For Integrated Circuit Patents (Class 257/713)
  • Patent number: 11728909
    Abstract: Described are methods and apparatuses pertaining to stacked integrated circuits having application in ultra-low-power and small form factor design, with fast prototyping and mass-production cycle time, including application for millimeter wave radio frequency circuits.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: August 15, 2023
    Assignee: Shenzhen Chipuller Chip Technology Co., LTD
    Inventors: Jawad Nasrullah, Omar Alnaggar, Hanfeng Wang, Mohamed Sameh Mahmoud
  • Patent number: 11710674
    Abstract: Various embodiments disclosed relate to a substrate for a semiconductor device. The substrate includes a first major surface and a second major surface opposite the first major surface. The substrate further includes a cavity defined by a portion of the first major surface. The cavity includes a bottom dielectric surface and a plurality of sidewalls extending from the bottom surface to the first major surface. A first portion of a first sidewall includes a conductive material.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: July 25, 2023
    Assignee: Intel Corporation
    Inventors: Yi Elyn Xu, Bilal Khalaf, Dennis Sean Carr
  • Patent number: 11705413
    Abstract: A semiconductor package including a base comprising an upper surface and a lower surface that is opposite to the upper surface; a radio-frequency (RF) module embedded near the upper surface of the base; an integrated circuit (IC) die mounted on the lower surface of the base in a flip-chip manner so that a backside of the IC die is available for heat dissipation; a plurality of conductive structures disposed on the lower surface of the base and arranged around the IC die; and a metal thermal interface layer comprising a backside metal layer that is in contact with the backside of the IC die, and a solder paste conformally printed on the backside metal layer.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: July 18, 2023
    Assignee: MEDIATEK INC.
    Inventors: Chia-Hao Hsu, Tai-Yu Chen, Shiann-Tsong Tsai, Hsing-Chih Liu, Yao-Pang Hsu, Chi-Yuan Chen, Chung-Fa Lee
  • Patent number: 11705417
    Abstract: Embodiments include semiconductor packages and methods to form the semiconductor packages. A semiconductor package includes a plurality of first dies on a substrate, an interface layer over the first dies, a backside metallization (BSM) layer directly on the interface layer, where the BSM layer includes first, second, and third conductive layer, and a heat spreader over the BSM layer. The first conductive layer includes a titanium material. The second conductive layer includes a nickel-vanadium material. The third conductive layer includes a gold material, a silver material, or a copper material. The copper material may include copper bumps. The semiconductor package may include a plurality of second dies on a package substrate. The substrate may be on the package substrate. The second dies may have top surfaces substantially coplanar to top surface of the first dies. The BSM and interface layers may be respectively over the first and second dies.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: July 18, 2023
    Assignee: Intel Corporation
    Inventors: Chandra Mohan Jha, Prasad Ramanathan, Xavier F. Brun, Jimmin Yao, Mark Allen
  • Patent number: 11705408
    Abstract: A semiconductor package includes a substrate, a semiconductor device, and a ring structure. The semiconductor device disposed on the substrate. The ring structure disposed on the substrate and surrounds the semiconductor device. The ring structure includes a first portion and a second portion. The first portion bonded to the substrate. The second portion connects to the first portion. A cavity is between the second portion and the substrate.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yang Yu, Jung-Wei Cheng, Yu-Min Liang, Jiun-Yi Wu, Yen-Fu Su, Chien-Chang Lin, Hsin-Yu Pan
  • Patent number: 11699642
    Abstract: A semiconductor package is provided. The semiconductor package includes a redistribution layer, a semiconductor chip, solder balls, an interposer, an encapsulant layer, and an underfill layer. The semiconductor chip is electrically connected to the redistribution layer, and disposed on an upper surface of the redistribution layer. The solder balls are disposed on the upper surface of the redistribution layer spaced apart from the semiconductor chip and are electrically connected to the redistribution layer. The interposer is electrically connected to the solder balls, and is disposed on an upper surface of the solder balls. The encapsulant layer encapsulates the semiconductor chip and side surfaces of the redistribution layer under the interposer. The underfill layer fills a space between a lower surface of the interposer and an upper surface of the encapsulant layer. The encapsulant layer includes a side surface encapsulant region surrounding the side surfaces of the redistribution layer.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 11, 2023
    Assignee: SAMSUNG ELECTRONIC CO., LTD.
    Inventor: Dongho Kim
  • Patent number: 11694997
    Abstract: In some embodiments, the present disclosure relates to method of forming an integrated circuit, including forming a semiconductor device on a frontside of a semiconductor substrate; depositing a dielectric layer over a backside of the semiconductor substrate; patterning the dielectric layer to form a first opening in the dielectric layer so that the first opening exposes a surface of the backside of the semiconductor substrate; depositing a glue layer having a first thickness over the first opening; filling the first opening with a first material to form a backside contact that is separated from the semiconductor substrate by the glue layer; and depositing more dielectric layers, bonding contacts, and bonding wire layers over the dielectric layer to form a second bonding structure on the backside of the semiconductor substrate, so that the backside contact is coupled to the bonding contacts and the bonding wire layers.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: July 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Tzu Chen, Hsing-Chih Lin, Min-Feng Kao
  • Patent number: 11688697
    Abstract: A semiconductor device has a substrate and a semiconductor die disposed over the substrate. An encapsulant is deposited over the semiconductor die and substrate with a surface of the semiconductor die exposed from the encapsulant. A first shielding layer is formed over the semiconductor die. In some embodiments, the first shielding layer includes a stainless steel layer in contact with the surface of the semiconductor die and a copper layer formed over the stainless steel layer. The first shielding layer may further include a protective layer formed over the copper layer. One embodiment has a heatsink bonded to the semiconductor die through a solder layer. A second shielding layer can be formed over a side surface of the semiconductor die.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: June 27, 2023
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Dong Won Son, Byeonghoon Kim, Sung Ho Choi, Sung Jae Lim, Jong Ho Shin, SungWon Cho, ChangOh Kim, KyoungHee Park
  • Patent number: 11684400
    Abstract: A first module configured to engage with a second module in a stacked configuration to define a modular energy system is provided. The first module comprises a first bridge connector portion and a second conductive portion. The first bridge connector portion is configured to engage with a second bridge connector portion of the second module as the first module and the second module are engaged. The first conductive portion is configured to engage with a second conductive portion of the second module as the first module and the second module are engaged, prior to engagement between the first bridge connector portion and the second bridge connector portion.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: Madeleine C. Jayme, Kristen G. Denzinger, Joshua Henderson, Ryan M. Asher, William B. Weisenburgh, II, Amrita S. Sawhney
  • Patent number: 11682614
    Abstract: A semiconductor package includes a semiconductor chip and a package substrate. The semiconductor chip is mounted on the package substrate. The package substrate includes a dielectric layer through which a vent hole penetrates, trace patterns disposed on the dielectric layer, and a protecting block disposed between the trace patterns and the vent hole.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: June 20, 2023
    Assignee: SK hynix Inc.
    Inventors: Hyun Chul Seo, Jun Sik Kim
  • Patent number: 11676873
    Abstract: Semiconductor packages having a sealant bridge between an integrated heat spreader and a package substrate are described. In an embodiment, a semiconductor package includes a sealant bridge anchoring the integrated heat spreader to the package substrate at locations within an overhang gap laterally between a semiconductor die and a sidewall of the integrated heat spreader. The sealant bridge extends between a top wall of the integrated heat spreader and a die side component, such as a functional electronic component or a non-functional component, or a satellite chip on the package substrate. The sealant bridge modulates warpage or stress in thermal interface material joints to reduce thermal degradation of the semiconductor package.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 13, 2023
    Assignee: Intel Corporation
    Inventors: Dinesh Padmanabhan Ramalekshmi Thanu, Hemanth K. Dhavaleswarapu, Venkata Suresh Guthikonda, John J. Beatty, Yonghao An, Marco Aurelio Cartas Ayala, Luke J. Garner, Peng Li
  • Patent number: 11676879
    Abstract: A semiconductor package includes: a carrier having a first side and a second side opposite the first side, the first side having a plurality of contact structures; a semiconductor die having a first side and a second side opposite the first side, the first side of the semiconductor die having a plurality of pads attached to the plurality of contact structures at the first side of the carrier; a metal plate attached to the second side of the semiconductor die, the metal plate having a size that is independent of the size of the carrier and based on an expected thermal load to be presented by the semiconductor die; and an encapsulant confined by the carrier and the metal plate and laterally surrounding an edge of the semiconductor die. Corresponding methods of production are also provided.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: June 13, 2023
    Assignee: Infineon Technologies AG
    Inventors: Stefan Woetzel, Chee Yang Ng
  • Patent number: 11676930
    Abstract: In described examples, a microelectronic device includes a microelectronic die with a die attach surface. The microelectronic device further includes a nanoparticle layer coupled to the die attach surface. The nanoparticle layer may be in direct contact with the die attach surface, or may be coupled to the die attach surface through an intermediate layer, such as an adhesion layer or a contact metal layer. The nanoparticle layer includes nanoparticles having adjacent nanoparticles adhered to each other. The microelectronic die is attached to a package substrate by a die attach material. The die attach material extends into the nanoparticle layer and contacts at least a portion of the nanoparticles.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: June 13, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Daniel Lee Revier, Sadia Naseem, Mahmud Halim Chowdhury
  • Patent number: 11670562
    Abstract: The present disclosure describes heat dissipation structures formed in functional or non-functional areas of a three-dimensional chip structure. These heat dissipation structures are configured to route the heat generated within the three-dimensional chip structure to designated areas on or outside the three-dimensional chip structure. For example, the three-dimensional chip structure can include a plurality of chips vertically stacked on a substrate, a first passivation layer interposed between a first chip and a second chip of the plurality of chips, and a heat dissipation layer embedded in the first passivation layer and configured to allow conductive structures to pass through.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Ying-Hao Chen
  • Patent number: 11670929
    Abstract: A junction assembly is disclosed herein. The junction assembly includes a junction housing configured to support a phase bar assembly. A heatsink contacts at least a portion of the junction housing and a busbar is arranged adjacent to the junction housing. At least one fastener attaches the junction housing, the heatsink, and the busbar to each other. At least one heatsink seal is provided at an interface defined between the heatsink and the junction housing.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: June 6, 2023
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Jacob Pfeifer
  • Patent number: 11664294
    Abstract: An integrated circuit assembly may be formed using a phase change material as an electromagnetic shield and as a heat dissipation mechanism for the integrated circuit assembly. In one embodiment, the integrated circuit assembly may comprise an integrated circuit package including a first substrate having a first surface and an opposing second surface, and at least one integrated circuit device having a first surface and an opposing second surface, wherein the at least one integrated circuit device is electrically attached by the first surface thereof to the first surface of the first substrate; and a phase change material formed on the integrated circuit package.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Aastha Uppal, Je-Young Chang, Weihua Tang, Minseok Ha
  • Patent number: 11659689
    Abstract: A heatsink assembly for an electronic device is described. The heatsink assembly includes a shield, a thermally conductive spacer and a heatsink. The shield has at least one indentation on a surface thereof that is positioned over a component needing thermal dissipation that is attached to the printed circuit board. The thermally conductive spacer is 5 positioned within the at least one indentation on the shield. The heatsink is positioned over the thermally conductive spacer and fastened to the printed circuit board.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: May 23, 2023
    Assignee: InterDigital Madison Patent Holdings, SAS
    Inventor: Darin Bradley Ritter
  • Patent number: 11653474
    Abstract: A connector assembly including a shielding cage and a liquid cooling cabin. The shielding cage has an insertion space and a window in communication with the insertion space. The liquid cooling cabin is configured to allow a cooling liquid to circulate and flow inside, the liquid cooling cabin comprises a shell having an opening, a thermal coupling cover provided at the opening of the shell, and an elastic sealing unit sealing a gap between the thermal coupling cover and the shell, the thermal coupling cover having a thermal coupling plate entering into the insertion space via the window of the shielding cage, the thermal coupling plate being capable of elastically moving in a direction close to the shell and elastically restoring in a direction away from the shell by a function of the elastic sealing unit.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: May 16, 2023
    Assignee: Molex, LLC
    Inventors: You-Qian Lu, Che-Yuan Yang
  • Patent number: 11647612
    Abstract: An integrated power electronic assembly includes a power electronic device, a cooling assembly offset from and thermally coupled to a second edge of the power electronic device, and a thermal spreader offset from and thermally coupled to a first edge of the power electronic device. The first edge of the power electronic device is opposite the second edge of the power electronic device, and the thermal spreader is thermally coupled to the cooling assembly.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: May 9, 2023
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Hitoshi Fujioka, Shailesh N. Joshi, Hiroshi Ukegawa
  • Patent number: 11644249
    Abstract: This electronic apparatus 100 comprises a heating element 20, and a case 30. The case 30 has an opening hole 31. In order that a refrigerant COO will be sealed between the case 30 and the heating element 20, the outer periphery part of a first heating element external surface 21, which is the external surface of the heating element 20, is attached to the outer periphery part of the opening hole 31. Also, the refrigerant COO is a refrigerant that is capable of phase change from a liquid refrigerant LP-COO to a gas phase refrigerant GP-COO. As a result, it is possible to more efficiently cool the heat of the heating element 20.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 9, 2023
    Assignee: NEC CORPORATION
    Inventors: Mahiro Hachiya, Minoru Yoshikawa
  • Patent number: 11641727
    Abstract: Examples described herein relate to cooling system for an electronic circuit module. The cooling system includes a frame disposable on the electronic circuit module and comprising a plurality of compartments defined by compartment walls. The cooling system further includes a plurality of cold plates disposed in the plurality of compartments of the frame and in thermal contact with the electronic circuit module, wherein the plurality of cold plates includes one or more passages to allow flow of a coolant there-through to conduct heat away from the electronic circuit module. Further, the one or more cold plates of the plurality cold plates include a guide feature to allow vertical movement of the one or more cold plates in respective compartments.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: May 2, 2023
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: John Norton, Kevin B. Leigh
  • Patent number: 11626335
    Abstract: Embodiments of the present disclosure provide an IC packaging structure and an IC packaging method, relating to the chip packaging field. The IC packaging structure includes: a substrate, a stress buffer sheet mounted on the substrate; a packaged chip mounted on the stress buffer sheet, and a plastic package body coated outside the packaged chip, wherein the packaged chip is electrically connected to the substrate, and the stress buffer sheet is used for buffering stress acting on the packaged chip. Compared with the prior art, in the IC packaging structure provided in the present disclosure, the stress buffer sheet is mounted on the substrate through silver glue, the packaged chip is mounted on the stress buffer sheet through silver glue.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: April 11, 2023
    Assignee: Forehope Electronic (Ningbo) Co., Ltd.
    Inventors: Shunbo Wang, Lei Zhong
  • Patent number: 11606878
    Abstract: A liquid-submersible thermal management system includes a cylindrical outer shell and an inner shell positioned in an interior volume of the outer shell. The cylindrical outer shell has a longitudinal axis oriented vertically relative to a direction of gravity, and the inner shell defines an immersion chamber. The liquid-submersible thermal management system a spine positioned inside the immersion chamber and oriented at least partially in a direction of the longitudinal axis with a heat-generating component located in the immersion chamber. A working fluid is positioned in the immersion chamber and at least partially surrounding the heat-generating component. The working fluid receives heat from the heat-generating component.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: March 14, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Husam Atallah Alissa, Ioannis Manousakis, Nicholas Andrew Keehn, Eric C. Peterson, Bharath Ramakrishnan, Christian L. Belady, Ricardo Gouvea Bianchini
  • Patent number: 11596067
    Abstract: An apparatus having stacked circuit boards has been disclosed. The apparatus includes a main circuit board and a sub circuit board disposed over the main circuit board. A plurality of sub components disposed on a bottom face of the sub circuit board penetrates through main circuit board and extends towards a bottom face of the main circuit board. In this say, a compact apparatus is produced.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: February 28, 2023
    Assignee: HONG FU JIN PRECISION INDUSTRY (WuHan) CO., LTD.
    Inventors: Hou-Yuan Chou, Yi-Chih Wu
  • Patent number: 11587846
    Abstract: A semiconductor device includes a heat dissipation substrate and a device layer. The thermal conductivity of the heat dissipation substrate is greater than 200 Wm?1K?1 and the device layer is disposed on the heat dissipation substrate. The device layer includes a transistor. A method of forming a semiconductor device includes providing a base substrate, forming a heat dissipation substrate on the base substrate, wherein a thermal conductivity of the heat dissipation substrate is greater than 200 Wm?1K?1. The method further includes forming a device layer on the heat dissipation substrate, wherein the device layer comprises a transistor. The method further includes removing the base substrate.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: February 21, 2023
    Assignees: MEDIATEK INC.
    Inventors: Ming-Tzong Yang, Hsien-Hsin Lin, Wen-Kai Wan, Chia-Che Chung, Chee-Wee Liu
  • Patent number: 11581241
    Abstract: A circuit module (e.g., an amplifier module) includes a module substrate, a thermal dissipation structure, a semiconductor die, encapsulant material, and an interposer. The module substrate has a mounting surface and a plurality of conductive pads at the mounting surface. The thermal dissipation structure extends through the module substrate, and a surface of the thermal dissipation structure is exposed at the mounting surface of the module substrate. The semiconductor die is coupled to the surface of the thermal dissipation structure. The encapsulant material covers the mounting surface of the module substrate and the semiconductor die, and a surface of the encapsulant material defines a contact surface of the circuit module. The interposer is embedded within the encapsulant material. The interposer includes a conductive terminal with a proximal end coupled to a conductive pad of the module substrate, and a distal end exposed at the contact surface of the circuit module.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 14, 2023
    Assignee: NXP USA, Inc.
    Inventors: Boon Yew Low, Fernando A. Santos, Li Li, Fui Yee Lim, Lan Chu Tan
  • Patent number: 11570932
    Abstract: A heat exchange ribbon includes a base portion to be attached to a spacer to be mounted to a circuit board, a tail portion substantially parallel to the base portion, and a leg connecting the tail portion to the base portion. A height of the leg extends in the same direction as a height of the base portion and the tail portion so as to create an opening at least partially surrounded by the base portion, the leg, and the tail portion. The base portion, the tail portion, and the leg portion have a one-piece construction. The leg extends below a lower edge of the base portion such that at least a portion of the tail portion is located below a lower edge of the base portion, and at least a portion of an inner surface of the tail portion does not oppose the outer surface of the base portion.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: January 31, 2023
    Assignee: ARRIS Enterprises LLC
    Inventor: James Stephen Wells
  • Patent number: 11557574
    Abstract: A semiconductor package including a substrate; a semiconductor stack on the substrate; an underfill between the substrate and the semiconductor stack; an insulating layer conformally covering surfaces of the semiconductor stack and the underfill; a chimney on the semiconductor stack; and a molding member surrounding side surfaces of the chimney, wherein the semiconductor stack has a first upper surface that is a first distance from the substrate and a second upper surface that is a second distance from the substrate, the first distance being greater than the second distance, wherein the chimney includes a thermally conductive filler on the first and second upper surfaces of the semiconductor stack, the thermally conductive filler having a flat upper surface; a thermally conductive spacer on the thermally conductive filler; and a protective layer on the thermally conductive spacer, and wherein an upper surface of the thermally conductive spacer is exposed.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: January 17, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jinkyeong Seol, Sunchul Kim, Pyoungwan Kim
  • Patent number: 11558968
    Abstract: An electronic unit includes a first board and a second board which are stacked on each other, a first connector mounted on a surface of the first board which faces the second board, and a second connector mounted on a surface of the second board which faces the first board. Each of the first connector and the second connector has a fitting portion and a lock portion configured to lock a fitting of the fitting portion. The fitting portion and the lock portion of the first connector are provided between the first board and the second board in a stack direction in which the first board and the second board are stacked. The fitting portion and the lock portion of the second connector are provided between the first board and the second board in the stack direction.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: January 17, 2023
    Assignee: Yazaki Corporation
    Inventors: Masashi Suzuki, Jun Goto
  • Patent number: 11551994
    Abstract: Embodiments include an electronic system and methods of forming an electronic system. In an embodiment, the electronic system may include a package substrate and a die coupled to the package substrate. In an embodiment, the electronic system may also include an integrated heat spreader (IHS) that is coupled to the package substrate. In an embodiment the electronic system may further comprise a thermal interface pad between the IHS and the die. In an embodiment the die is thermally coupled to the IHS by a liquid metal thermal interface material (TIM) that contacts the thermal interface pad.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: January 10, 2023
    Assignee: Intel Corporation
    Inventors: Kelly Lofgreen, Chia-Pin Chiu, Joseph Petrini, Edvin Cetegen, Betsegaw Gebrehiwot, Feras Eid
  • Patent number: 11538633
    Abstract: Electronic device package stiffener and capacitor technology is disclosed. A combination stiffener and capacitor can include a structural material configured to be coupled to a substrate. The structural material can have a shape configured to provide mechanical support for the substrate. The combination stiffener and capacitor can also include first and second electrodes forming a capacitor. An electronic device package and a package substrate configured to receive the combination stiffener and capacitor are also disclosed.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: December 27, 2022
    Assignee: Intel Corporation
    Inventors: Eng Huat Goh, Jiun Hann Sir, Min Suet Lim
  • Patent number: 11528800
    Abstract: An electronic device module includes: a substrate; a sealing portion disposed on a first surface of the substrate; an exothermic device disposed on the first surface of the substrate and embedded in the sealing portion; and a heat radiating portion at least partially embedded in the sealing portion. A lower surface of the heat radiating portion is bonded to one surface of the exothermic device. A side surface of the heat radiating portion is curved and is entirely in contact with the sealing portion. A plurality of grooves are disposed in the side surface of the heat radiating portion.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 13, 2022
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seok Yoon Hong, Han Su Park, Hyuk Ki Kwon
  • Patent number: 11527518
    Abstract: A semiconductor package includes a first package component comprising: a first semiconductor die; a first encapsulant around the first semiconductor die; and a first redistribution structure electrically connected to the semiconductor die. The semiconductor package further includes a second package component bonded to the first package component, wherein the second package component comprises a second semiconductor die; a heat spreader between the first semiconductor die and the second package component; and a second encapsulant between the first package component and the second package component, wherein the second encapsulant has a lower thermal conductivity than the heat spreader.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fong-Yuan Chang, Po-Hsiang Huang, Lee-Chung Lu, Jyh Chwen Frank Lee, Yii-Chian Lu, Yu-Hao Chen, Keh-Jeng Chang
  • Patent number: 11521939
    Abstract: Semiconductor device structures and methods for manufacturing the same are provided. The semiconductor device structure includes a substrate, a die and a stiffener. The substrate has an upper surface. The die is disposed on the upper surface of the substrate. The stiffener is disposed on the upper surface of the substrate and surrounds the die. The stiffener has a first upper surface adjacent to the die, a second upper surface far from the die and a lateral surface extending from the first upper surface to the second upper surface. A first distance between the first upper surface of the stiffener and the upper surface of the substrate is less than a second distance between the second upper surface of the stiffener and the upper surface of the substrate.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: December 6, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jui-Tzu Chen, Yu-Hsing Lin, Chia-Chieh Hu, Chun-Cheng Kuo, Yu-Hsiang Chao
  • Patent number: 11515259
    Abstract: A method for the integration of semiconductor components in a confined space, in particular for 3D integration, in which, after positioning relative to a carrier substrate and/or a redistribution layer, the semiconductor components are protected and fixed in their relative position by introduction of a potting compound, characterized in that before the introduction of the potting compound, a glass substrate having a multiplicity of cutouts separated by partition walls and serving to receive a semiconductor component, is positioned in such a way that the semiconductor component is enclosed by the sidewall surfaces—facing it—of the respective partition walls of the glass substrate.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: November 29, 2022
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Roman Ostholt, Norbert Ambrosius
  • Patent number: 11508679
    Abstract: A method for fabricating a chip scale package, comprising: providing a wafer; applying a polymer resin on at least part of a first surface of the wafer and to one or more sides of the wafer; and applying a compression mold on at least part of a second surface of the wafer and to one or more sides of the wafer, said first and second surfaces opposing each other.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: November 22, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Yusheng Lin, Soon Wei Wang, Chee Hiong Chew, Francis J. Carney
  • Patent number: 11502075
    Abstract: A semiconductor structure includes a first semiconductor substrate, a second semiconductor substrate, a depletion layer, an isolation structure, a first gate structure, and a second gate structure. The first and second semiconductor substrates respectively have a first active region and a second active region overlapping the first active region. The depletion layer is disposed between the first active region and the second active region. The isolation structure surrounds the first and second active regions. The first gate structure is disposed in the second active region. The second gate structure is disposed in the second active region. The second active region has a portion between the first gate structure and the second gate structure.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 15, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Ching-Chia Huang, Tseng-Fu Lu
  • Patent number: 11482471
    Abstract: An integrated circuit package may be formed having a heat transfer fluid chamber, wherein the heat transfer fluid chamber may be positioned to allow a heat transfer fluid to directly contact an integrated circuit device within the integrated circuit package. In one embodiment, a first surface of the integrated circuit device may be electrically attached to a first substrate. The first substrate may then may be electrically attached to a second substrate, such that the integrated circuit device is between the first substrate and the second substrate. The second substrate may include a cavity, wherein the heat transfer fluid chamber may be formed between a second surface of the integrated circuit device and the cavity of the second substrate. Thus, at least a portion of a second surface of the integrated circuit device is exposed to the heat transfer fluid which flows into the heat transfer fluid chamber.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 25, 2022
    Assignee: Intel Corporation
    Inventors: Cheng Xu, Junnan Zhao, Zhimin Wan, Ying Wang, Yikang Deng, Chong Zhang, Jiwei Sun, Zhenguo Jiang, Kyu-Oh Lee
  • Patent number: 11482482
    Abstract: A substrate structure, a method for manufacturing the same and a semiconductor device structure including the same are provided. The substrate structure includes a heat pipe, a first conductive layer and an insulation layer. The heat pipe has an upper surface and a lower surface. The heat pipe includes an opening extending from the upper surface to the lower surface. The first conductive layer is disposed on the upper surface and includes a via structure passing through the opening. The insulation layer is disposed between the heat pipe and the conductive layer.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: October 25, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Ian Hu, Jin-Feng Yang, Cheng-Yu Tsai, Hung-Hsien Huang
  • Patent number: 11483951
    Abstract: A method for forming an assembly is provided. The method includes depositing a colloidal template onto a substrate, wherein the colloidal template is porous, depositing a metal layer onto and within the colloidal template, depositing a cap structure onto the colloidal template opposite of the substrate, and removing the colloidal template from between the substrate and the cap structure to form a metal inverse opal structure disposed therebetween. The method continues by depositing an electrical isolation layer in contact with the cap structure opposite the metal inverse opal structure, and attaching the electrical isolation layer to a cooling device.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 25, 2022
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Board of Trustees of the University of Illinois
    Inventors: Shailesh N. Joshi, Paul Braun, Julia Kohanek, Gaurav Singhal
  • Patent number: 11476242
    Abstract: The present invention provides a packaging method and a packaging structure for a cascode power electronic device, in which a hetero-multiple chip scale package is used to replace the traditional die bonding and wire bonding packaging method. The cascode power electronic device can reduce the inductance resistance and thermal resistance of the connecting wires and reduce the size of the package; and increase the switching frequency of power density. The chip scale package of the present invention uses more than one gallium nitride semiconductor die, more than one diode, and more than one metal oxide semiconductor transistor. The package structure can use TO-220, quad flat package or other shapes and sizes; the encapsulation process of the traditional epoxy molding compounds can be used in low-power applications; and the encapsulation process of ceramic material can be used in high-power applications.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: October 18, 2022
    Assignee: ULTRABAND TECHNOLOGIES INC.
    Inventors: Tai-Hui Liu, Chung-Hsi Liu
  • Patent number: 11456227
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. The waveguide is mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency performance of the waveguide.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 27, 2022
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Patent number: 11456328
    Abstract: Image sensors include a pixel die that is stacked on a logic die. The logic die includes at least one function logic element disposed on a bond side thereof, and a logic oxide array of raised logic oxide features also disposed on the bond side. The pixel die includes a pixel array disposed on a light receiving side thereof, and a pixel oxide array of raised pixel oxide features disposed on a bond side of the pixel die. A plurality of outer bonds is disposed between an outer region of the logic die and an outer region of the pixel die. A plurality of inner bonds is formed at an inner region of the image sensor between the pixel oxide array and the logic oxide array, the inner bonds being spaced apart by a plurality of fluidly connected air gaps that extend between the logic die and the pixel die.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: September 27, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Sing-Chung Hu
  • Patent number: 11452206
    Abstract: A card-type solid state drive (SSD) including: a substrate that has a first surface and a second surface facing each other; a memory controller and a nonvolatile memory device that are on the first surface; a plurality of functional terminals on the second surface; and a plurality of thermal terminals on the second surface, wherein the functional terminals include first-row functional terminals, second-row functional terminals, and third-row functional terminals, wherein at least one of the first-row functional terminals, at least one of the second-row functional terminals, and at least one of the third-row functional terminals are electrically connected to the memory controller or the nonvolatile memory device, and wherein the thermal terminals are not electrically connected to the memory controller or the nonvolatile memory device.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: September 20, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-Jae Lee, Youngdong Kim, Sang Sub Song, Ki-Hong Jeong
  • Patent number: 11450632
    Abstract: A semiconductor package includes a redistribution structure including an insulating layer having an upper surface and a lower surface, a redistribution pad and a redistribution pattern on the lower surface of the insulating layer and electrically connected to each other, and a passivation layer on the lower surface of the insulating layer and having an opening exposing at least a portion of the redistribution pad; a semiconductor chip on the redistribution structure and including a connection pad electrically connected to the redistribution pad; an encapsulant on the redistribution structure and encapsulating the semiconductor chip; and a connection bump and a dummy bump on the passivation layer, wherein the redistribution pattern has a width narrower than a width of the redistribution pad, the connection bump vertically overlaps the redistribution pad, and the dummy bump vertically overlaps the redistribution pattern.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: September 20, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Taeho Kang
  • Patent number: 11444003
    Abstract: An integrated heat spreader includes channel structures assembled in a frame. Each channel structure is independent of the other, and can be used to dissipate heat from integrated circuitry at a specific location within a package, and without allowing heat from that particular location to propagate to integrated circuitry at other locations within the package. Each channel structure can be implemented with metal having a high thermal conductivity (e.g., copper). The channel structures can be used in conjunction with liquid-based cooling or air-based cooling. The frame can be implemented with low thermal conductivity molding compound or plastic so the heat transfer from one channel structure to another is inhibited. The channel structures can have different configurations (e.g., straight, pillars, and/or pin fins) to provide different rates of flow, mixing, and/or cooling. The flow direction of air or liquid for the channel structures can be the same (parallel) or different (counter).
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Zhimin Wan, Chia-Pin Chiu, Chandra Mohan Jha, Weihua Tang, Shankar Devasenathipathy
  • Patent number: 11443995
    Abstract: A device package includes a first die directly bonded to a second die at an interface, wherein the interface comprises a conductor-to-conductor bond. The device package further includes an encapsulant surrounding the first die and the second die and a plurality of through vias extending through the encapsulant. The plurality of through vias are disposed adjacent the first die and the second die. The device package further includes a plurality of thermal vias extending through the encapsulant and a redistribution structure electrically connected to the first die, the second die, and the plurality of through vias. The plurality of thermal vias is disposed on a surface of the second die and adjacent the first die.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Sung-Feng Yeh, Ming-Fa Chen, Hsien-Wei Chen, Tzuan-Horng Liu
  • Patent number: 11441953
    Abstract: A power circuit module includes an electronic circuit board, a heat generating element mounted on a first surface of the electronic circuit board and being a semiconductor electronic component that constitutes a part of a power circuit, a temperature detecting element that detects the temperature of the heat generating element, an electric circuit wiring, a heat dissipating body that dissipates heat of the heat generating element, and a heat conduction sheet having elasticity and flexibility, and a thickness. The heat conduction sheet is between the heat generating element and the heat dissipating body, the temperature detecting element is thermally connected to the heat generating element via the heat conduction sheet and is electrically connected via the electric circuit wiring, and with regard to the sizes of the components, the following relationship holds: temperature detecting element<heat generating element<heat dissipating body.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 13, 2022
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tatsuya Hosotani
  • Patent number: 11444002
    Abstract: A package structure includes a bottom plate, a semiconductor package, a top plate, a screw and an anti-loosening coating. The semiconductor package is disposed over the bottom plate. The top plate is disposed over the semiconductor package, and includes an internal thread in a screw hole of the top plate. The screw penetrates through the bottom plate, the semiconductor package and the top plate, and includes an external thread. The external thread of the screw is engaged to the internal thread of the top plate, and the anti-loosening coating is adhered between the external thread and the internal thread.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: September 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chia Lai, Chen-Hua Yu, Chung-Shi Liu, Hsiao-Chung Liang, Hao-Yi Tsai, Chien-Ling Hwang, Kuo-Lung Pan, Pei-Hsuan Lee, Tin-Hao Kuo, Chih-Hsuan Tai
  • Patent number: 11444036
    Abstract: A power module assembly is disclosed and includes a package body, a first wiring layer, a capacitor, and a system bus set. The package body includes a first surface, a second surface and two switches connected in series to form a bridge arm between the first surface and the second surface. The first wiring layer is disposed on the first surface. The capacitor is connected in parallel with the bridge arm to form a first high-frequency loop. The system bus set includes a positive-electrode bus and a negative-electrode bus fanned out from the first surface, respectively. The projection of the positive-electrode bus or/and the negative-electrode bus on the first surface is at least partially overlapped with the projection of the two switches on the first surface. The bridge arm is electrically connected between the positive-electrode bus and the negative-electrode bus to form a second high-frequency loop.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: September 13, 2022
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Shouyu Hong, Yan Tong, Weicheng Zhou, Dongfang Lian, Haiyang Cao, Haibin Xu, Tao Wang, Yicong Xie