Multiple Contact Layers Separated From Each Other By Insulator Means And Forming Part Of A Package Or Housing (e.g., Plural Ceramic Layer Package) Patents (Class 257/700)
  • Patent number: 8720049
    Abstract: Disclosed herein is a method for fabricating a printed circuit board, including: stacking a second insulating layer including a reinforcement on an outer surface of a first insulating layer having a post via formed thereon; polishing an upper surface of the second insulating layer to expose an upper side of the post via; stacking a film member on the second insulating layer to cover the post via and compress the second insulating layer; polishing an upper surface of the film member to expose an upper side of the post via; and forming a circuit layer connected to the post via on the upper surface of the film member.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 13, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd
    Inventors: Tae Kyun Bae, Chang Gun Oh, Ho Sik Park
  • Patent number: 8717486
    Abstract: A technique of enabling both of higher functionality and higher accuracy in a compact optical system is provided. To achieve this object, an imaging unit has a laminated structure formed by laminating a plurality of layers including: an image capturing element layer including an image capturing element part; a lens layer capable of changing a distance from the image capturing element layer; and an actuator layer including a movable part for moving the lens layer; and a signal transmitter disposed so as to connect the actuator layer and the image capturing element layer, and transmitting a drive signal for driving the movable part from the image capturing element layer side to the actuator layer, and the movable part is deformed according to the drive signal transmitted through the signal transmitter, and the actuator layer is provided between the image capturing element layer and the lens layer.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 6, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Akira Kosaka, Yasutaka Tanimura, Takashi Matsuo, Natsuki Yamamoto
  • Patent number: 8716871
    Abstract: A semiconductor device that includes a first metal layer component formed over a substrate. The semiconductor device includes a via formed over the first metal layer component. The via has a recessed shape. The semiconductor device includes a second metal layer component formed over the via. The semiconductor device includes a first dielectric layer component formed over the substrate. The first dielectric layer component is located adjacent to, and partially over, the first metal layer component. The first dielectric layer component contains fluorine. The semiconductor device includes a second dielectric layer component formed over the first dielectric layer component. The first dielectric layer component and the second dielectric layer component are each located adjacent to the via. The second dielectric layer component is free of fluorine.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Uway Tseng, Shu-Hui Su
  • Patent number: 8710658
    Abstract: Under bump passive structures, such as capacitors and inductors, may be formed using the post-processing layers in wafer level packaging. In an embodiment, a packaged semiconductor device is described which includes an under-bump capacitor formed in semiconductor device post-processing layers. As part of the post-processing a first dielectric layer is deposited on the active face of a semiconductor die and then in sequence a first metal layer, second dielectric layer and second metal layer are deposited. The under-bump capacitor is formed from a lower plate in the first metal layer and an upper plate in the second metal layer, the plates being separated by the second dielectric layer. In order to increase capacitance, the capacitor may be formed over one or more openings in the first dielectric layer, such that the layers forming the capacitor are no longer planar but follow the underlying topology.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventor: Zaid Aboush
  • Patent number: 8710649
    Abstract: A method of forming an electronic component package includes coupling a first surface of an electronic component to a first surface of a first dielectric strip, the electronic component comprising bond pads on the first surface; forming first via apertures through the first dielectric strip to expose the bond pads; and filling the first via apertures with an electrically conductive material to form first vias electrically coupled to the bond pads. The bond pads are directly connected to the corresponding first vias without the use of a solder and without the need to form a solder wetting layer on the bond pads.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 29, 2014
    Inventors: Ronald Patrick Huemoeller, Sukianto Rusli, David Razu
  • Patent number: 8710514
    Abstract: A light emitting die package is provided which includes a metal substrate having a first surface and a first conductive lead on the first surface. The first conductive lead is insulated from the substrate by an insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes a metal lead electrically connected to the first conductive lead and extending away from the first surface.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Ban P. Loh
  • Patent number: 8703542
    Abstract: The embodiments of mechanisms of wafer-level packaging (WLP) described above utilize a planarization stop layer to determine an end-point of the removal of excess molding compound prior to formation of redistribution lines (RDLs). Such mechanisms of WLP are used to implement fan-out and multi-chip packaging. The mechanisms are also usable to manufacture a package including chips (or dies) with different types of external connections. For example, a die with pre-formed bumps can be packaged with a die without pre-formed bumps.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung
  • Patent number: 8704359
    Abstract: This publication discloses an electronic module and a method for manufacturing an electronic module, in which a component (6) is glued (5) to the surface of a conductive layer, from which conductive layer conductive patterns (14) are later formed. After gluing the component (6), an insulating-material layer (1), which surrounds the component (6) attached to the conductive layer, is formed on, or attached to the surface of the conductive layer. After the gluing of the component (6), feed-throughs are also made, through which electrical contacts can be made between the conductive layer and the contact zones (7) of the component. After this, conductive patterns (14) are made from the conductive layer, to the surface of which the component (6) is glued.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: April 22, 2014
    Assignee: GE Embedded Electronics Oy
    Inventors: Risto Tuominen, Petteri Palm, Antti Iihola
  • Patent number: 8697491
    Abstract: A semiconductor package is provided. The semiconductor package includes a package body, a plurality of semiconductor chips, and an external connection terminal. The package body is stacked with a plurality of sheets where conductive patterns and vias are disposed. The plurality of semiconductor chips are inserted into insert slots extending from one surface of the package body. The external connection terminal is provided on other surface opposite to the one surface of the package body. Here, the plurality of semiconductor chips are electrically connected to the external connection terminal.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: April 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woojin Chang, Soon Il Yeo, Hae Cheon Kim, Eun Soo Nam
  • Patent number: 8698311
    Abstract: A package substrate may include an insulating substrate, a dummy pad, a signal pad and a plug. The dummy pad may be formed on an upper surface of the insulating substrate. The signal pad may be formed on the upper surface of the insulating substrate. The signal pad may have an upper surface protruded from an upper surface of the dummy pad. The plug may be vertically formed in the insulating substrate. The plug may have an upper end exposed through the upper surface of the insulating substrate and connected with the signal pad and the dummy pad, and a lower end exposed through a lower surface of the insulating substrate. Thus, a signal bump may accurately make contact with the protruded upper surface of the signal pad.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Gyu Kang, Ho-Tae Jin, Tae-ho Moon, Il-soo Choi, Jong-Eun Lee
  • Patent number: 8698278
    Abstract: An objective is to provide a component-incorporated wiring substrate capable of solving a problem caused by an increase in length of wiring lines that connect a component and a capacitor. A component-incorporated wiring substrate 10 includes a core substrate 11, a first capacitor 301, a wiring laminate portion 31, and a second capacitor 101. An accommodation hole portion 90 of the core substrate 11 accommodates the first capacitor 101 therein, and a component-mounting region 20 is set on a surface 39 of the wiring laminate portion 31. The second capacitor 101 has electrode layers 102, 103 and a dielectric layer 104. The second capacitor 101 is embedded in the wiring laminate portion 31 in such a state that first main surfaces 105, 107 and second main surfaces 106, 108 are in parallel with the surface 39 of the wiring laminate portion 31, and is disposed between the first capacitor 301 and the component-mounting region 20.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 15, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Masaki Muramatsu
  • Patent number: 8698303
    Abstract: A substrate for mounting a semiconductor includes a first insulation layer having first and second surfaces on the opposite sides and having a penetrating hole penetrating through the first insulation layer, an electrode formed in the penetrating hole in the first insulation layer and having a protruding portion protruding from the second surface of the first insulation layer, a first conductive pattern formed on the first surface of the first insulation layer and connected to the electrode, a second insulation layer formed on the first surface of the first insulation layer and the first conductive pattern and having a penetrating hole penetrating through the second insulating layer, a second conductive pattern formed on the second insulation layer and for mounting a semiconductor element, and a via conductor formed in the penetrating hole in the second insulation layer and connecting the first and second conductive patterns.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 15, 2014
    Assignee: Ibiden Co., Ltd.
    Inventors: Toshiki Furutani, Daiki Komatsu, Masatoshi Kunieda, Naomi Fujita, Nobuya Takahashi
  • Patent number: 8693203
    Abstract: A method for making an electronic device includes forming an interconnect layer stack on a rigid wafer substrate having a plurality of patterned electrical conductor layers, a dielectric layer between adjacent patterned electrical conductor layers, and at least one solder pad on an uppermost patterned electrical conductor layer. An LCP solder mask having at least one aperture therein alignable with the at least one solder pad is formed. The LCP solder mask and interconnect layer stack are aligned and laminated together. Solder is positioned in the at least one aperture. At least one circuit component is attached to the at least one solder pad using the solder.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Harris Corporation
    Inventors: Louis Joseph Rendek, Jr., Michael Weatherspoon, Casey Philip Rodriguez, David Nicol
  • Patent number: 8685796
    Abstract: The electronic device includes a first interconnect layer and a second interconnect layer. The second interconnect layer is provided on the lower surface of the first interconnect layer. The first interconnect layer includes a via plug (first conductive plug). An end face of the via plug on the side of the second interconnect layer is smaller in area than the opposite end face. The via plug is exposed on the surface of the first interconnect layer facing the second interconnect layer. An insulating resin forming the first interconnect layer is higher in thermal decomposition temperature than an insulating resin forming the second interconnect layer.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichiro Kurita, Koji Soejima, Masaya Kawano
  • Patent number: 8686554
    Abstract: A semiconductor package that includes a die with electrodes on opposite surfaces thereof and respective conductive clip electrically and mechanically coupled to the electrode and configured for vertical mounting of the package.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: April 1, 2014
    Assignee: International Rectifier Corporation
    Inventor: Martin Standing
  • Patent number: 8686571
    Abstract: A structure comprises a first semiconductor substrate, a first bonding layer deposited on a bonding side the first semiconductor substrate, a second semiconductor substrate stacked on top of the first semiconductor substrate and a second bonding layer deposited on a bonding side of the second semiconductor substrate, wherein the first bonding layer is of a horizontal length greater than a horizontal length of the second semiconductor substrate, and wherein there is a gap between an edge of the second bonding layer and a corresponding edge of the second semiconductor substrate.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Ting Huang, Jung-Huei Peng, Shang-Ying Tsai, Li-Min Hung, Yao-Te Huang, Yi-Chuan Teng, Chin-Yi Cho
  • Publication number: 20140061889
    Abstract: Problem To improve the electromigration (EM) resistance of a solder joint. Solution The present invention provides a unique structure for an interfacial alloy layer which is able to improve the electromigration (EM) resistance of a solder joint, and a unique method of forming this structure. More specifically, in this unique structure, a controlled interfacial alloy layer is provided on both sides of a solder joint. In order to form this structure, aging (maintenance of high-temperature conditions) is performed until an interfacial alloy layer of Cu3Sn has a thickness of at least 1.5 ?m.
    Type: Application
    Filed: August 22, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Hirokazu Noma, Yasumitsu Orii, Kazushige Toriyama
  • Patent number: 8664768
    Abstract: A structure includes a substrate having a plurality of balls, a semiconductor chip, and an interposer electrically connecting the substrate and the semiconductor chip. The interposer includes a first side, a second side opposite the first side, at least one first exclusion zone extending through the interposer above each ball of the plurality of balls, at least one active through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one active through via is formed outside the at least one first exclusion zone and wherein no active through vias are formed within the at least one first exclusion zone, and at least one dummy through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one dummy through via is formed within the at least one first exclusion zone.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Liang, Kai-Chiang Wu, Ming-Kai Liu, Chia-Chun Miao, Chun-Lin Lu
  • Patent number: 8665605
    Abstract: A substrate structure and a package structure using the same are provided. The substrate structure includes a number of traces, a substrate core and a number of first metal tiles. The substrate core has a first surface and a second surface opposite to the first surface. The first metal tiles are disposed on one of the first surface and the second surface, the minimum pitch between adjacent two of the first metal tiles is the minimum process pitch.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 4, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Kuo-Hua Chen, Ming-Chiang Lee, Tsung-Hsun Lee, Chen-Chuan Fan
  • Patent number: 8664044
    Abstract: A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 4, 2014
    Assignees: STMicroelectronics Pte Ltd., STMicroelectronics Grenoble 2 SAS
    Inventors: Yonggang Jin, Romain Coffy, Jerome Teysseyre
  • Patent number: 8664750
    Abstract: A semiconductor substrate including a carrier, a first conductive layer and a second conductive layer is disclosed. The carrier has a first surface, a second surface, and a concave portion used for receiving a semiconductor element. The first conductive layer is embedded in the first surface and forms a plurality of electric-isolated package traces. The second conductive layer is embedded in the second surface and electrically connected to the first conductive layer. The semiconductor substrate can be applied to a semiconductor package for carrying a semiconductor chip, and combined with a filling structure for fixing the chip. Furthermore, a plurality of the semiconductor substrates can be stacked and connected via adhesive layers, so as to form a semiconductor device with a complicated structure.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 4, 2014
    Assignee: Advanpack Solutions Pte. Ltd.
    Inventors: Shoa Siong Lim, Kian Hock Lim
  • Patent number: 8664113
    Abstract: A multilayer interconnect structure is formed by, providing a substrate having thereon a first dielectric for supporting a multi-layer interconnection having lower conductor MN, upper conductor MN+1, dielectric interlayer (DIL) and interconnecting via conductor VN+1/N. The lower conductor MN has a first upper surface located in a recess below a second upper surface of the first dielectric. The DIL is formed above the first and second surfaces. A cavity is etched through the DIL from a desired location of the upper conductor MN+1, exposing the first surface. The cavity is filled with a further electrical conductor to form the upper conductor MN+1 and the connecting via conductor VN+1/N making electrical contact with the first upper surface. A critical dimension between others of lower conductors MN and the via conductor VN+1/N is lengthened. Leakage current and electro-migration there-between are reduced.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventor: Ryoung-Han Kim
  • Patent number: 8658473
    Abstract: A method of forming a buried die module includes providing an initial laminate flex layer and forming a die opening through the initial laminate flex layer. A first uncut laminate flex layer is secured to the first surface of the initial laminate flex layer via an adhesive and a die is positioned within the die opening of the initial laminate flex layer. A second uncut laminate flex layer is secured to the second surface of the initial laminate flex layer via an adhesive and the adhesive between each pair of neighboring layers is cured. A plurality of vias and metal interconnects are formed in and on the first and second uncut laminate flex layers, with each of the metal interconnects extending through a respective via and being directly metalized to a metal interconnect on the initial laminate flex layer or a die pad on the die.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Paul Alan McConnelee, Scott Smith, Elizabeth Ann Burke
  • Patent number: 8653662
    Abstract: A structure and method for monitoring interlevel dielectric stress damage. The structure includes a monitor solder bump and normal solder bumps; a set of stacked interlevel dielectric layers between the substrate and the monitor solder bump and the normal solder bumps, one or more ultra-low K dielectric layers comprising an ultra-low K material having a dielectric constant of 2.4 or less; a monitor structure in a region directly under the monitor solder bump in the ultra-low K dielectric layers and wherein the conductor density in at least one ultra-low K dielectric layer in the region directly under the monitor solder bumps is less than a specified minimum density and the conductor density in corresponding regions of the ultra-low K dielectric layers directly under normal solder bumps is greater than the specified minimum density.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 8643168
    Abstract: A ball-grid-array (BGA) package is disclosed that includes traces within a BGA substrate. At least one of the traces is configured to match a low-impedance load presented by a BGA substrate pad and associated circuitry on a flip-chip die to an impedance of a circuit board trace. Each configured trace includes a relatively narrow section coupling to a tapered section that widens from the relatively narrow section to join a relatively wider trace section.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 4, 2014
    Assignee: Lattice Semiconductor Corporation
    Inventors: Ban P. Wong, Brad Sharpe-Geisler
  • Patent number: 8638567
    Abstract: Manufacturing circuits with reference plane voids over vias with a strip segment interconnect permits routing critical signal paths over vias, while increasing via insertion capacitance only slightly. The transmission line reference plane defines voids above (or below) signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. In order to provide increased routing density, signal paths are routed over the voids, but disruption of the signal paths by the voids is prevented by including a conductive strip through the voids that reduces the coupling to the signal-bearing PTHs and maintains the impedance of the signal path conductor.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sungjun Chun, Anand Haridass, Roger D. Weekly
  • Patent number: 8633584
    Abstract: This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 21, 2014
    Assignee: SK hynix Inc.
    Inventor: Peter C. Salmon
  • Patent number: 8633595
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8633594
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8629556
    Abstract: The semiconductor device 1 includes a substrate 3, a semiconductor chip 4 mounted on the substrate 3, the substrate 3, a bump 5 connecting the substrate 3 and the semiconductor chip 4, and an underfill 6 filling in around the bump 5. In the case of a bump 5 composed of a high-melting-point solder having a melting point of 230° C. or more, the underfill 6 is composed of a resin material having an elastic modulus in the range of 30 MPa to 3000 MPa. In the case of a bump 5 composed of a lead-free solder, the underfill 6 is composed of a resin material having an elastic modulus in the range of 150 MPa to 800 MPa. An insulating layer 311 of buildup layers 31 of the substrate 3 has a linear expansion coefficient of 35 ppm/° C. or less in the in-plane direction of the substrate at temperatures in the range of 25° C. to the glass transition temperature.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 14, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Mitsuo Sugino, Takeshi Hosomi, Masahiro Wada, Masataka Arai
  • Patent number: 8624374
    Abstract: An embodiment of a semiconductor device package includes: (1) an interconnection unit including a patterned conductive layer; (2) an electrical interconnect extending substantially vertically from the conductive layer; (3) a semiconductor device adjacent to the interconnection unit and electrically connected to the conductive layer; (4) a package body: (a) substantially covering an upper surface of the interconnection unit and the device; and (b) defining an opening adjacent to an upper surface of the package body and exposing an upper surface of the interconnect; and (5) a connecting element electrically connected to the device, substantially filling the opening, and being exposed at an external periphery of the device package. The upper surface of the interconnect defines a first plane above a second plane defined by at least a portion of the upper surface of the interconnection unit, and below a third plane defined by the upper surface of the package body.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: January 7, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Yi-Chuan Ding, Chia-Ching Chen
  • Patent number: 8624701
    Abstract: An assembled circuit comprising a substrate, a coil, a first conductive segment, a second conductive segment, a first through-hole connector and a second through-hole connector is disclosed. The first conductive segment is electrically connected to one end of the first through-hole connector, the other end of the first through-hole connector is electrically connected to one end of the second through-hole connector via the first conductive segment, and the other end of the second through-hole connector is electrically connected to the second conductive segment.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: January 7, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Jian-Hong Zeng, Wei Yang, Shou-Yu Hong, Jian-Ping Ying
  • Patent number: 8624375
    Abstract: A semiconductor package includes: first, second, third and fourth semiconductor chips stacked while having the arrangement of chip selection vias; and a connection unit provided between a second semiconductor chip and a third semiconductor chip, and configured to mutually connect some of the chip selection vias of the second and third semiconductor chips and disconnect the others of the chip selection vias of the second and third semiconductor chips, wherein the first and second semiconductor chips and the third and fourth semiconductor chips are stacked in a flip chip type.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 7, 2014
    Assignee: SK Hynix Inc.
    Inventors: Bok Gyu Min, Joon Ki Hong, Tae Hoon Kim, Da Un Nah, Jae Joon Ahn, Ki Bum Kim
  • Patent number: 8618652
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: Ravi K Nalla, John S Guzek, Javier Soto Gonzalez, Drew W Delaney, Hamid R Azimi
  • Patent number: 8614502
    Abstract: A semiconductor assembly board includes a supporting board, a coreless build-up circuitry and a built-in electronic device. The supporting board includes a bump, a flange and a via hole in the bump. The built-in electronic device extends into the via hole and is electrically connected to the build-up circuitry. The build-up circuitry extends from the flange and the built-in electronic device and provides signal routing for the built-in electronic device. The supporting board provides mechanical support, ground/power plane and heat sink for the coreless build-up circuitry.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 24, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W.C. Lin, Chia-Chung Wang
  • Patent number: 8604621
    Abstract: A semiconductor device includes a semiconductor substrate, first and second penetration electrodes each penetrating the semiconductor substrate, a multi-level wiring structure formed on the semiconductor substrate, the multi-level wiring structure including a lower-level wiring, an upper-level wiring and an interlayer insulating film between the lower-level wiring and the upper-level wiring, a first wiring pad formed as the lower-level wiring and electrically connected to the first penetration electrode, a second wiring pad formed as the upper-level wiring, a plurality of first through electrodes each formed in the interlayer insulating film to form an electrical connection between the first and second wiring pads, a third wiring pad formed as the lower-level wiring and electrically connected to the second penetration electrode, a fourth wiring pad formed as the upper-level wiring, and a plurality of second through electrodes each formed in the interlayer insulating film.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 10, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Satoshi Itaya, Kayoko Shibata, Shoji Azuma, Akira Ide
  • Patent number: 8598699
    Abstract: In one embodiment, there is provided a semiconductor device that includes: a substrate; a dielectric layer on the substrate; a first ground metal layer embedded in the dielectric layer and having a first DC potential, the first ground metal layer having a first hole therethrough; a first ground patch disposed in the first hole; a second ground metal layer embedded in the dielectric layer such that the dielectric layer is interposed between the first and second ground metal layers in a thickness direction of the dielectric layer, the second ground metal layer having a second DC potential and having a second hole therethrough; a second ground patch disposed in the second hole; a first via which electrically connects the first ground metal layer and the second ground patch; and a second via which electrically connects the second ground metal layer and the first ground patch.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Naoko Ono
  • Patent number: 8598465
    Abstract: A wafer-scale assembly circuit including a plurality of metal interconnect layers, where each metal layer includes patterned metal portions and where at least some of the patterned metal portions are RF signal lines. The circuit further includes at least one benzocyclobutene layer provided between two metal interconnect layers that includes at least one trench via formed around a perimeter of the benzocyclobutene layer at a circuit sealing ring, where the trench via provides a hermetic seal at the sealing ring. The benzocyclobutene layer also includes a plurality of stabilizing post vias formed through the benzocyclobutene layer adjacent to the trench via proximate to the sealing ring and extending around the perimeter of the benzocyclobutene layer, where the stabilizing vias operate to prevent the benzocyclobutene layer from shrinking in size.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: December 3, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: David M. Eaves, Xiang Zeng, Kelly J. Hennig, Patty Pei-Ling Chang-Chien
  • Patent number: 8592691
    Abstract: A method for manufacturing a printed wiring board includes forming a metal film on a surface of an insulative board, a plating resist on the metal film, and a plated-metal film on the metal film exposed from the plating resist, covering a portion of the plated-metal film with an etching resist, etching to reduce thickness of the plated-metal film exposed from the etching resist, removing the etching and plating resists, and forming a wiring having a pad for wire-bonding an electrode of an electronic component and a conductive circuit thinner than the pad by removing the metal film exposed after the plating resist is removed, a solder-resist layer on the surface of the board and wiring, an opening in the layer exposing the pad and a portion of the circuit contiguous to the pad, and a metal coating on the pad and portion of the circuit exposed through the opening.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: November 26, 2013
    Assignee: Ibiden Co., Ltd.
    Inventors: Toru Furuta, Kotaro Takagi, Michio Ido, Akihiro Miyata, Fumitaka Takagi
  • Patent number: 8587116
    Abstract: A power semiconductor module is fabricated by providing a base with a metal surface and an insulating substrate comprising an insulation carrier having a bottom side provided with a bottom metallization layer. An insert exhibiting a wavy structure is provided. The insert is positioned between the insulation carrier and metal surface, after which the metal surface is soldered to the bottom side metallization layer and insert by means of a solder packing all interstices between the metal surface and bottom side metallization layer with the solder.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Olaf Hohlfeld, Reinhold Bayerer
  • Patent number: 8587105
    Abstract: A semiconductor device includes a first semiconductor chip, a buffer body, and a terminal lead. The first semiconductor chip includes a first electrode and a second electrode provided on a side opposite to the first electrode. The first semiconductor chip is configured to allow a current to flow between the first electrode and the second electrode. The buffer body includes a lower metal foil, a ceramic piece, and an upper metal foil. The lower metal foil is electrically connected to the second electrode. The ceramic piece is provided on the second electrode with the lower metal foil interposed. The upper metal foil is provided on a side of the ceramic piece opposite to the lower metal foil to be electrically connected to the lower metal foil. The terminal lead has one end provided on the upper metal foil and electrically connected to the upper metal foil.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junichi Nakao, Hiroshi Fukuyoshi
  • Patent number: 8581388
    Abstract: A multilayered wiring substrate, comprising: a plurality of first main surface side connecting terminals arranged in a first main surface of a stack structure; and a plurality of second main surface side connecting terminals being arranged in a second main surface of the stack structure; wherein a plurality of conductor layers are alternately formed in a plurality of stacked resin insulation layers and are operably connected to each other through via conductors tapered such that diameters thereof are widened toward the first or the second main surface, wherein a plurality of openings are formed in an exposed outermost resin insulation layer in the second main surface, and terminal outer surfaces of the second main surface side connecting terminals arranged to match with the plurality of the openings are positioned inwardly from an outer main surface of the exposed outermost resin insulation layer, and edges of terminal inner surfaces are rounded.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 12, 2013
    Assignee: NGK Spark Plug Co., Ltd
    Inventors: Shinnosuke Maeda, Tetsuo Suzuki, Atsuhiko Sugimoto, Tatsuya Ito, Takuya Hando, Satoshi Hirano
  • Patent number: 8581389
    Abstract: The present disclosure involves a semiconductor device. The semiconductor device includes a wafer containing an interconnect structure. The interconnect structure includes a plurality of vias and interconnect lines. The semiconductor device includes a first conductive pad disposed over the interconnect structure. The first conductive pad is electrically coupled to the interconnect structure. The semiconductor device includes a plurality of second conductive pads disposed over the interconnect structure. The semiconductor device includes a passivation layer disposed over and at least partially sealing the first and second conductive pads. The semiconductor device includes a conductive terminal that is electrically coupled to the first conductive pad but is not electrically coupled to the second conductive pads.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Tsung-Yuan Yu
  • Patent number: 8575761
    Abstract: An array of functional cells includes a subset of cells powered by at least one supply rail. That supply rail is formed of first segments located on a first metallization level and second segments located on a second metallization level with at least one conductor element extending between the first and second segments to electrically connect successive segments of the supply rail.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.A.
    Inventor: Remy Chevallier
  • Patent number: 8569880
    Abstract: A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on a multilayer core substrate composed of three or more layers, having through holes for connecting the front surface with the rear surface and conductive layers on the front and rear surfaces and conductive layer in the inner layer to achieve electric connection through via holes, the through holes being composed of power source through holes, grounding through holes and signal through holes connected electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip, when the power source through holes pass through the grounding conductive layer of the inner layer in the core substrate, of the power source through holes, at least a power source through hole just below the IC having no conductive circuit extending from the power source through hole in the grounding conductive layer.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: October 29, 2013
    Assignee: IBIDEN Co., Ltd.
    Inventors: Yasushi Inagaki, Katsuyuki Sano
  • Patent number: 8569142
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 29, 2013
    Assignee: BlackBerry Limited
    Inventors: Ivoyl P. Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Patent number: 8569790
    Abstract: A light emitting diode (LED) package includes a substrate, a first LED chip and a second LED chip. The substrate includes first to fourth electrodes, and an interconnection electrode. A mounting area is defined at center of a top surface of the substrate. The first to fourth electrodes are respectively in four corners of the substrate out of the mounting area. The first interconnection electrode is embedded in the substrate to electrically connect the first and the third electrodes. The first LED chip and the second LED chip are arranged in the mounting area. Each LED chip includes an anode pad and a cathode pad. The first to fourth electrodes are respectively connected to the four pads of the first and the second LED chips via a plurality of metal wires, and no metal wire connection is formed between the first and the second LED chips.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 29, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chao-Hsiung Chang, Pi-Chiang Hu
  • Patent number: 8564118
    Abstract: A power module substrate includes: a ceramics substrate having a surface; and a metal plate connected to the surface of the ceramics substrate, composed of aluminum, and including Cu at a joint interface between the ceramics substrate and the metal plate, wherein a Cu concentration at the joint interface is in the range of 0.05 to 5 wt %.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yoshirou Kuromitsu, Yoshiyuki Nagatomo, Takeshi Kitahara, Hiroshi Tonomura, Kazuhiro Akiyama
  • Patent number: 8558359
    Abstract: Disclosed herein is a semiconductor package, including: a substrate having a first surface and a second surface; at least one semiconductor device formed on the first surface of the substrate; first lead frames respectively formed at both sides of the first surface of the substrate; and second lead frames respectively formed at both sides of the second surface of the substrate, wherein the first lead frame and the second lead frame are spaced apart from each other by an isolation distance base.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 15, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Hyun Lim, Chang Jae Heo, Young Ki Lee, Sung Keun Park
  • Patent number: 8552549
    Abstract: In a substrate for a stacking-type semiconductor device including a connection terminal provided for a connection with a semiconductor chip to be stacked and an external terminal connected to the connection terminal through a conductor provided in a substrate, connection terminals of a power supply, a ground and the like, which terminals have an identical node, are electrically continuous with each other. Thus, it is possible to facilitate an inspection of electrical continuity between each connection terminal and an external terminal corresponding to each connection terminal by minimum addition of inspecting terminals. Further, it is possible to improve reliability of a stacking-type semiconductor module.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 8, 2013
    Assignee: Panasonic Corporation
    Inventors: Masatoshi Shinagawa, Takeshi Kawabata