pair of conductive traces forms a capacitor column connected between supply lines, such that failure of a dielectric in the MIM capacitors causes the fusible trace to at least partially open thereby limiting a fault current in the capacitor column. Additionally, a method of manufacturing an IC capacitor bank includes providing a plurality of high-k metal-insulator-metal (MIM) capacitors connected to a pair of conductive traces and locating a fusible trace on an end of the pair of conductive traces to form a capacitor column that is connected between supply lines, such that failure of a dielectric in the MIM capacitors causes the fusible trace to at least partially open thereby limiting a fault current in the capacitor column.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: LSI Corporation
    Inventors: Bonnie E. Weir, Edward B. Harris, Ramnath Venkatraman
  • Publication number: 20120126363
    Abstract: Structures of electronic fuses (e-fuse) are provided. An un-programmed e-fuse includes a via of a first conductive material having a bottom and sidewalls with a portion of the sidewalls being covered by a conductive liner and the bottom of the via being formed on top of a dielectric layer, and a first and a second conductive path of a second conductive material formed on top of the dielectric layer with the first and second conductive paths being conductively connected through, and only through, the via at the sidewalls. A programmed e-fuse includes a via; a first conductive path at a first side of the via and being separated from sidewalls of the via by a void; and a second conductive path at a second different side of the via and being in conductive contact with the via through sidewalls of the via.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ping-Chuan Wang, Chunyan E. Tian, Ronald Filippi, Wai-ki Li
  • Patent number: 8183665
    Abstract: A high-density memory array. A plurality of word lines and a plurality of bit lines are arranged to access a plurality of memory cells. Each memory cell includes a first conductive terminal and an article in physical and electrical contact with the first conductive terminal, the article comprising a plurality of nanoscopic particles. A second conductive terminal is in physical and electrical contact with the article. Select circuitry is arranged in electrical communication with a bit line of the plurality of bit lines and one of the first and second conductive terminals. The article has a physical dimension that defines a spacing between the first and second conductive terminals such that the nanotube article is interposed between the first and second conducive terminals. A logical state of each memory cell is selectable by activation only of the bit line and the word line connected to that memory cell.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 22, 2012
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, Eliodor G. Ghenciu, Thomas Rueckes, H. Montgomery Manning
  • Patent number: 8184465
    Abstract: A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: William R. Tonti, Wayne S. Berry, John A. Fifield, William H. Guthrie, Richard S. Kontra
  • Patent number: 8178943
    Abstract: An electrical fuse including a polysilicon layer; a silicide layer formed over the polysilicon layer; and a first metal contact and a second metal contact arranged over the silicide layer, while being spaced from each other, the electrical fuse being configured so that the silicide layer, after disconnection, is excluded from a region right under the second metal contact, and from a region between the second metal contact and the first metal contact is provided.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: May 15, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshitaka Kubota
  • Patent number: 8178942
    Abstract: An electrically alterable circuit (EAC), suitable for use in an integrated circuit, includes a first interconnect, a link element, and a second interconnect. A first set of interconnect vias provides an electrically conductive connection between the first interconnect and a first end of the link element; A second set of interconnect vias provides an electrically conductive connection between the second interconnect and a second end of the link element. The EAC further includes a third interconnect and a one or more fuse vias that provide an electrical connection between the third interconnect and the link element. A conductance of the one or more fuse vias is less than a conductance of the first set of interconnect vias, a conductance of the second set of interconnect vias, or both.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 15, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Mark E. Schlarmann
  • Patent number: 8178944
    Abstract: According to one exemplary embodiment, a method for forming a one-time programmable metal fuse structure includes forming a metal fuse structure over a substrate, the metal fuse structure including a gate metal segment situated between a dielectric segment and a polysilicon segment, a gate metal fuse being formed in a portion of the gate metal segment. The method further includes doping the polysilicon segment so as to form first and second doped polysilicon portions separated by an undoped polysilicon portion where, in one embodiment, the gate metal fuse is substantially co-extensive with the undoped polysilicon portion. The method can further include forming a first silicide segment on the first doped polysilicon portion and a second silicide segment on the second doped polysilicon portion, where the first and second silicide segments form respective terminals of the one-time programmable metal fuse structure.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: May 15, 2012
    Assignee: Broadcom Corporation
    Inventors: Wei Xia, Xiangdong Chen, Akira Ito
  • Patent number: 8178906
    Abstract: A laser activated phase change device for use in an integrated circuit comprises a chalcogenide fuse configured to connect a first patterned metal line and a second patterned metal line and positioned between an inter layer dielectric and an over fuse dielectric. The fuse interconnects active semiconductor elements manufactured on a substrate. A method for activating the laser activated phase change device includes selecting a laser condition of a laser based on characteristics of the fuse and programming a phase-change of the fuse with the laser by direct photon absorption until a threshold transition temperature is met.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 15, 2012
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Andy E. Hooper, Allen Kawasaki, Robert Hainsey
  • Publication number: 20120112311
    Abstract: An electrical fuse includes first and second active regions doped with respective first-type and second-type impurities that form a horizontal P/N junction, first and second spaced apart silicide layers on respective portions of the top surfaces of the first and second active regions, and first and second contacts on the respective top surfaces of the first and second silicide layers. When a first reverse voltage that is higher than a threshold voltage is applied to the electrical fuse through the first and second contacts, the P/N junction is broken down by a reverse current flowing between the first and second active regions so that the electrical fuse is rendered conductive in response to a second reverse voltage that is less than the threshold voltage.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 10, 2012
    Inventors: Yong Sang Cho, Dae Lim Kang, Sung Soo Kim, Jong Ik Nam, Keun Bong Lee, Hye-Won Shim
  • Publication number: 20120112312
    Abstract: An integrated circuit, a method for making an integrated circuit product, and methods for customizing an integrated circuit are disclosed. Integrated circuit elements including programmable elements, such as fuses, PROMs, RRAMs, MRAMs, or the like, are formed on the frontside of a substrate. Vias are formed through the substrate from its frontside to its backside to establish conduction paths to at least some of the programmable elements from the backside. A programming stimulus is applied to at least some of the vias from the backside to program at least some of the frontside programmable elements.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Daniel W. Perry, Shiqun Gu
  • Patent number: 8174091
    Abstract: An electrical fuse and a method of forming the same are presented. A first-layer conductive line is formed over a base material. A via is formed over the first-layer conductive line. The via preferably comprises a barrier layer and a conductive material. A second-layer conductive line is formed over the via. A first external pad is formed coupling to the first-layer conductive line. A second external pad is formed coupling to the second-layer conductive line. The via, the first conductive line and the second conductive line are adapted to be an electrical fuse. The electrical fuse can be burned out by applying a current. The vertical structure of the preferred embodiment is suitable to be formed in any layer.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: May 8, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kong-Beng Thei, Chung Long Cheng, Chung-Shi Liu, Harry Chuang, Shien-Yang Wu, Shi-Bai Chen
  • Patent number: 8174010
    Abstract: A unified test structure which is applicable for all levels of a semiconductor device including a current path chain having a first half chain and a second half chain, wherein each half chain comprises lower metallization segments, upper metallization segments, an insulating layer between the lower metallization segments and the upper metallization segments, and connection segments. Each of the connection segments is electrically connected to a contact region of one of the lower metallization segments and to a contact region of one of the upper metallization segments to thereby electrically connect the respective lower metallization segment and the respective upper metallization segment, and the first half chain and the second half chain are of different configuration.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 8, 2012
    Assignee: GlobalFoundries, Inc.
    Inventors: Frank Feustel, Pascal Limbecker, Oliver Aubel