At Least One Layer Of Silicon Oxynitride Patents (Class 257/639)
-
Patent number: 11183423Abstract: Semiconductor device structures having a liner layer in an interlayer dielectric structure are provided. In one example, a semiconductor device includes an active area on a substrate, the active area comprising a source/drain region, a gate structure over the active area, the source/drain region being proximate the gate structure, a spacer feature along a sidewall of the gate structure, a contact etching stop layer on the spacer feature, a liner oxide layer on the contact etching stop layer, and an interlayer dielectric layer on the liner oxide layer, wherein the liner oxide layer has an oxygen concentration level greater than the interlayer dielectric layer.Type: GrantFiled: March 1, 2018Date of Patent: November 23, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventor: Chun Ting Chou
-
Patent number: 11011731Abstract: The present inventive concept provides a moisture prevention film including: a first moisture prevention film; a second moisture prevention film formed on the first moisture prevention film; and a third moisture prevention film formed on the second moisture prevention film, wherein a concentration of oxygen (O) of the second moisture prevention film is higher than a concentration of oxygen of each of the first moisture prevention film and the third moisture prevention film, a method of manufacturing the moisture prevention film, and an organic light emitting device including the moisture prevention film.Type: GrantFiled: January 2, 2018Date of Patent: May 18, 2021Inventors: Kyeong Min Kim, Bong Sik Kim, Sang Du Lee, Won Tae Cho
-
Patent number: 10796992Abstract: A stack including a dual-passivation is etched locally so as to reveal contact pads of an integrated circuit which are situated above a last metallization level of an interconnection part of the integrated circuit. This stack serves to protect the integrated circuit against a breakdown of at least one dielectric region, at least in part porous, separating two electrically conducting elements of the interconnection part of the integrated circuit. Such a breakdown may occur due to electrical conduction assisted by the presence of defects within the at least one dielectric region.Type: GrantFiled: January 29, 2019Date of Patent: October 6, 2020Assignee: STMicroelectronics (Rousset) SASInventors: Christian Rivero, Jean-Philippe Escales
-
Patent number: 10446681Abstract: Some embodiments include device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen-containing material directly against the semiconductor channel material and on an opposing side of the semiconductor channel material from the dielectric region. Some embodiments include a device having a gate spaced from semiconductor channel material by a dielectric region, and having nitrogen within at least some of the semiconductor channel material. Some embodiments include a NAND memory array which includes a vertical stack of alternating insulative levels and wordline levels. Channel material extends vertically along the stack. Charge-storage material is between the channel material and the wordline levels. Dielectric material is between the channel material and the charge-storage material. Nitrogen is within the channel material. Some embodiments include methods of forming NAND memory arrays.Type: GrantFiled: July 10, 2017Date of Patent: October 15, 2019Assignee: Micron Technology, Inc.Inventors: Chris M. Carlson, Hung-Wei Liu, Jie Li, Dimitrios Pavlopoulos
-
Patent number: 10229880Abstract: A stack including a dual-passivation is etched locally so as to reveal contact pads of an integrated circuit which are situated above a last metallization level of an interconnection part of the integrated circuit. This stack serves to protect the integrated circuit against a breakdown of at least one dielectric region, at least in part porous, separating two electrically conducting elements of the interconnection part of the integrated circuit. Such a breakdown may occur due to electrical conduction assisted by the presence of defects within the at least one dielectric region.Type: GrantFiled: December 14, 2016Date of Patent: March 12, 2019Assignee: STMicroelectronics (Rousset) SASInventors: Christian Rivero, Jean-Philippe Escales
-
Patent number: 10186496Abstract: A semiconductor device is provided with a semiconductor element having a plurality of electrodes, a plurality of terminals electrically connected to the plurality of electrodes, and a sealing resin covering the semiconductor element. The sealing resin covers the plurality of terminals such that a bottom surface of the semiconductor element in a thickness direction is exposed. A first terminal, which is one of the plurality of terminals, is disposed in a position that overlaps a first electrode, which is one of the plurality of electrodes, when viewed in the thickness direction. The semiconductor device is provided with a conductive connection member that contacts both the first terminal and the first electrode.Type: GrantFiled: March 30, 2017Date of Patent: January 22, 2019Assignee: ROHM CO., LTD.Inventors: Akihiro Kimura, Takeshi Sunaga
-
Patent number: 10019565Abstract: A method and apparatus for reading unique identifiers of an integrated circuit. The unique identifiers may be physically unclonable functions (PUFs), formed by high energy ions implanted into semiconductor material of the integrated circuit. The method may include electrically or optically stimulating each of the PUFs and sensing with an optical sensor optical characteristics of resulting light emitted from the PUFs. Then the method may include comparing values associated with the optical characteristics of the PUFs with groups of stored values in a circuit database. Each of the groups of stored values may be associated with optical characteristics of PUFs of a known authentic circuit. The method may then include the controller providing verification of authenticity of the integrated circuit when each of the values associated with the optical characteristics of the PUFs match the stored values of at least one of the groups in the circuit database.Type: GrantFiled: December 17, 2015Date of Patent: July 10, 2018Assignee: Honeywell Federal Manufacturing & Technologies, LLCInventor: Daniel Jonathan Ewing
-
Patent number: 9831194Abstract: Structures for a chip, as well as methods of fabricating such chip structures. The chip including a portion of a substrate, an active circuit region associated with the portion of the substrate, an interconnect structure on the active circuit region, and a crackstop extending through the interconnect structure. A groove extends through the interconnect structure to the substrate at a location exterior of the crackstop. A stress-containing layer is formed on at least a portion of the groove.Type: GrantFiled: July 6, 2016Date of Patent: November 28, 2017Assignee: GLOBALFOUNDRIES INC.Inventors: Tom C. Lee, Cathryn J. Christiansen, Ian A. McCallum-Cook, Anthony K. Stamper
-
Patent number: 9252258Abstract: A method for manufacturing a III-nitride HEMT having a gate electrode and source and drain ohmic contacts is provided, comprising providing a substrate; forming a stack of III-nitride layers on the substrate; forming a first passivation layer comprising silicon nitride overlying and in contact with an upper layer of the stack of III-nitride layers, wherein the first passivation layer is deposited in-situ with the stack of III-nitride layers; forming a dielectric layer overlying and in contact with the first passivation layer; forming a second passivation layer comprising silicon nitride overlying and in contact with the dielectric layer wherein the second passivation layer is deposited at a temperature higher than 450° C. by LPCVD or MOCVD or any equivalent technique; and thereafter forming the source and drain ohmic contacts and the gate electrode.Type: GrantFiled: June 26, 2015Date of Patent: February 2, 2016Assignee: IMECInventor: Marleen Van Hove
-
Patent number: 9093551Abstract: A memory device is fabricated through the integration of embedded non-volatile memory (eNVM) with RMG processes. Embodiments include forming a first and a second dual polysilicon gate-stack structure on an upper surface of a substrate, forming spacers on opposite sidewalls of each of the first and the second dual polysilicon gate-stack structures, forming an ILD adjacent to an exposed sidewall of each spacer, removing the first dual polysilicon gate-stack structure, forming a first cavity between the spacers, and forming a HKMG in the first cavity, wherein the HKMG forms an access gate.Type: GrantFiled: July 6, 2012Date of Patent: July 28, 2015Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.Inventors: Eng Huat Toh, Elgin Quek, Shyue Seng Tan
-
Patent number: 9070758Abstract: A method for manufacturing a III-nitride HEMT having a gate electrode and source and drain ohmic contacts is provided, comprising providing a substrate; forming a stack of III-nitride layers on the substrate; forming a first passivation layer comprising silicon nitride overlying and in contact with an upper layer of the stack of III-nitride layers, wherein the first passivation layer is deposited in-situ with the stack of III-nitride layers; forming a dielectric layer overlying and in contact with the first passivation layer; forming a second passivation layer comprising silicon nitride overlying and in contact with the dielectric layer wherein the second passivation layer is deposited at a temperature higher than 450° C. by LPCVD or MOCVD or any equivalent technique; and thereafter forming the source and drain ohmic contacts and the gate electrode.Type: GrantFiled: June 18, 2012Date of Patent: June 30, 2015Assignee: IMECInventor: Marleen Van Hove
-
Patent number: 9035433Abstract: An organic light emitting device comprises a first substrate; a thin film transistor layer provided on the first substrate; a light emitting diode layer provided on the thin film transistor layer; and a passivation layer provided on the light emitting diode layer, the passivation layer including a first inorganic insulating film and a second inorganic insulating film, wherein a content of H contained in the first inorganic insulating film is smaller than that of H contained in the second inorganic insulating film.Type: GrantFiled: December 4, 2013Date of Patent: May 19, 2015Assignee: LG Display Co., Ltd.Inventors: Jin Goo Kang, Young Hoon Shin
-
Publication number: 20150115418Abstract: Devices and methods for forming semiconductor devices with fins at tight fin pitches are provided. One method includes, for instance: obtaining an intermediate semiconductor device; growing an epi layer over the substrate; forming a doped layer below the epi layer; depositing a first oxide layer on the epi layer; applying a dielectric material on the first oxide layer; and depositing a lithography stack on the dielectric material. One intermediate semiconductor device includes, for instance: a substrate with at least one n-well region and at least one p-well region; a doped layer over the substrate; an epi layer over the doped layer; a first oxide layer over the epi layer; a dielectric layer over the first oxide layer; and a lithography stack over the dielectric layer.Type: ApplicationFiled: October 28, 2013Publication date: April 30, 2015Applicant: GLOBALFOUNDRIES Inc.Inventors: Andy WEI, Mariappan HARIHARAPUTHIRAN, Dae Geun YANG, Dae-Han CHOI, Xiang HU, Richard J. CARTER, Akshey SEHGAL
-
Patent number: 8981466Abstract: Multilayer dielectric structures are provided having silicon nitride (SiN) and silicon oxynitride (SiNO) films for use as capping layers, liners, spacer barrier layers, and etch stop layers, and other components of semiconductor nano-devices. For example, a semiconductor structure includes a multilayer dielectric structure having multiple layers of dielectric material including one or more SiN layers and one or more SiNO layers. The layers of dielectric material in the multilayer dielectric structure have a thickness in a range of about 0.5 nanometers to about 3 nanometers.Type: GrantFiled: March 11, 2013Date of Patent: March 17, 2015Assignee: International Business Machines CorporationInventors: Alfred Grill, Seth L. Knupp, Son V. Nguyen, Vamsi K. Paruchuri, Deepika Priyadarshini, Hosadurga K. Shobha
-
Patent number: 8980715Abstract: Multilayer dielectric structures are provided having silicon nitride (SiN) and silicon oxynitride (SiNO) films for use as capping layers, liners, spacer barrier layers, and etch stop layers, and other components of semiconductor nano-devices. For example, a semiconductor structure includes a multilayer dielectric structure having multiple layers of dielectric material including one or more SiN layers and one or more SiNO layers. The layers of dielectric material in the multilayer dielectric structure have a thickness in a range of about 0.5 nanometers to about 3 nanometers.Type: GrantFiled: August 28, 2013Date of Patent: March 17, 2015Assignee: International Business Machines CorporationInventors: Alfred Grill, Seth L. Knupp, Son V. Nguyen, Vamsi K. Paruchuri, Deepika Priyadarshini, Hosadurga K. Shobha
-
Publication number: 20150028458Abstract: A semiconductor device is provided that includes a diffusion barrier layer between a compound semiconductor layer and a dielectric layer, as well as a method of fabricating the semiconductor device, such that the semiconductor device includes a compound semiconductor layer; a dielectric layer; and a diffusion barrier layer including an oxynitride formed between the compound semiconductor layer and the dielectric layer.Type: ApplicationFiled: March 14, 2014Publication date: January 29, 2015Applicant: Samsung Electronics Co., Ltd.Inventors: Dong-soo Lee, Eui-chul Hwang, Seong-ho Cho, Myoung-jae Lee, Sang-moon Lee, Sung-hun Lee, Rakib Uddin Mohammad, David Seo, Moon-seung Yang, Ji-hyun Hur
-
Patent number: 8927983Abstract: Disclosed herein is a thin film transistor array substrate. The thin film transistor array substrate includes a display area and a non-display area. The non-display area includes a signal line, a connecting line and a metal contact. The connecting line is formed in a first patterned metal layer. The signal line and the metal contact are formed in a second patterned metal layer. The connecting line is connected to the signal line by a first through-hole, and the connecting line is connected to the metal contact by a second through-hole. Furthermore, a method of fabricating the thin film transistor array substrate is also disclosed.Type: GrantFiled: August 19, 2012Date of Patent: January 6, 2015Assignee: E Ink Holdings Inc.Inventors: Wen-Chung Tang, Fang-An Shu, Yao-Chou Tsai, Ted-Hong Shinn
-
Patent number: 8927442Abstract: A structure and method for fabricating an improved SiCOH hardmask with graded transition layers having an improved profile for forming sub-20 nm back end of the line (BEOL) metallized interconnects are provided. In one embodiment, the improved hardmask may be comprised of five layers: an oxide adhesion layer, a graded transition layer, a dielectric layer, an inverse graded transition layer, and an oxide layer. In another embodiment, the improved hardmask may be comprised of four layers; an oxide adhesion layer, a graded transition layer, a dielectric layer, and an oxide layer. In another embodiment, a method of forming an improved hardmask may comprise a continuous five step plasma enhanced chemical vapor deposition (PECVD) process utilizing a silicon precursor, a porogen, and oxygen. In yet another embodiment, a method of forming an improved hardmask may comprise a continuous four step PECVD process utilizing a silicon precursor, a porogen, and oxygen.Type: GrantFiled: July 25, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Matthew S. Angyal, Yannick S. Loquet, Yann A. Mignot, Son V. Nguyen, Muthumanickam Sankarapandian, Hosadurga Shobha
-
Patent number: 8923012Abstract: What is disclosed is a modular visualization display panel. The modular visualization display panel includes a first module having at least one surface and a connection to electrical ground. The modular visualization display panel also includes a second module having at least one surface with a plurality of raised contact nodes arranged on the one surface of the second module such that when in contact with the one surface of the first module electrostatic discharge energy is directed over at least one of the raised contact nodes to the one surface of the first module.Type: GrantFiled: June 15, 2011Date of Patent: December 30, 2014Assignee: Rockwell Automation Technologies, Inc.Inventors: Andrew P. Kaufman, Keith O. Satula
-
Patent number: 8872311Abstract: The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the semiconductor device. The semiconductor device, in one particularly advantageous embodiment, includes a multi layer etch stop located over a substrate, wherein the multi layer etch stop has a first insulative layer and a second silicon-rich nitride layer located over the first insulative layer. Located over the multi layer etch stop is a dielectric layer having an opening formed therein that extends through at least a portion of the multi layer etch stop. A conductive plug is typically located within the opening, wherein an insulative spacer is located between the conductive plug and the second silicon-rich nitride layer.Type: GrantFiled: February 13, 2004Date of Patent: October 28, 2014Assignee: Agere Systems Inc.Inventors: Nace Rossi, Alvaro Maury
-
Patent number: 8853831Abstract: A interconnect structure includes a conductive layer formed in a dielectric layer. An adhesion layer is formed between the dielectric layer and a substrate. The adhesion layer has a carbon content ratio greater than a carbon content ratio of the dielectric layer.Type: GrantFiled: April 30, 2012Date of Patent: October 7, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Cheng Shih, Yu-Yun Peng, Chia Cheng Chou, Joung-Wei Liou
-
Patent number: 8836088Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a conductive plug structure contacting a portion of an upper surface of the conductive feature, a first etch stop layer over another portion of the upper surface of the conductive feature, and a second etch stop layer over the first etch stop layer. The first etch stop layer is a doped etch stop layer. The first etch stop layer is to function as an etch stop layer during a predetermined etching process for etching the second etch stop layer.Type: GrantFiled: July 24, 2013Date of Patent: September 16, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang
-
Patent number: 8823063Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.Type: GrantFiled: October 6, 2011Date of Patent: September 2, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
-
Patent number: 8803297Abstract: A semiconductor device includes a main body having a single crystalline semiconductor body. A layered structure directly adjoins a central portion of a main surface of the main body and includes a hard dielectric layer provided from a first dielectric material with Young's modulus greater than 10 GPa. A stress relief layer directly adjoins the layered structure opposite to the main body and extends beyond an outer edge of the layered structure. Providing the layered structure at a distance to the edge of the main body and covering the outer surface of the layered structures with the stress relief layer enhances device reliability.Type: GrantFiled: August 10, 2012Date of Patent: August 12, 2014Assignee: Infineon Technologies AGInventors: Peter Nelle, Uwe Schmalzbauer, Juergen Holzmueller, Markus Zundel
-
Patent number: 8749058Abstract: The semiconductor device includes an interlayer insulating film, a wiring provided in the interlayer insulating film, and a SiN film provided over the interlayer insulating film and over the wiring. The peak positions of Si—N bonds of the SiN film, which are measured by FTIR, are within the range of 845 cm?1 to 860 cm?1. This makes it possible to inhibit current leakage in a silicon nitride film, which is a barrier insulating film for preventing the diffusion of wiring metal.Type: GrantFiled: December 13, 2011Date of Patent: June 10, 2014Assignee: Renesas Electronics CorporationInventors: Tatsuya Usami, Hideaki Tsuchiya, Yukio Miura, Tomoyuki Nakamura, Koichi Ohto, Chikako Ohto, Shinji Yokogawa
-
Patent number: 8741713Abstract: The present disclosure relates to a secure device having a physical unclonable function and methods of manufacturing such a secure device. The device includes a substrate and at least one high-k/metal gate device formed on the substrate. The at least one high-k/metal gate device represents the physical unclonable function. In some cases, the at least one high-k/metal gate device may be subjected a variability enhancement. In some cases, the secure device may include a measurement circuit for measuring a property of the at least one high-k/metal gate device.Type: GrantFiled: August 10, 2012Date of Patent: June 3, 2014Assignee: International Business Machines CorporationInventors: John Bruley, Vijay Narayanan, Dirk Pfeiffer, Jean-Oliver Plouchart, Peilin Song
-
Publication number: 20140117511Abstract: A passivation layer and a method of making a passivation layer are disclosed. In one embodiment the method for manufacturing a passivation layer includes depositing a first silicon based dielectric layer on a workpiece, the first silicon based dielectric layer comprising nitrogen, and depositing in-situ a second silicon based dielectric layer on the first silicon based dielectric layer, the second dielectric layer comprising oxygen.Type: ApplicationFiled: October 30, 2012Publication date: May 1, 2014Applicant: Infineon Technologies AGInventors: Kurt Matoy, Hubert Maier, Christian Krenn, Elfriede Kraxner Wellenzohn, Helmut Schoenherr, Juergen Steinbrenner, Markus Kahn, Fister Schlemitz Silvana, Christoph Brunner, Herbert Gietler, Uwe Hoeckele
-
Publication number: 20140103498Abstract: Methods and etchant compositions for wet etching to selectively remove a hafnium aluminum oxide (HfAlOx) material relative to silicon oxide (SiOx) are provided.Type: ApplicationFiled: December 20, 2013Publication date: April 17, 2014Applicant: Micron Technology, Inc.Inventors: Prashant Raghu, Yi Yang
-
Patent number: 8674484Abstract: The present invention describes a method including: providing a substrate; stacking interlevel dielectric layers over said substrate, and separating said interlevel dielectric layers with a dielectric separator layer.Type: GrantFiled: December 30, 2008Date of Patent: March 18, 2014Assignee: Intel CorporationInventor: Sean King
-
Patent number: 8669645Abstract: Methods of forming metal oxide structures and methods of forming metal oxide patterns on a substrate using a block copolymer system formulated for self-assembly. A block copolymer at least within a trench in the substrate and including at least one soluble block and at least one insoluble block may be annealed to form a self-assembled pattern including a plurality of repeating units of the at least one soluble block laterally aligned with the trench and positioned within a matrix of the at least one insoluble block. The self-assembled pattern may be exposed to a metal oxide precursor that impregnates the at least one soluble block. The metal oxide precursor may be oxidized to form a metal oxide. The self-assembled pattern may be removed to form a pattern of metal oxide lines on the substrate surface. Semiconductor device structures are also described.Type: GrantFiled: December 22, 2011Date of Patent: March 11, 2014Assignee: Micron Technology, Inc.Inventors: Dan B. Millward, Timothy A. Quick, J. Neil Greeley
-
Patent number: 8659124Abstract: The invention relates to a semiconductor device comprising a physical structure (50) for use in a physical unclonable function, wherein the physical structure (50) comprises a lead-zirconium titanate layer (25), and a silicon-comprising dielectric layer (27) deposited on the lead-zirconium-titanate layer (25), wherein the silicon-comprising dielectric layer (27) has a rough surface (SR), the physical structure (50) further comprising a conductive layer (30) provided on the rough surface (SR) of the silicon-comprising dielectric layer (27). The invention further relates to a method of manufacturing such semiconductor device. The invention also relates to a card, such as a smartcard, and to a RFID tag comprising such semiconductor device. The inventors have found that depositing of a silicon- comprising dielectric layer (27) on a lead-zirconium titanate layer (25) using vapor deposition results in a silicon-comprising dielectric layer (27) having a rough surface (SR).Type: GrantFiled: December 21, 2009Date of Patent: February 25, 2014Assignee: NXP B.V.Inventors: Aarnoud Laurens Roest, Linda Van Leuken-Peters, Robertus Andrianus Maria Wolters
-
Patent number: 8643124Abstract: A semiconductor device including a silicon-oxide-oxynitride-oxide-silicon structure and methods of forming the same are provided. Generally, the structure comprises: a tunnel oxide layer on a surface of a substrate including silicon; a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which the stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which the stoichiometric composition of the second oxynitride layer results in it being trap dense; a blocking oxide layer on the second oxynitride layer; and a silicon containing gate layer on the blocking oxide layer. Other embodiments are also disclosed.Type: GrantFiled: January 14, 2011Date of Patent: February 4, 2014Assignee: Cypress Semiconductor CorporationInventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
-
Patent number: 8629535Abstract: A method of forming an integrated circuit includes providing a buffer layer comprising a dielectric material above a layer of conductive material and providing a layer of mask material above the buffer layer. The mask material comprises amorphous carbon. The method also includes removing a portion of the buffer layer and the layer of mask material to form a mask. A feature is formed in the layer of conductive material according to the mask.Type: GrantFiled: September 23, 2011Date of Patent: January 14, 2014Assignee: GlobalFoundries Inc.Inventors: Richard J. Huang, Scott A. Bell, Srikanteswara Dakshina-Murthy, Philip A. Fisher, Richard C. Nguyen, Cyrus E. Tabery, Lu You
-
Patent number: 8575727Abstract: A semiconductor device is provided. The device includes a semiconductor substrate, first and second projections extending upwardly from the substrate, the projections having respective first and second channel regions therein, and a first gate structure engaging the first projection adjacent the first channel region. The first gate structure includes a first dielectric material over the first channel region, a first opening over the first dielectric material and the first channel region, and a pure first metal with an n-type work function value conformally deposited in the first opening. The device also includes a second gate structure engaging the second projection adjacent the second channel region. The second gate structure includes a second dielectric material over the second channel region, a second opening over the second dielectric material and the second channel region, and a pure second metal with a p-type work function value conformally deposited in the second opening.Type: GrantFiled: May 2, 2013Date of Patent: November 5, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Peng-Soon Lim, Chia-Pin Lin, Kuang-Yuan Hsu
-
Patent number: 8552537Abstract: A semiconductor device according to an embodiment, includes a dielectric film and an Si semiconductor part. The dielectric film is formed by using one of oxide, nitride and oxynitride. The Si semiconductor part is arranged below the dielectric film, having at least one element of sulfur (S), selenium (Se), and tellurium (Te) present in an interface with the dielectric film, and formed by using silicon (Si).Type: GrantFiled: August 23, 2011Date of Patent: October 8, 2013Assignee: Kabushiki Kaisha ToshibaInventors: Tatsuo Shimizu, Satoshi Itoh, Hideyuki Nishizawa
-
Patent number: 8471369Abstract: An insulating material interposed between two conductive materials can experience plasma process induced damage (PPID) when a plasma process is used to deposit a dielectric onto one of the conductive materials. This PPID can be reduced by reducing electric charge accumulation on the one conductive material during the plasma process dielectric deposition.Type: GrantFiled: August 5, 2004Date of Patent: June 25, 2013Assignee: National Semiconductor CorporationInventors: Heather McCulloh, Denis Finbarr O'Connell, Sergei Drizlikh, Douglas Brisbin
-
Patent number: 8455985Abstract: An integrated circuit device includes a plurality of stacked circuit layers, at least one of the plurality of circuit layers including a composite interlayer insulation layer including laterally adjacent first and second insulating material regions having different mechanical strengths and dielectric properties and a plurality of circuit components disposed in the composite interlayer insulation layer. The first insulating material region may have a lower dielectric constant and a lower mechanical strength than the second insulating material region such that, for example, the first insulating material region may be positioned near signal lines or other circuit features to reduce capacitance while using the second insulating material region near a location that is susceptible to localized mechanical stress, such as a fuse location, an external connection bonding location or a scribe line location.Type: GrantFiled: February 2, 2011Date of Patent: June 4, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Kyu-hee Han, Sang-hoon Ahn, Eunkee Hong
-
Patent number: 8441107Abstract: An apparatus includes a first device. The first device includes a first projection and a first gate structure, the first projection extending upwardly from a substrate and having a first channel region therein, and the first gate structure engaging the first projection adjacent the first channel region. The first structure includes an opening over the first channel region, and a conformal, pure metal with a low resistivity disposed in the opening. The apparatus also includes a second device that includes a second projection and a second gate structure, the second projection extending upwardly from the substrate and having a second channel region therein, and the second gate structure engaging the second projection adjacent the second channel region. The second structure includes a silicide disposed over the second channel region, wherein the silicide includes a metal that is the same metal disposed in the opening.Type: GrantFiled: August 30, 2012Date of Patent: May 14, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Peng-Soon Lim, Chia-Pin Lin, Kuang-Yuan Hsu
-
Patent number: 8264064Abstract: A semiconductor device includes a semiconductor substrate on which an internal circuit is formed in a central position an insulating layer formed over the semiconductor substrate, and a moisture-resistant ring formed by a metal plug embedded in the insulating layer, the moisture-resistant ring surrounding the internal circuit, the moisture-resistant ring extending over the semiconductor substrate in a shape, the moisture-resistant ring including a first extending portion linearly extending in a first direction in parallel to the surface of the semiconductor substrate, a vertical portion connected to the first extending portion extending in a second direction orthogonal to the first extending portion, and a second extending portion orthogonal to the vertical portion and parallel to the surface of the semiconductor substrate, the second extending portion spaced apart from the first extending portion, the second extending portion crossing the vertical portion.Type: GrantFiled: February 9, 2010Date of Patent: September 11, 2012Assignee: Fujitsu Semiconductor LimitedInventor: Kenichi Watanabe
-
Patent number: 8227877Abstract: A method of manufacturing a semiconductor bio-sensor comprises providing a substrate, forming a first dielectric layer on the substrate, forming a patterned first conductive layer on the first dielectric layer, the patterned first conductive layer including a first portion and a pair of second portions, forming a second dielectric layer, a third dielectric layer and a fourth dielectric layer in sequence over the patterned first conductive layer, forming cavities into the fourth dielectric layer, forming vias through the cavities, exposing the second portions of the patterned first conductive layer, forming a patterned second conductive layer on the fourth dielectric layer, forming a passivation layer on the patterned second conductive layer, forming an opening to expose a portion of the third dielectric layer over the first portion of the patterned first conductive layer, and forming a chamber through the opening.Type: GrantFiled: July 14, 2010Date of Patent: July 24, 2012Assignee: Macronix International Co., Ltd.Inventors: Ming-Tung Lee, Shih-Chin Lien, Chia-Huan Chang
-
Patent number: 8212280Abstract: There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer (passivation film) such as SiN provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. According to the present invention, a light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air.Type: GrantFiled: February 16, 2010Date of Patent: July 3, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hisao Ikeda, Hiroki Ohara, Makoto Hosoba, Junichiro Sakata, Shunichi Ito
-
Patent number: 8198708Abstract: A system and method is disclosed for improving complementary metal oxide semiconductor (CMOS) compatible non volatile memory (NVM) retention reliability in memory cells. A memory cell of the invention comprises a backend layer that reduces charge leakage from a floating gate of the memory cell. A first bottom portion of the backend layer is formed from a first layer of silicon oxynitride having a low value of defect/trap density. A second top portion of the backend layer is formed from a second layer of silicon oxynitride having a high value of defect/trap density. The first layer of silicon oxynitride inhibits electron transport and the second layer of silicon oxynitride protects CMOS devices from plasma induced damage.Type: GrantFiled: March 4, 2011Date of Patent: June 12, 2012Assignee: National Semiconductor CorporationInventors: Jiankang Bu, Henry G. Prosack, Jr., David Courtney Parker, Heather McCulloh
-
Patent number: 8187973Abstract: A method for manufacturing a semiconductor device which includes: alternately supplying a silicon source and an oxidant to deposit a silicon oxide film on a surface of a semiconductor substrate, wherein the silicon source is supplied under a supply condition where an adsorption amount of molecules of the silicon source on the semiconductor substrate is increased without causing an adsorption saturation of the molecules of the silicon source on the semiconductor substrate, and wherein the oxidant is supplied under a supply condition where impurities remain in the molecules of the silicon source adsorbed on the semiconductor substrate.Type: GrantFiled: March 16, 2009Date of Patent: May 29, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Katsuyuki Sekine, Kazuhei Yoshinaga
-
Patent number: 8183136Abstract: Provided are a method of forming an insulating layer and a method of manufacturing a transistor using the method. The method of forming the insulating layer includes forming a preliminary insulating layer including silicon oxide (SiO2) on a silicon (Si)-containing substrate. A reactive gas containing ammonia (NH3) gas is supplied to the preliminary insulating layer. Nitrogen radicals (N*) and hydrogen radicals (H*) are generated from the ammonia gas using plasma. The hydrogen radicals combine with oxygen of the preliminary insulating layer, and the nitrogen radicals combine with the silicon oxide so that an insulating layer including hydroxides (OH) and silicon oxynitride (SiON) can be formed.Type: GrantFiled: November 19, 2010Date of Patent: May 22, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Seong-Hoon Jeong, Dong-Chan Kim, Yu-Gyun Shin, Soo-Jin Hong, Deok-Hyung Lee
-
Patent number: 8183647Abstract: The present invention provides a semiconductor device comprising: a silicon based semiconductor substrate provided with a step including an non-horizontal surface, a horizontal surface and a connection region for connecting the non-horizontal surface and the horizontal surface; a gate insulating film formed in at least a part of the step; and a gate electrode formed on the gate insulating film, wherein the entirety or a part of the gate insulating film is formed of a silicon oxynitride film that contains a rare gas element at a area density of 1010 cm?2 or more in at least a part of the silicon oxynitride film.Type: GrantFiled: December 11, 2003Date of Patent: May 22, 2012Assignees: Sharp Kabushiki KaishaInventors: Tadahiro Omi, Naoki Ueda
-
Publication number: 20120025274Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.Type: ApplicationFiled: October 6, 2011Publication date: February 2, 2012Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Hideto OHNUMA, Tetsuya KAKEHATA, Yoichi IIKUBO
-
Publication number: 20110254141Abstract: The invention relates to a semiconductor device comprising a physical structure (50) for use in a physical unclonable function, wherein the physical structure (50) comprises a lead-zirconium titanate layer (25), and a silicon-comprising dielectric layer (27) deposited on the lead-zirconium-titanate layer (25), wherein the silicon-comprising dielectric layer (27) has a rough surface (SR), the physical structure (50) further comprising a conductive layer (30) provided on the rough surface (SR) of the silicon-comprising dielectric layer (27). The invention further relates to a method of manufacturing such semiconductor device. The invention also relates to a card, such as a smartcard, and to a RFID tag comprising such semiconductor device. The inventors have found that depositing of a silicon- comprising dielectric layer (27) on a lead-zirconium titanate layer (25) using vapor deposition results in a silicon-comprising dielectric layer (27) having a rough surface (SR).Type: ApplicationFiled: December 21, 2009Publication date: October 20, 2011Applicant: NXP B.V.Inventors: Aarnoud Laurens Roest, Linda Van Leuken-Peters, Robertus Andrianus Maria Wolters
-
Patent number: 8013392Abstract: Semiconductor structure formed on a substrate and process of forming the semiconductor. The semiconductor includes a plurality of field effect transistors having a first portion of field effect transistors (FETS) and a second portion of field effect transistors. A first stress layer has a first thickness and is configured to impart a first determined stress to the first portion of the plurality of field effect transistors. A second stress layer has a second thickness and is configured to impart a second determined stress to the second portion of the plurality of field effect transistors.Type: GrantFiled: September 28, 2007Date of Patent: September 6, 2011Assignee: International Business Machines CorporationInventors: Bruce B. Doris, Oleg G. Gluschenkov, Huilong Zhu
-
Patent number: 7928512Abstract: A semiconductor device is provided herein, which includes a substrate having a first-type MOS transistor, an input/output (I/O) second-type MOS transistor, and a core second-type MOS transistor formed thereon. The semiconductor device further includes a first stress layer and a second stress layer. The first stress layer is disposed on the first-type MOS transistor, or on the first-type MOS transistor and the I/O second-type MOS transistor. The second stress layer is disposed on the core second-type MOS transistor.Type: GrantFiled: July 12, 2007Date of Patent: April 19, 2011Assignee: United Microelectronics Corp.Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Lang
-
Publication number: 20110073998Abstract: Embodiments of semiconductor devices are provided. In one embodiment, the semiconductor device includes a substrate, an etch stop layer formed on the substrate, an adhesion promotion layer formed directly on the etch stop layer, and a dielectric layer formed directly on the adhesion promotion layer. The etch stop layer may include silicon, carbon, and nitrogen. The dielectric layer may include silicon, oxygen, and carbon. The adhesion promotion layer may include carbon, oxygen, and nitrogen. An example of an adhesion promotion layer includes polyimide.Type: ApplicationFiled: September 29, 2009Publication date: March 31, 2011Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventor: Bo-Jiun Lin