Field Effect Transistor In Single Crystal Material, Complementary To That In Non-single Crystal, Or Recrystallized, Material (e.g., Cmos) Patents (Class 257/69)
  • Patent number: 11942420
    Abstract: A semiconductor device includes a first gate structure extending along a first lateral direction. The semiconductor device includes a first interconnect structure, disposed above the first gate structure, that extends along a second lateral direction perpendicular to the first lateral direction. The first interconnect structure includes a first portion and a second portion electrically isolated from each other by a first dielectric structure. The semiconductor device includes a second interconnect structure, disposed between the first gate structure and the first interconnect structure, that electrically couples the first gate structure to the first portion of the first interconnect structure. The second interconnect structure includes a recessed portion that is substantially aligned with the first gate structure and the dielectric structure along a vertical direction.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guo-Huei Wu, Hui-Zhong Zhuang, Chih-Liang Chen, Cheng-Chi Chuang, Shang-Wen Chang, Yi-Hsun Chiu
  • Patent number: 11894380
    Abstract: Disclosed is a semiconductor device capable of functioning as a memory device. The memory device comprises a plurality of memory cells, and each of the memory cells contains a first transistor and a second transistor. The first transistor is provided over a substrate containing a semiconductor material and has a channel formation region in the substrate. The second transistor has an oxide semiconductor layer. The gate electrode of the first transistor and one of the source and drain electrodes of the second transistor are electrically connected to each other. The extremely low off current of the second transistor allows the data stored in the memory cell to be retained for a significantly long time even in the absence of supply of electric power.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 6, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 11830880
    Abstract: Disclosed is a semiconductor device capable of functioning as a memory device. The memory device comprises a plurality of memory cells, and each of the memory cells contains a first transistor and a second transistor. The first transistor is provided over a substrate containing a semiconductor material and has a channel formation region in the substrate. The second transistor has an oxide semiconductor layer. The gate electrode of the first transistor and one of the source and drain electrodes of the second transistor are electrically connected to each other. The extremely low off current of the second transistor allows the data stored in the memory cell to be retained for a significantly long time even in the absence of supply of electric power.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 28, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 11810969
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a lateral bipolar transistor and methods of manufacture. A structure includes: an intrinsic base comprising semiconductor material in a channel region of a semiconductor substrate; an extrinsic base vertically above the intrinsic base; a raised collector region on the semiconductor substrate and laterally connected to the intrinsic base; and a raised emitter region on the semiconductor substate and laterally connected to the intrinsic base.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: November 7, 2023
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Haiting Wang, Alexander Derrickson, Jagar Singh, Vibhor Jain, Andreas Knorr, Alexander Martin, Judson R. Holt, Zhenyu Hu
  • Patent number: 11776964
    Abstract: Disclosed is a semiconductor device capable of functioning as a memory device. The memory device comprises a plurality of memory cells, and each of the memory cells contains a first transistor and a second transistor. The first transistor is provided over a substrate containing a semiconductor material and has a channel formation region in the substrate. The second transistor has an oxide semiconductor layer. The gate electrode of the first transistor and one of the source and drain electrodes of the second transistor are electrically connected to each other. The extremely low off current of the second transistor allows the data stored in the memory cell to be retained for a significantly long time even in the absence of supply of electric power.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 3, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 11637014
    Abstract: Methods and systems for selectively depositing material, such as doped semiconductor material, are disclosed. An exemplary method includes providing a substrate, comprising a first area comprising a first material and a second area comprising a second material, selectively depositing a first doped semiconductor layer overlying the first material relative to the second material and selectively depositing a second doped semiconductor layer overlying the first doped semiconductor layer relative to the second material.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: April 25, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Lucas Petersen Barbosa Lima, Rami Khazaka, Qi Xie
  • Patent number: 11581439
    Abstract: To provide a semiconductor device in which a large current can flow. To provide a semiconductor device which can be driven stably at a high driving voltage. The semiconductor device includes a semiconductor layer, a first electrode and a second electrode electrically connected to the semiconductor layer and apart from each other in a region overlapping with the semiconductor layer, a first gate electrode and a second gate electrode with the semiconductor layer therebetween, a first gate insulating layer between the semiconductor layer and the first gate electrode, and a second gate insulating layer between the semiconductor layer and the second gate electrode. The first gate electrode overlaps with part of the first electrode, the semiconductor layer, and part of the second electrode. The second gate electrode overlaps with the semiconductor layer and part of the first electrode, and does not overlap with the second electrode.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: February 14, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kobayashi, Daisuke Matsubayashi, Akihisa Shimomura, Daigo Ito
  • Patent number: 11550101
    Abstract: An integrated photonic device is provided with a photonic crystal lower cladding on a semiconductor substrate.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: January 10, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Yuval Saado
  • Patent number: 11456370
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: September 27, 2022
    Assignee: UNM RAINFOREST INNOVATIONS
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 11404536
    Abstract: An integrated circuit includes a base, a first transistor structure on or above the base, and a second transistor structure on or above the base, where the second transistor structure is spaced from the first transistor structure. An insulator material at least partially encapsulates an airgap or other gas pocket laterally between the first transistor structure and the second transistor structure. The gas pocket is at least 5 nm in height and at least 5 nm wide according to an embodiment, and in some cases is as tall or taller than active device layers of the transistor structures it separates.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Travis W. LaJoie, Abhishek A. Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem Ogadhoh, Allen B. Gardiner, Blake Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
  • Patent number: 11342442
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 24, 2022
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 11342441
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 24, 2022
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 11296207
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: April 5, 2022
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 11195873
    Abstract: The present technology relates to a solid-state imaging device and an electronic device capable of improving a saturation characteristic. A photo diode is formed on a substrate, and a floating diffusion accumulates a signal charge read from the photo diode. A plurality of vertical gate electrodes is formed from a surface of the substrate in a depth direction in a region between the photo diode and the floating diffusion, and an overflow path is formed in a region interposed between a plurality of vertical gate electrodes. The present technology may be applied to a CMOS image sensor.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: December 7, 2021
    Assignee: SONY CORPORATION
    Inventor: Hideo Kido
  • Patent number: 11114492
    Abstract: An image sensor includes a photoelectric conversion element structured to receive incident light and convert the received light into electric charges; a plurality of transfer transistors electrically coupled to the photoelectric conversion element to respond to a transfer signal to selectively transfer the electric charges out of the photoelectric conversion element; and a lag prevention structure formed at a center of the photoelectric conversion element and structured to receive the transfer signal to operate together with the plurality of transfer transistors to facilitate transfer the electric charges out of the photoelectric conversion element.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: September 7, 2021
    Assignee: SK hynix Inc.
    Inventor: Won-Jun Lee
  • Patent number: 10916432
    Abstract: Methods are provided to form pure silicon oxide layers on silicon-germanium (SiGe) layers, as well as an FET device having a pure silicon oxide interfacial layer of a metal gate structure formed on a SiGe channel layer of the FET device. For example, a method comprises growing a first silicon oxide layer on a surface of a SiGe layer using a first oxynitridation process, wherein the first silicon oxide layer comprises nitrogen. The first silicon oxide layer is removed, and a second silicon oxide layer is grown on the surface of the SiGe layer using a second oxynitridation process, which is substantially the same as the first oxynitridation process, wherein the second silicon oxide layer is substantially devoid of germanium oxide and nitrogen. For example, the first silicon oxide layer comprises a SiON layer and the second silicon oxide layer comprises a pure silicon dioxide layer.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Hemanth Jagannathan, ChoongHyun Lee, Vijay Narayanan
  • Patent number: 10903164
    Abstract: A first semiconductor die is provided, which includes a first substrate, first semiconductor devices, first interconnect-level dielectric material layers, first metal interconnect structures, and first bonding pads. A second semiconductor die is provided, which includes a semiconductor-on-insulator (SOI) substrate, second semiconductor devices, second interconnect-level dielectric material layers, second metal interconnect structures, and second bonding pads. The second bonding pads are bonded to the first bonding pads. A bulk substrate layer of the SOI substrate is removed exposing an insulating material layer of the SOI substrate, which may be retained or also removed. An external bonding pad is electrically connected to a node of the second semiconductor devices.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 26, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Akio Nishida
  • Patent number: 10811517
    Abstract: A method includes forming a fin extending above an isolation region. A sacrificial gate stack having a first sidewall and a second sidewall opposite the first sidewall is formed over the fin. A first spacer is formed on the first sidewall of the sacrificial gate stack. A second spacer is formed on the second sidewall of the sacrificial gate stack. A patterned mask having an opening therein is formed over the sacrificial gate stack, the first spacer and the second spacer. The patterned mask extends along a top surface and a sidewall of the first spacer. The second spacer is exposed through the opening in the patterned mask. The fin is patterned using the patterned mask, the sacrificial gate stack, the first spacer and the second spacer as a combined mask to form a recess in the fin. A source/drain region is epitaxially grown in the recess.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Li, Bi-Fen Wu, Jen-Hsiang Lu, Chih-Hao Chang
  • Patent number: 10658393
    Abstract: A thin-film transistor substrate may include a first thin-film transistor and a second thin-film transistor which are disposed on a substrate. The first thin-film transistor may include a first semiconductor layer, a first gate electrode, and a first electrode. The second thin-film transistor may include a second semiconductor layer disposed on the first semiconductor layer and overlapping at least a portion of the first semiconductor layer, a second gate electrode, and a second electrode electrically connected to the first electrode. The second electrode may overlap the first electrode.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 19, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choi, Tae-Jin Kim
  • Patent number: 10629813
    Abstract: The present invention provides a display device and a manufacturing method thereof that can simplify manufacturing steps and enhance efficiency in the use of materials, and further, a manufacturing method that can enhance adhesives of a pattern. One feature of the invention is that at least one or more patterns needed for manufacturing a display panel, such as a conductive layer forming a wiring or an electrode or a mask for forming a desired pattern is/are formed by a method capable of selectively forming a pattern, thereby manufacturing a display panel.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 21, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Osamu Nakamura, Gen Fujii, Fuminori Tateishi
  • Patent number: 10553639
    Abstract: A solid-state imaging device includes: a first electrode formed above a semiconductor substrate; a photoelectric conversion film formed on the first electrode and for converting light into signal charges; a second electrode formed on the photoelectric conversion film; a charge accumulation region electrically connected to the first electrode and for accumulating the signal charges converted from the light by the photoelectric conversion film; a reset gate electrode for resetting the charge accumulation region; an amplification transistor for amplifying the signal charges accumulated in the charge accumulation region; and a contact plug in direct contact with the charge accumulation region, comprising a semiconductor material, and for electrically connecting to each other the first electrode and the charge accumulation region.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: February 4, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yusuke Sakata, Mitsuyoshi Mori, Yutaka Hirose, Hiroshi Masuda, Hitoshi Kuriyama, Ryohei Miyagawa
  • Patent number: 10529573
    Abstract: Methods are provided to form pure silicon oxide layers on silicon-germanium (SiGe) layers, as well as an FET device having a pure silicon oxide interfacial layer of a metal gate structure formed on a SiGe channel layer of the FET device. For example, a method comprises growing a first silicon oxide layer on a surface of a SiGe layer using a first oxynitridation process, wherein the first silicon oxide layer comprises nitrogen. The first silicon oxide layer is removed, and a second silicon oxide layer is grown on the surface of the SiGe layer using a second oxynitridation process, which is substantially the same as the first oxynitridation process, wherein the second silicon oxide layer is substantially devoid of germanium oxide and nitrogen. For example, the first silicon oxide layer comprises a SiON layer and the second silicon oxide layer comprises a pure silicon dioxide layer.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Hemanth Jagannathan, Choonghyun Lee, Vijay Narayanan
  • Patent number: 10504734
    Abstract: A semiconductor device and method of manufacture are provided. In an embodiment a metal layer is formed over a substrate using a fluorine-free deposition process, a nucleation layer is formed over the metal layer using a fluorine included deposition process, and a fill material is formed to fill an opening and form a gate stack.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Shiung Tsai, Chung-Chiang Wu, Wei-Fan Liao, Han-Ti Hsiaw
  • Patent number: 10483287
    Abstract: Transistors formed on semiconductor substrates are not well-suited for integrated circuits employed in media designed to structurally flex to conform to a shaped surface or in response to physical stress. Structural flexing of wearable electronic devices, such as clothing, may cause cracking in the semiconductor substrate, resulting in failure of the integrated circuits. TFTs formed on flexible substrates can withstand structural flexing without failure. CMOS circuits are employed due to cost, performance, and power efficiency considerations. To provide increased drive strength for such applications, a flexible TFT structure for a CMOS circuit disclosed herein includes an exemplary NFET integrated with a complementary PFET on a flexible substrate. By forming a top gate on a semiconductor layer of a FET opposite to a bottom gate formed between the semiconductor layer and the flexible substrate, an effective thickness of an inversion channel layer induced in the semiconductor layer is doubled.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 19, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Bin Yang, Gengming Tao
  • Patent number: 10390428
    Abstract: An electrical connection structure is provided in the present invention, which includes a substrate, a plurality of conductive textile layers disposed apart on the substrate, an electrical connection layer disposed on the conductive textile layers, a plurality conductive parts disposed on the electrical connection layer corresponding to the conductive textile layers respectively, an adhesive layer, and a protective layer, wherein the electrical connection layer provides the electrical connection between the conductive textile layers and the conductive parts corresponding to the conductive textile layers, and the conductive textile layers disposed apart from each other are not electrically connected.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: August 20, 2019
    Assignee: Far Eastern New Century Corporation
    Inventors: Yu-Chun Wu, Wei-Che Hung, Hsin-Kai Lai
  • Patent number: 10333007
    Abstract: A short-channel metal oxide semiconductor varactor may include a source region of a first polarity having a source via contact. The varactor may further include a drain region of the first polarity having a drain via contact. The varactor may further include a channel region of the first polarity between the source region and the drain region. The channel region may include a gate. The varactor may further include at least one self-aligned contact (SAC) on the gate and between the source via contact and the drain via contact.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 25, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Ye Lu, Yun Yue, Chuan-Hsing Chen, Bin Yang, Lixin Ge, Ken Liao
  • Patent number: 10304957
    Abstract: Selective epitaxial growth is used to form a hetero-structured source/drain region to fill an etched recess in a silicon fin for an n-type FinFET device.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: May 28, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Ukjin Roh, Shashank Ekbote
  • Patent number: 10298119
    Abstract: According to an embodiment, a circuit includes a protection voltage generator coupled to a first voltage node, a second voltage node, and a ground voltage node, the protection voltage generator configured to generate a plurality of protection voltages at a first plurality of nodes based on the first voltage node and the second voltage node, and a voltage protection ladder coupled between the first voltage node and a low voltage circuit, the voltage protection ladder coupled to the plurality of protection voltages at the first plurality of nodes, the voltage protection ladder configured to generate a first low voltage based on the first voltage node and the plurality of protection voltages.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: May 21, 2019
    Assignee: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Phalguni Bala, Hiten Advani
  • Patent number: 10056445
    Abstract: The present invention provides a manufacture method of an AMOLED pixel driving circuit. The method utilizes the oxide semiconductor thin film transistor to be the switch thin film transistor of the AMOLED pixel driving circuit to reduce the leakage current of the switch thin film transistor, and the P type polysilicon thin film transistor manufactured by utilizing the Solid Phase Crystallization is employed to be the drive thin film transistor of the AMOLED pixel driving circuit to promote the mobility, the equality and the reliability of the drive thin film transistor, and utilizing the P type thin film transistor to be the drive thin film transistor can form the constant current type OLED element, which is more stable than the source follower type OLED formed by the N type thin film transistor, and meanwhile, the parasitic capacitance is decreased with the top gate structure.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 21, 2018
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Xingyu Zhou, Xiaoxing Zhang, Yuanjun Hsu, Yadi Zhang
  • Patent number: 10008386
    Abstract: Methods are provided to form pure silicon oxide layers on silicon-germanium (SiGe) layers, as well as an FET device having a pure silicon oxide interfacial layer of a metal gate structure formed on a SiGe channel layer of the FET device. For example, a method comprises growing a first silicon oxide layer on a surface of a SiGe layer using a first oxynitridation process, wherein the first silicon oxide layer comprises nitrogen. The first silicon oxide layer is removed, and a second silicon oxide layer is grown on the surface of the SiGe layer using a second oxynitridation process, which is substantially the same as the first oxynitridation process, wherein the second silicon oxide layer is substantially devoid of germanium oxide and nitrogen. For example, the first silicon oxide layer comprises a SiON layer and the second silicon oxide layer comprises a pure silicon dioxide layer.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Hemanth Jagannathan, Choonghyun Lee, Vijay Narayanan
  • Patent number: 9953997
    Abstract: Disclosed is a semiconductor memory device including stacks on a substrate, a vertical channel portion connected to the substrate through each of the stacks, and a separation pattern disposed between the stacks. Each of the stacks may include a plurality of gate electrodes stacked on the substrate and insulating patterns interposed between the gate electrodes. Each of the gate electrodes may include a first metal pattern, which is disposed between the insulating patterns to define a recess region recessed toward the vertical channel portion, and a second metal pattern disposed in the recess region. The first and second metal patterns may contain the same metallic material and may have mean grain sizes different from each other.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 24, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joyoung Park, Hauk Han, Seok-Won Lee, Jeonggil Lee, Jinwoo Park, Kihyun Yoon, Hyunseok Lim, Jooyeon Ha
  • Patent number: 9911574
    Abstract: Provided among other things are a scanning electron microscope, scanning transmission electron microscope, focused ion beam microscope, ion beam micromachining device, or scanning probe nanofabrication device, wherein the microscope or device is configured to move a substrate and a scanning modality relative to one another with an enclosed sinusoidal trajectory, and methods of operation.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 6, 2018
    Assignee: The Trustees of Princeton University, Office of Technology and Trademark Licensing
    Inventors: Nan Yao, Wei Cai
  • Patent number: 9871215
    Abstract: A transistor manufacturing method includes: forming a first insulator layer of which formation material is a fluorine-containing resin, on a substrate having a source electrode, a drain electrode, and a semiconductor layer so as to cover the semiconductor layer; forming a second insulator layer to cover the first insulator layer; forming a base film on at least part of a surface of the second insulator layer; and after depositing a metal which is an electroless plating catalyst on a surface of the base film, forming a gate electrode on the surface of the base film by electroless plating, wherein the forming of the base film is performed by applying a liquid substance which is a formation material of the base film to the surface of the second insulator layer, and the second insulator layer has a higher lyophilic property with respect to the liquid substance than the first insulator layer.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: January 16, 2018
    Assignee: NIKON CORPORATION
    Inventors: Shohei Koizumi, Takashi Sugizaki, Yusuke Kawakami
  • Patent number: 9812578
    Abstract: A thin film transistor includes, an insulating substrate, a gate electrode provided on an upper surface of the insulating substrate, a gate insulating film formed so as to cover the gate electrode, an oxide semiconductor layer provided on the gate insulating film, a channel protective layer provided at least on an upper surface of the oxide semiconductor layer, and a source electrode and a drain electrode provided so as to come into contact with the oxide semiconductor layer, wherein the channel protective layer is formed such that the film density of a portion provided so as to come into contact with the oxide semiconductor layer is higher than the film density of a portion distant from the oxide semiconductor layer.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: November 7, 2017
    Assignee: Japan Display Inc.
    Inventors: Norihiro Uemura, Takeshi Noda, Hidekazu Miyake, Isao Suzumura
  • Patent number: 9711534
    Abstract: A device includes a substrate layer, a diamond layer, and a device layer. The device layer is patterned. The diamond layer is to conform to a pattern associated with the device layer.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 18, 2017
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Di Liang, Raymond G Beausoleil
  • Patent number: 9595592
    Abstract: A method for forming contact silicide for a semiconductor structure. In one embodiment, a dielectric layer is formed over a p-type region of a semiconductor structure comprising a gate stack and source and drain regions. The source and drain regions are formed within a semiconductor layer. First and second contact trenches are formed within the dielectric layer exposing at least a portion of the source region and a portion of the drain region, respectively. First and second metal layers are formed within the first and second contact trenches. The second metal layer includes a metallic material that is different from a metallic material of the first meal layer. The metallic materials of the first and second metal layers in a lower region of the first and second contact trenches are intermixed. A silicide is formed within the source and drain regions from the semiconductor layer and the intermixed metallic materials.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan Veera Venkata Satya Surisetty
  • Patent number: 9570409
    Abstract: A semiconductor device includes: a first interconnection line and a second interconnection line which extend apart from each other on a first plane at a first level on a substrate; a bypass interconnection line that extends on a second plane at a second level on the substrate; and a plurality of contact plugs for connecting the bypass interconnection line to the first interconnection line and the second interconnection line. A method includes forming a bypass interconnection line spaced apart from a substrate and forming on a same plane a plurality of interconnection lines connected to the bypass interconnection line via a plurality of contact plugs.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 14, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-min Park, Dae-ik Kim
  • Patent number: 9466672
    Abstract: A semiconductor stack includes a substrate; a first semiconductor layer disposed on the substrate; a tensile strained interlayer layer disposed on the first semiconductor layer; and a second semiconductor layer disposed on the strained interlayer; wherein the difference in strain between the first semiconductor layer and the tensile strained interlayer is about 1 to about 2%.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: October 11, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Keith E. Fogel, Pouya Hashemi, John A. Ott, Alexander Reznicek
  • Patent number: 9379254
    Abstract: This disclosure provides systems, methods and apparatus for fabricating thin film transistor (TFT) devices. In one aspect, a substrate having a source area, a drain area, and a channel area is provided. Metal cations are implanted in the oxide semiconductor layer overlying the source area and the drain area of the substrate. The metal cation implantation forms a doped n-type oxide semiconductor in the oxide semiconductor layer overlying the source area and the drain area of the substrate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 28, 2016
    Assignee: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Cheonhong Kim, Tallis Young Chang, John Hyunchul Hong
  • Patent number: 9299136
    Abstract: A metal element deformation state detection device is provided in which since a plurality of the metal elements are in line contact with each other via a rocking edge and are aligned in an arc shape to form a metal element row, a light source is disposed on the radially inner side or the radially outer side of the arc of the metal element row, and a deformation state of the metal element is detected by observing passed-through light that has been emitted from the light source and has passed through a gap between adjacent metal elements, slight deformation in the metal element can reliably be detected.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 29, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Shigeru Kanehara
  • Patent number: 9184251
    Abstract: A semiconductor device includes a substrate and a plurality of transistors arranged on the substrate in an array. The transistor includes a first electrode, a plurality of second electrodes, and a gate electrode. The second electrodes are arranged around the first electrode. The gate electrode is located between the first electrode and the second electrodes. The first electrode is a circle or polygon. The gate electrode is around the first electrode, and an edge of the gate electrode facing the first electrode has a shape corresponding to that of the first electrode.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: November 10, 2015
    Assignee: DELTA ELECTRONCIS, INC.
    Inventors: Li-Fan Lin, Hsuan-Wen Chen
  • Patent number: 9135390
    Abstract: To design a power supply network of a 3D semiconductor device employing through-silicon-via (TSV) technology, board wiring of each of boards of the device is determined. An initial network structure is created for the boards. A layout of power bumps and through-silicon-vias, using the initial network structure, is produced such that voltages of all nodes of wiring of the boards are greater than a reference voltage. A semiconductor device having boards, power bumps and through-silicon-vias conforming to the layout is fabricated. Thus, the numbers of the through-silicon-vias and the power bumps of the power supply network of the semiconductor device are minimal.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: September 15, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Soo Jang, Jae-Rim Lee, Jong-Wha Chong, Jae-Hwan Kim, Byung-Gyu Ahn, Cheol-Jon Jang
  • Patent number: 9117785
    Abstract: Provided is a display device, including a pixel electrode in each of a plurality of pixels; an auxiliary wiring part including a first auxiliary wiring having a first edge portion, and a second auxiliary wiring having a second edge portion spaced apart from and facing the first edge portion; an insulating layer on the pixel electrode and the auxiliary wiring part, and in which a first opening and a second opening are defined, the first opening overlapping the pixel electrode, and the second opening overlapping the first edge portion and the second edge portion; an organic light-emitting layer on the insulating layer and contacting the pixel electrode through the first opening; and an upper electrode on the organic light-emitting layer and having a connection portion electrically connected with the auxiliary wiring part through the second opening.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: August 25, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Mitsuhiro Kashiwabara, Toshiyuki Matsuura
  • Patent number: 9112037
    Abstract: A transistor including an oxide semiconductor and having favorable operation characteristics is provided. Further, by using the transistor, a semiconductor having improved operation characteristics can be provided. In planar view, one of a source electrode and a drain electrode of the transistor is surrounded by a ring-shaped gate electrode. Further, in planar view, one of the source electrode and the drain electrode of the transistor is surrounded by a channel formation region. Accordingly, the source electrode is not electrically connected to the drain electrode through a parasitic channel generated in an end portion of an island-shaped oxide semiconductor layer.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: August 18, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Yuki Hata, Suguru Hondo
  • Publication number: 20150102348
    Abstract: A method of forming a semiconductor structure that includes forming a first recess and a second recess between a first pair of sidewall spacers and a second pair of sidewall spacers respectively, the first and second pair of sidewall spacers surrounding a fin on top of a buried dielectric layer, the fin is formed from a top most semiconductor layer of a semiconductor-on-insulator substrate. A high-k dielectric layer is deposited within the first and second recesses and a dummy titanium nitride layer is deposited on the high-k dielectric layer. The high-k dielectric layer and the dummy titanium nitride layer are removed from the second recess and a silicon cap layer is deposited within the first and second recesses. Next, dopants are implanted into the silicon cap layer in the second recess without implanting dopants into the silicon cap layer in the first recess to form a BJT device.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 16, 2015
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Effendi Leobandung, Tak H. Ning
  • Patent number: 8994026
    Abstract: Design structures, structures and methods of manufacturing structures for providing latch-up immunity for mixed voltage integrated circuits. The structure includes a diffused N-Tub structure embedded in a P-wafer and provided below a retrograde N-well to a non-isolated CMOS logic.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8981374
    Abstract: A semiconductor device having a high aperture ratio and including a capacitor capable of increasing the charge capacity is provided. A semiconductor device includes a transistor over a substrate, a first light-transmitting conductive film over the substrate, an oxide insulating film covering the transistor and having an opening over the first light-transmitting conductive film, a nitride insulating film over the oxide insulating film and in contact with the first light-transmitting conductive film in the opening, a second light-transmitting conductive film connected to the transistor and having a depressed portion in the opening, and an organic resin film with which the depressed portion of the second light-transmitting conductive film is filled.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daisuke Kubota, Ryo Hatsumi, Masami Jintyou, Takumi Shigenobu, Naoto Goto
  • Patent number: 8975635
    Abstract: First and second template epitaxial semiconductor material portions including different semiconductor materials are formed within a dielectric template material layer on a single crystalline substrate. Heteroepitaxy is performed to form first and second epitaxial semiconductor portions on the first and second template epitaxial semiconductor material portions, respectively. At least one dielectric bonding material layer is deposited, and a handle substrate is bonded to the at least one dielectric bonding material layer. The single crystalline substrate, the dielectric template material layer, and the first and second template epitaxial semiconductor material portions are subsequently removed. Elemental semiconductor devices and compound semiconductor devices can be formed on the first and second semiconductor portions, which are embedded within the at least one dielectric bonding material layer on the handle substrate.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 8975634
    Abstract: An object is to suppress occurrence of oxygen deficiency. An oxide semiconductor film is formed using germanium (Ge) instead of part of or all of gallium (Ga) or tin (Sn). At least one of bonds between a germanium (Ge) atom and oxygen (O) atoms has a bond energy higher than at least one of bonds between a tin (Sn) atom and oxygen (O) atoms or a gallium (Ga) atom and oxygen (O) atoms. Thus, a crystal of an oxide semiconductor formed using germanium (Ge) has a low possibility of occurrence of oxygen deficiency. Accordingly, an oxide semiconductor film is formed using germanium (Ge) in order to suppress occurrence of oxygen deficiency.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Motoki Nakashima
  • Patent number: 8969879
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato