With Base Region Having Specified Doping Concentration Profile Or Specified Configuration (e.g., Inactive Base More Heavily Doped Than Active Base Or Base Region Has Constant Doping Concentration Portion (e.g., Epitaxial Base)) Patents (Class 257/592)
-
Patent number: 8525300Abstract: The present disclosure provides an ESD protection device. The device contains a bipolar junction transistor device that includes a collector, a base, and an emitter. The collector includes a first doped element and a more heavily doped second doped element disposed over the first doped element. The first and second doped elements each have a first doping polarity. The base is located adjacent to the collector and includes a third doped element having a second doping polarity different from the first doping polarity. A p-n junction is formed between the third doped element and one of the first and second doped elements. The emitter is formed over the base. The emitter includes a fourth doped element having the first doping polarity and forming a p-n junction with the third doped element. The fourth doped element is more heavily doped than the third doped element.Type: GrantFiled: May 11, 2012Date of Patent: September 3, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsi-Yu Kuo, Chi-Kuang Chen
-
Patent number: 8507352Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.Type: GrantFiled: November 30, 2009Date of Patent: August 13, 2013Assignee: DENSO CORPORATIONInventors: Masaki Koyama, Yutaka Fukuda
-
Patent number: 8502236Abstract: A MOSFET, which is capable of reducing on resistance by reducing channel mobility even when a gate voltage is high, includes: an n type substrate made of SiC and having a main surface with an off angle of 50°-65° relative to a {0001} plane; an n type reverse breakdown voltage holding layer made of SiC and formed on the main surface of the substrate; a p type well region formed in the reverse breakdown voltage holding layer distant away from a first main surface thereof; a gate oxide film formed on the well region; an n type contact region disposed between the well region and the gate oxide film; a channel region connecting the n type contact region and the reverse breakdown voltage holding layer; and a gate electrode disposed on the gate oxide film. In a region including an interface between the channel region and the gate oxide film, a high-concentration nitrogen region is formed.Type: GrantFiled: March 23, 2010Date of Patent: August 6, 2013Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shin Harada, Keiji Wada, Toru Hiyoshi
-
Patent number: 8497527Abstract: A device comprising a two-dimensional electron gas that includes an active region located in a portion of the electron gas is disclosed. The active region comprises an electron concentration less than an electron concentration of a set of non-active regions of the electron gas. The device includes a controlling terminal located on a first side of the active region. The device can comprise, for example, a field effect transistor (FET) in which the gate is located and used to control the carrier injection into the active region and define the boundary condition for the electric field distribution within the active region. The device can be used to generate, amplify, filter, and/or detect electromagnetic radiation of radio frequency (RF) and/or terahertz (THz) frequencies.Type: GrantFiled: March 12, 2009Date of Patent: July 30, 2013Assignee: Sensor Electronic Technology, Inc.Inventors: Alexei Koudymov, Michael Shur, Remigijus Gaska
-
Patent number: 8487408Abstract: A bipolar transistor of the invention has a second base region 116 which is formed in the surface layer of a deep well, placed between a first base region and a sinker, connected to the first base region, has an impurity concentration larger than that of the first base region, and has a depth shallower than that of the first base region; and a buried layer formed in a semiconductor layer, which has the top surface thereof brought into contact with the deep well and the sinker, and has an impurity concentration larger than that of the deep well.Type: GrantFiled: July 28, 2011Date of Patent: July 16, 2013Assignee: Renesas Electronics CorporationInventor: Shinichi Komatsu
-
Patent number: 8482102Abstract: A semiconductor device in which only the trigger voltage can be controlled without change in the hold voltage. In the semiconductor device, a protection device includes a lower doped collector layer, a sinker layer, a highly-doped collector layer, an emitter layer, a highly-doped base layer, a base layer, a first conductivity type layer, and a second conductivity type layer. The second conductivity type layer is formed in the lower doped collector layer and located between the base layer and first conductivity type layer. The second conductivity type layer has a higher impurity concentration than the lower doped collector layer.Type: GrantFiled: October 12, 2011Date of Patent: July 9, 2013Assignee: Renesas Electronics CorporationInventor: Hiroki Fujii
-
Publication number: 20130168822Abstract: Vertical bipolar junction structures, methods of manufacture and design structures. The method includes forming one or more sacrificial structures for a bipolar junction transistor (BJT) in a first region of a chip. The method includes forming a mask over the one or more sacrificial structures. The method further includes etching an opening in the mask, aligned with the one or more sacrificial structures. The method includes forming a trench through the opening and extending into diffusion regions below the one or more sacrificial structures. The method includes forming a base region of the BJT by depositing an epitaxial material in the trench, in contact with the diffusion regions. The method includes forming an emitter contact by depositing a second epitaxial material on the base region within the trench. The epitaxial material for the emitter region is of an opposite dopant type than the epitaxial material of the base region.Type: ApplicationFiled: January 4, 2012Publication date: July 4, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William F. CLARK, JR., John J. PEKARIK, Yun SHI, Yanli ZHANG
-
Patent number: 8455966Abstract: Provided are transistor devices such as logic gates that are capable of associating a computational state and or performing logic operations with detectable electronic spin state and or magnetic state. Methods of operating transistor devices employing magnetic states are provided. Devices comprise input and output structures and magnetic films capable of being converted between magnetic states.Type: GrantFiled: December 23, 2010Date of Patent: June 4, 2013Assignee: Intel CorporationInventors: C Michael Garner, Dmitri E. Nikonov
-
Patent number: 8455306Abstract: Embodiments include methods for forming an electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, where the ESD protection device includes first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first and second widths. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vt1 and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vt1, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.Type: GrantFiled: May 25, 2012Date of Patent: June 4, 2013Assignee: Freescale Semiconductor, Inc.Inventors: Amaury Gendron, Chai Ean Gill, Rouying Zhan
-
Patent number: 8426944Abstract: In some embodiments, an insulated gate bipolar transistor includes a drift layer, insulation gates formed at a principle surface portion of the drift layer, base regions formed in a between-gate region, an emitter region formed in the base region so as to be adjacent to the insulation gate, an emitter electrode connected to the emitter region, a collector layer formed at the other side of the principle surface portion of the drift layer, and a collector electrode connected to the collector layer. The conductive type base regions are separated with each other by the drift layers, and the drift layer and the emitter electrode are insulated by an interlayer insulation film.Type: GrantFiled: March 26, 2010Date of Patent: April 23, 2013Assignees: Semiconductor Components Industries, LLC, Sanyo Semiconductor Co., Ltd.Inventors: Shuji Yoneda, Kenji Sawamura
-
Patent number: 8421145Abstract: Provided is a power semiconductor device including a semiconductor substrate, in which a current flows in a thickness direction of the semiconductor substrate. The semiconductor substrate includes a resistance control structure configured so that a resistance to the current becomes higher in a central portion of the semiconductor substrate than a peripheral portion of the semiconductor substrate.Type: GrantFiled: March 8, 2011Date of Patent: April 16, 2013Assignee: Mitsubishi Electric CorporationInventor: Kenji Hatori
-
Patent number: 8420475Abstract: This invention published a parasitic vertical PNP bipolar transistor in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process; the bipolar transistor comprises a collector, a base and an emitter. Collector is formed by active region with p-type ion implanting layer. It connects a p-type buried layer which formed in the bottom region of STI (Shallow Trench Isolation). The collector terminal connection is through the p-type buried layer and the adjacent active region. The base is formed by active region with n type ion implanting which is on the collector. Its connection is through the original p-type epitaxy layer after converting to n-type. The emitter is formed by the p-type epitaxy layer on the base region with heavy p-type doped. This invention also comprises the fabrication method of this parasitic vertical PNP bipolar in BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) process.Type: GrantFiled: December 22, 2010Date of Patent: April 16, 2013Assignee: Shanghai Hua Hong Nec Electronics Company, LimitedInventors: Tzuyin Chiu, TungYuan Chu, Wensheng Qian, YungChieh Fan, Donghua Liu, Jun Hu
-
Patent number: 8395188Abstract: A SiGe HBT is disclosed. A collector region consists of a first ion implantation region in an active area as well as second and third ion implantation regions respectively at bottom of field oxide regions. Each third ion implantation region has a width smaller than that of the field oxide region, has one side connected to first ion implantation region and has second side connected to a pseudo buried layer; each second ion implantation region located at bottom of the third ion implantation region and pseudo buried layer is connected to them and has a width equal to that of the field oxide region. Third ion implantation region has a higher doping concentration and a smaller junction depth than those of first and second ion implantation regions. Deep hole contacts are formed on top of pseudo buried layers in field oxide regions to pick up collector region.Type: GrantFiled: October 11, 2011Date of Patent: March 12, 2013Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventors: Donghua Liu, Wensheng Qian
-
Publication number: 20130056855Abstract: Disclosed is an integrated circuit and a method of manufacturing an integrated circuit comprising a bipolar transistor, the method comprising providing a substrate comprising a pair of isolation regions separated by an active region comprising a collector; forming a base layer stack over said substrate; forming a migration layer having a first migration temperature and an etch stop layer; forming a base contact layer having a second migration temperature; etching an emitter window in the base contact layer, thereby forming cavities extending from the emitter window; and exposing the resultant structure to the first migration temperature in a hydrogen atmosphere, thereby filling the cavities with the migration layer material.Type: ApplicationFiled: August 30, 2012Publication date: March 7, 2013Applicant: NXP B.V.Inventors: Johannes Josephus Theodorus Marinus DONKERS, Petrus Hubertus Cornelis MAGNEE, Blandine DURIEZ, Evelyne GRIDELET, Hans MERTENS, Tony VANHOUCKE
-
Patent number: 8390059Abstract: Provided is a power semiconductor device including a semiconductor substrate, in which a current flows in a thickness direction of the semiconductor substrate. The semiconductor substrate includes a resistance control structure configured so that a resistance to the current becomes higher in a central portion of the semiconductor substrate than a peripheral portion of the semiconductor substrate.Type: GrantFiled: March 8, 2011Date of Patent: March 5, 2013Assignee: Mitsubishi Electric CorporationInventor: Kenji Hatori
-
Patent number: 8357985Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.Type: GrantFiled: January 13, 2012Date of Patent: January 22, 2013Assignee: Analog Devices, Inc.Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
-
Patent number: 8350352Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.Type: GrantFiled: November 2, 2009Date of Patent: January 8, 2013Assignee: Analog Devices, Inc.Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
-
Patent number: 8344436Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.Type: GrantFiled: August 2, 2011Date of Patent: January 1, 2013Assignee: Micron Technology, Inc.Inventor: Kunal R. Parekh
-
Patent number: 8344481Abstract: By providing a novel bipolar device design implementation, a standard CMOS process can be used unchanged to fabricate useful bipolar transistors and other bipolar devices having adjustable properties by partially blocking the P or N well doping used for the transistor base. This provides a hump-shaped base region with an adjustable base width, thereby achieving, for example, higher gain than can be obtained with the unmodified CMOS process alone. By further partially blocking the source/drain doping step used to form the emitter of the bipolar transistor, the emitter shape and effective base width can be further varied to provide additional control over the bipolar device properties. The embodiments thus include prescribed modifications to the masks associated with the bipolar device that are configured to obtain desired device properties. The CMOS process steps and flow are otherwise unaltered and no additional process steps are required.Type: GrantFiled: March 7, 2011Date of Patent: January 1, 2013Assignee: Freescale Semiconductor, Inc.Inventors: Xin Lin, Bernhard H. Grote, Hongning Yang, Jiang-Kai Zuo
-
Patent number: 8299500Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.Type: GrantFiled: August 23, 2005Date of Patent: October 30, 2012Assignee: International Business Machines CorporationInventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
-
Patent number: 8263469Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.Type: GrantFiled: October 6, 2011Date of Patent: September 11, 2012Assignee: Analog Devices, Inc.Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
-
Patent number: 8258545Abstract: An integrated circuit includes a bipolar transistor disposed over a substrate. The bipolar transistor includes a base electrode disposed around at least one germanium-containing layer. An emitter electrode is disposed over the at least one germanium-containing layer. At least one isolation structure is disposed between the emitter electrode and the at least one germanium-containing layer. A top surface of the at least one isolation structure is disposed between and electrically isolating a top surface of the emitter electrode from a top surface of the at least one germanium-containing layer.Type: GrantFiled: March 14, 2011Date of Patent: September 4, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Tung Huang, Chun-Tsung Kuo, Shih-Chang Liu, Yeur-Luen Tu
-
Patent number: 8159048Abstract: Embodiments of methods, apparatus, devices and/or systems associated with bipolar junction transistor are disclosed.Type: GrantFiled: January 30, 2004Date of Patent: April 17, 2012Assignee: TriQuint Semiconductor, Inc.Inventors: Thomas R. Apel, Jeremy R. Middleton
-
Publication number: 20120068310Abstract: A carrier is prevented from being stored in a guard ring region in a semiconductor device. The semiconductor device has an IGBT cell including a base region and an emitter region formed in an n? type drift layer, and a p type collector layer arranged under the drift layer with a buffer layer interposed therebetween. A guard ring region having a guard ring is arranged around the IGBT cell. A lower surface of the guard ring region has a mesa structure provided by removing the collector layer.Type: ApplicationFiled: June 13, 2011Publication date: March 22, 2012Applicant: MITSUBISHI ELECTRIC CORPORATIONInventor: Hitoshi UEMURA
-
Publication number: 20120061802Abstract: A bipolar junction transistor includes a semiconductor island on an insulating substrate; an emitter and at least one of a collector and sub collector within the semiconductor island, the emitter and the at least one of the collector and the sub collector being of a first conductivity type; a base within the semiconductor island separating the emitter and the at least one of the collector and the sub collector, the base being of a second conductivity type; a base contact region within the semiconductor island, the base contact region being of the second conductivity type; and a connecting base region adjacent the base within the semiconductor island and connecting the base to the base contact region while not directly contacting the emitter, the connecting base region being of the second conductivity type with a doping concentration less than a doping concentration of the base contact region.Type: ApplicationFiled: September 9, 2010Publication date: March 15, 2012Inventors: Gareth NICHOLAS, Benjamin James Hadwen, Sunay Shah
-
Patent number: 8129820Abstract: A bipolar transistor for semiconductor device has a collector region having a first conductivity type disposed on a surface of a semiconductor substrate having the first conductivity type. A base region having a second conductivity type is disposed in the collector region. An emitter region having the first conductivity type is disposed in the base region. A high concentration first conductivity type region for a collector electrode is disposed in the collector region. A high concentration second conductivity type region for a base electrode is disposed in the base region. The high concentration first conductivity type region for a collector electrode and the high concentration second conductivity type region for a base electrode contact directly with each other so that the collector region and the base region have a same potential.Type: GrantFiled: August 27, 2008Date of Patent: March 6, 2012Assignee: Seiko Instruments Inc.Inventors: Hideo Yoshino, Hisashi Hasegawa
-
Patent number: 8120136Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.Type: GrantFiled: November 2, 2009Date of Patent: February 21, 2012Assignee: Analog Devices, Inc.Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, Bernard Patrick Stenson
-
Patent number: 8093132Abstract: A bipolar junction transistor and a method of manufacturing a bipolar junction transistor are disclosed. An exemplary bipolar junction transistor includes a second conductivity type base region in a first conductivity type substrate, step-shaped recesses in the base region, a polysilicon layer doped with a first conductivity type impurity in the step-shaped recesses, and a step-shaped emitter region between the polysilicon layer and the base region.Type: GrantFiled: December 18, 2009Date of Patent: January 10, 2012Assignee: Dongbu HiTek Co., Ltd.Inventor: Hyon Chol Lim
-
Patent number: 8058703Abstract: A semiconductor transistor device includes a drift region, an insulating structure, a gate insulator, a gate electrode, a source, and a drain. The drift region includes a first lateral portion having a first dopant concentration and a second lateral portion having a second dopant concentration that is higher than the first lateral portion. The insulating structure is formed on the drift region and is disposed over a border between the first and second lateral portions such that hole generation is minimized in the drift region during operation.Type: GrantFiled: February 14, 2008Date of Patent: November 15, 2011Assignee: Samsung Electronics Co., Ltd.Inventor: Mueng-Ryul Lee
-
Patent number: 8058704Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.Type: GrantFiled: November 2, 2009Date of Patent: November 15, 2011Assignee: Analog Devices, Inc.Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
-
Patent number: 8035196Abstract: The present invention provides a method of forming a bipolar transistor. The method includes doping a silicon layer with a first type of dopant and performing a first implant process to implant dopant of a second type opposite the first type in the silicon layer. The implanted dopant has a first dopant profile in the silicon layer. The method also includes performing a second implant process to implant additional dopant of the second type in the silicon layer. The additional implanted dopant has a second dopant profile in the silicon layer different than the first dopant profile. The method further includes growing an insulating layer formed over the silicon layer by consuming a portion of the silicon layer and the first type of dopant.Type: GrantFiled: April 2, 2008Date of Patent: October 11, 2011Assignee: Zarlink Semiconductor (US) Inc.Inventors: Thomas J. Krutsick, Christopher J. Speyer
-
Patent number: 8022506Abstract: A semiconductor on insulator device has an insulator layer, an active layer (40) on the insulator layer, a lateral arrangement of collector (10), emitter (30) and base (20) on the active layer, and a high Base-dose region (70) extending under the emitter towards the insulator to suppress vertical current flowing under the emitter. This region (70) reduces the dependence of current-gain and other properties on the substrate (Handle-wafer) voltage. This region can be formed of the same doping type as the base, but having a stronger doping. It can be formed by masked alignment in the same step as an n type layer used as the body for a P-type DMOS transistor.Type: GrantFiled: December 15, 2005Date of Patent: September 20, 2011Assignee: NXP B.V.Inventor: Adrianus W. Ludikhuize
-
Patent number: 8013376Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.Type: GrantFiled: August 6, 2010Date of Patent: September 6, 2011Assignee: Micron Technology, Inc.Inventor: Kunal R. Parekh
-
Patent number: 8013424Abstract: A semiconductor device according to an embodiment includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate via a gate insulating film; a channel region formed in a region of the semiconductor substrate below the gate electrode; an epitaxial crystal layer containing a conductive impurity, which is formed sandwiching the channel region and has a function as a source region and a drain region, and formed on a recess in the semiconductor substrate; and a growth suppressing portion formed on the recess in the semiconductor substrate, and configured to suppress an epitaxial growth of a crystal in the epitaxial layer from the semiconductor substrate.Type: GrantFiled: August 19, 2008Date of Patent: September 6, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Hiroki Okamoto
-
Patent number: 7994017Abstract: A self-aligned, silicon carbide power metal oxide semiconductor field effect transistor includes a trench formed in a first layer, with a base region and then a source region epitaxially regrown within the trench. A window is formed through the source region and into the base region within a middle area of the trench. A source contact is formed within the window in contact with a base and source regions. The gate oxide layer is formed on the source and base regions at a peripheral area of the trench and on a surface of the first layer. A gate electrode is formed on the gate oxide layer above the base region at the peripheral area of the trench, and a drain electrode is formed over a second surface of the first layer.Type: GrantFiled: October 22, 2009Date of Patent: August 9, 2011Assignee: Cree, Inc.Inventors: Christopher Harris, Kent Bertilsson, Andrei Konstantinov
-
Publication number: 20110175198Abstract: A stackable electrostatic discharge (ESD) protection clamp (21) for protecting a circuit core (24) comprises, a bipolar transistor (56, 58) having a base region (74, 51, 52, 85) with a base contact (77) therein and an emitter (78) spaced a lateral distance Lbe from the base contact (77), and a collector (80, 86, 762) proximate the base region (74, 51, 52, 85). The base region (74, 51, 52, 85) comprises a first portion (51) including the base contact (77) and emitter (78), and a second portion (52) with a lateral boundary (752) separated from the collector (86, 762) by a breakdown region (84) whose width D controls the clamp trigger voltage, the second portion (52) lying between the first portion (51) and the boundary (752). The damage-onset threshold current It2 of the ESD clamp (21) is improved by increasing the parasitic resistance Rbe of the emitter-base region (74, 51, 52, 85), by for example, increasing Lbe or decreasing the relative doping density of the first portion (51) or a combination thereof.Type: ApplicationFiled: November 30, 2010Publication date: July 21, 2011Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
-
Patent number: 7952166Abstract: A semiconductor device with switch electrode and gate electrode and a method for switching a semiconductor device. One embodiment provides a semiconductor substrate with an emitter region, a drift region, a body region and a source region. The drift region is formed between the emitter and the body region while the body region is formed between the drift and the source region. A first trench structure extends from the source region at least partially into the drift region. The first trench structure includes a gate electrode arranged next to the body region and a switch electrode arranged in portions next to the drift region, wherein the switch and gate electrodes are electrically insulated from each other in the trench structure. A first gate driver is electrically connected to the gate electrode while a second gate driver is electrically connected to the switch gate.Type: GrantFiled: May 22, 2008Date of Patent: May 31, 2011Assignee: Infineon Technologies Austria AGInventors: Franz Hirler, Thomas Raker
-
Publication number: 20110121428Abstract: An improved bipolar transistor (40, 40?) is provided, manufacturable by a CMOS IC process without added steps. The improved transistor (40, 40?) comprises an emitter (48) having first (482) and second (484) portions of different depths (4821, 4841), a base (46) underlying the emitter (48) having a central portion (462) of a first base width (4623) underlying the first portion (482) of the emitter (48), a peripheral portion (464) having a second base width (4643) larger than the first base width (4623) partly underlying the second portion (484) of the emitter (48), and a transition zone (466) of a third base width (4644) and lateral extent (4661) lying laterally between the first (462) and second (464) portions of the base (46), and a collector (44) underlying the base (46). The gain of the transistor (40, 40?) is much larger than a conventional bipolar transistor (20) made using the same CMOS process.Type: ApplicationFiled: November 20, 2009Publication date: May 26, 2011Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
-
Patent number: 7939912Abstract: An embodiment of the invention is a transistor formed in part by a ferromagnetic semiconductor with a sufficiently high ferromagnetic transition temperature to coherently amplify spin polarization of a current. For example, an injected non-polarized control current creates ferromagnetic conditions within the transistor base, enabling a small spin-polarized signal current to generate spontaneous magnetization of a larger output current.Type: GrantFiled: February 26, 2007Date of Patent: May 10, 2011Assignee: Intel CorporationInventors: Dmitri E. Nikonov, George I. Bourianoff
-
Publication number: 20110101500Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.Type: ApplicationFiled: November 2, 2009Publication date: May 5, 2011Applicant: Analog Devices, Inc.Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
-
Patent number: 7911024Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.Type: GrantFiled: February 17, 2010Date of Patent: March 22, 2011Assignee: International Business Machines CorporationInventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
-
Patent number: 7902635Abstract: Improved radio frequency gain in a silicon-based bipolar transistor may be provided by adoption of a common-base configuration, preferably together with excess doping of the base to provide extremely low base resistances boosting performance over similar common-emitter designs.Type: GrantFiled: July 11, 2005Date of Patent: March 8, 2011Assignee: Wisconsin Alumni Research FoundationInventors: Zhenqiang Ma, Ningyue Jiang
-
Patent number: 7872330Abstract: A bipolar transistor includes a base layer design and a method for fabricating such a bipolar transistor that employ a built-in accelerating field focused on a base region adjacent to a collector, where minority carrier transport is otherwise retarded. The accelerating field of the base layer includes on average, a relatively low p-doping level in a first region proximate to the collector and a relatively high p-doping level in a second region proximate to an emitter. Alternatively, the accelerating field can be derived from band gap grading, wherein the grade of band gap in the first region is greater than the grade of band gap in the second region, and the average band gap of the first region is lower than that of the second region.Type: GrantFiled: June 24, 2009Date of Patent: January 18, 2011Assignee: Kopin CorporationInventors: Eric M. Rehder, Roger E. Welser, Charles R. Lutz
-
Patent number: 7851890Abstract: By a non-selective epitaxial growth method, an SiGe film is grown on the whole surface of a silicon oxide film so as to cover an inner wall of a base opening. Here, such film forming conditions are selected that, inside the base opening, a bottom portion is formed of single crystal, other portions such as a sidewall portion are formed of polycrystalline, and a film thickness of the sidewall portion is less than or equal to 1.5 times the film thickness of the bottom portion. In this non-selective epitaxial growth, monosilane, hydrogen, diborane, and germane are used as source gases. Then, flow rates of monosilane and hydrogen are set to 20 sccm and 20 slm respectively. Also, a growth temperature is set to 650° C., a flow rate of diborane is set to 75 sccm, and a flow rate of germane is set to 35 sccm.Type: GrantFiled: July 25, 2007Date of Patent: December 14, 2010Assignee: Fujitsu Semiconductor LimitedInventors: Hidekazu Sato, Toshihiro Wakabayashi
-
Patent number: 7811894Abstract: An improved bipolar junction transistor and a method for manufacturing the same are provided. The bipolar junction transistor includes: a buried layer and a high concentration N-type collector region in a P-type semiconductor substrate; a low concentration P-type base region in the semiconductor substrate above the buried layer; a first high concentration P-type base region along an edge of the low concentration P-type base region; a second high concentration P-type base region at a center of the low concentration P-type base region; a high concentration N-type emitter region between the first and second high concentration base regions; and insulating layer spacers between the high concentration base regions and the high concentration emitter regions. In the bipolar junction transistor, the emitter-base distance can be reduced using a trench and an insulating layer spacer. This may improve base voltage and high-speed response characteristics.Type: GrantFiled: May 11, 2009Date of Patent: October 12, 2010Assignee: Dongbu Electronics Co., Ltd.Inventor: Nam Joo Kim
-
Patent number: 7786510Abstract: An HBT structure and manufacturing method thereof, in which the HBT structure includes an emitter, an intrinsic base, a collector, an insulating sidewall, and a stress-inducing base formed by selective epitaxial growth to locally induce a stress to the HBT structure. Compressive or tensile stress is additionally induced from outside to modify physical and electric properties of a semiconductor layer, thereby improving the performance of the transistor.Type: GrantFiled: February 16, 2007Date of Patent: August 31, 2010Assignee: Chonbuk National UniversityInventors: Kyu-Hwan Shim, Sang-Sig Choi, A-Ram Choi
-
Patent number: 7772079Abstract: A vertical organic transistor and a method for fabricating the same are provided, wherein an emitter, a grid with openings and a collector are sequentially arranged above a substrate. Two organic semiconductor layers are interposed respectively between the emitter and the grid with openings and between the grid with openings and the collector. The channel length is simply decided by the thickness of the organic semiconductor layers. The collector current depends on the space-charge-limited current contributed by the potential difference between the emitter and the openings of the grid. And the grid voltage can thus effectively control the collector current. Further, the fabrication process of the vertical organic transistor of the present invention is simple and exempt from using the photolithographic process.Type: GrantFiled: February 20, 2009Date of Patent: August 10, 2010Assignee: National Chiao Tung UniversityInventors: Hsin-Fei Meng, Sheng-Fu Horng, Yu-Chiang Chao
-
Patent number: 7750438Abstract: An n-type buffer region 6 is arranged between an n? drift region 1 and a p-type collector region 7, and has a higher impurity concentration than n? drift region 1 Assuming that ? represents the ratio (WTA/WTB) between WTA expressed as: WTA = 2 ? ? s ? ? 0 ? V qNd and the thickness WTB of the drift region held between the base region and the buffer region, the ratio (DC/DB) of the net dose DC of the collector region with respect to the net dose DB of the buffer region is at least ?. Thus, a semiconductor device capable of ensuring a proper margin of SCSOA resistance can be obtained.Type: GrantFiled: January 21, 2009Date of Patent: July 6, 2010Assignee: Mitsubishi Electric CorporationInventor: Tatsuo Harada
-
Patent number: 7723823Abstract: An improved lateral bipolar electrostatic discharge (ESD) protection device (40) comprises a semiconductor (SC) substrate (42), an overlying epitaxial SC layer (44), emitter-collector regions (48, 50) laterally spaced apart by a first distance (52) in the SC layer, a base region (54) adjacent the emitter region (48) extending laterally toward and separated from the collector region (50) by a base-collector spacing (56) that is selected to set the desired trigger voltage Vt1. By providing a buried layer region (49) under the emitter region (48) Ohmically coupled thereto, but not providing a comparable buried layer region (51) under the collector region (50), an asymmetrical structure is obtained in which the DC trigger voltage (Vt1DC) and transient trigger voltage (Vt1TR) are closely matched so that |Vt1TR?Vt1DC|˜0.Type: GrantFiled: July 24, 2008Date of Patent: May 25, 2010Assignee: Freescale Semiconductor, Inc.Inventors: Chai Ean Gill, Changsoo Hong, James D. Whitfield, Rouying Zhan
-
Patent number: 7709931Abstract: An IGBT is disclosed which has a set of inside trenches and an outside trench formed in its semiconductor substrate. The substrate has emitter regions adjacent the trenches, a p-type base region adjacent the emitter regions and trenches, and an n-type base region comprising a first and a second subregion contiguous to each other. The first subregion of the n-type base region is contiguous to the inside trenches whereas the second subregion, less in impurity concentration than the first, is disposed adjacent the outside trench. Breakdown is easier to occur than heretofore adjacent the inside trenches, saving the device from destruction through mitigation of a concentrated current flow adjacent the outside trench.Type: GrantFiled: June 13, 2008Date of Patent: May 4, 2010Assignee: Sanken Electric Co., Ltd.Inventor: Katsuyuki Torii