Liquid Coolant Patents (Class 257/714)
  • Patent number: 7724517
    Abstract: A case for a liquid submersion cooled computer includes a plurality of walls defining a liquid-tight interior space. At least a portion of one of the walls is made of a material that permits viewing of objects, for example, a motherboard, within the interior space. A removable lid closes the top of the interior space. The lid forms a liquid-tight seal with the plurality of walls, and the lid includes a sealed electrical connector fixed thereto that is configured to attach to the motherboard disposed in the interior space and to provide electrical connection between the motherboard and an exterior of the case. The case can include a drain valve for draining liquid from the case. Further, the lid can have an opening for introducing liquid into the interior space, and a handle to facilitate lifting of the lid along with the motherboard connected to the lid.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 25, 2010
    Assignee: Hardcore Computer, Inc.
    Inventors: Chad Daniel Attlesey, R. Daren Klum, Allen James Berning
  • Publication number: 20100117209
    Abstract: The present invention is directed to a method of packaging multiple semiconductor chips on a second semiconductor chips with a built-in efficient cooling means. One embodiment is to place two multiple chip stacks on opposing sides of a vapor chamber for transferring heat away from the semiconductor chips. Another embodiment is to construct a vapor chamber with a substrate such that at least one multiple chip stack is embedded inside the vapor chamber.
    Type: Application
    Filed: February 28, 2007
    Publication date: May 13, 2010
    Inventors: Raschid J. Bezama, Minhua Lu, Lawrence S. Mok
  • Patent number: 7713789
    Abstract: Provides semiconductor devices and method for fabricating devices having a high thermal dissipation efficiency. An example device comprises a thermally conducting structure attached to a surface of the semiconductor device via soldering. The thermally conducting structure is essentially formed of a thermally conducting material and comprises an array of freestanding fins, studs or frames, or a grid of connected fins. A process for fabricating such a semiconductor device includes forming a thermally conducting structure on a carrier and attaching the thermally conducting structure formed on the carrier to a surface of the semiconductor device via soldering.
    Type: Grant
    Filed: September 9, 2007
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Michel Despont, Mark A. Lantz, Bruno Michel, Peter Vettiger
  • Patent number: 7710727
    Abstract: A heat sink assembly for an add-on card includes a heat sink and a clip received in the heat sink. The heat sink includes a supporting plate and a first and a second heat absorbing plates extending downwardly from the supporting plate. The first and second heat absorbing plates sandwich first and second heat conductive plates and the add-on card therebetween. The supporting plate is located over and spaced from the add-on card. The clip includes a resisting member, first and second engaging members and first and second pressing members. The resisting member is received in the heat sink and abuts upwardly against the supporting plate of the heat sink. The first and second engaging members engage with the first and second heat absorbing plates, respectively. The pressing members abut downwardly against a clasp clasping the conductive plates and the add-on card together.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: May 4, 2010
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Jian Liu, Jing Zhang
  • Patent number: 7709951
    Abstract: Methods, apparatus and assemblies for enhancing heat transfer in electronic components using a flexible thermal pillow. The flexible thermal pillow has a thermally conductive material sealed between top and bottom conductive layers, with the bottom layer having a flexible reservoir residing on opposing sides of a central portion of the pillow that has a gap. The pillow may have roughened internal surfaces to increase an internal surface area within the pillow for enhanced heat dissipation. In an electronic assembly, the central portion of the pillow resides between a heat sink and heat-generating component for the thermal coupling there-between. During thermal cycling, the flexible reservoir of the pillow expands to retain thermally conductive material extruded from the gap, and then contracts to force such extruded material back into the gap. An external pressure source may contact the pillow for further forcing the extruded thermally conductive material back into the gap.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: William L. Brodsky, Peter J. Brofman, James A. Busby, Bruce J. Chamberlin, Scott A. Cummings, David L. Edwards, Thomas J. Fleischman, Michael J. Griffin, IV, Sushumna Iruvanti, David C. Long, Jennifer V. Muncy, Robin A. Susko
  • Patent number: 7709296
    Abstract: An integrated optical I/O and semiconductor chip with a direct liquid jet impingement cooling assembly are disclosed. Contrary to other solutions for packaging an optical I/O with a semiconductor die, this assembly makes use of a metal clad fiber, e.g. copper, which will actually enhance cooling performance rather than create a design restriction that has the potential to limit cooling capability.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Casimer M. DeCusatis, Michael J. Ellsworth, Jr.
  • Publication number: 20100102441
    Abstract: Between a logic LSI (4) arranged on one side of a DRAM (1) and jointed to the DRAM and a radiating member (6) arranged on the other side of the DRAM (1) for irradiating the heats of the DRAM (1) and the logic LSI (4), there is disposed a heat bypass passage (5), which extends inbetween while bypassing the DRAM (1). Thus, it is possible to provide a semiconductor device, which can irradiate the heat generated from the logic LSI such as CPU or GPU thereby to reduce the temperature rise and the temperature distribution.
    Type: Application
    Filed: March 3, 2008
    Publication date: April 29, 2010
    Inventor: Isao Sugaya
  • Patent number: 7705342
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 W/cm2).
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 27, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7705448
    Abstract: A semiconductor device includes 1) a conductive pipe including an inner surface forming an inner space shaping a path of an insulative cooling refrigerant liquid and an outer surface including a plane potion partially formed thereof, 2) a power semiconductor element fixed onto the plane portion of the conductive pipe through a bonding layer such as solder, 3) a first external connecting terminal including an inner lead part including a tip portion bonded onto the plane portion of the conductive pipe and an outer lead part continuous with the inner lead part, 4) a second external connecting terminal which is in the state of floating above the outer surface, and 5) a mold resin covering the whole surface of the power semiconductor element, the whole of the inner lead parts of the external connecting terminals, and the whole of the outer surface covering a central portion of the conductive pipe.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: April 27, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Katsuji Andou
  • Patent number: 7701721
    Abstract: An easily disassembling cooling apparatus is assembled onto a circuit board. The circuit board has an electronic element. The cooling apparatus includes a pair of fastening blocks, one or two heat conducting blocks, a heat pipe, a fastening plate, and a plurality of locking elements. The fastening blocks are fastened onto the circuit board and each has a track slot. The heat conducting block is installed between the fastening blocks and contacts the electronic element. One end of the heat pipe is installed with the heat conducting block. The fastening plate is installed in the track slots of the fastening blocks, and has a flexible arm that flexibly presses onto the heat pipe. Each of the locking elements respectively is combined with the fastening block. Thereby, the welding process is not required in the assembling process. The electronic element is reliably cooled, and the assembling time is reduced.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: April 20, 2010
    Assignee: Cooler Master Co., Ltd.
    Inventor: Yu-Cheng Lin
  • Patent number: 7701053
    Abstract: An electronic component has a portion adjacent to a surface of a base to which elements are mounted is immersed into a liquid resin or semi-solid resin such that an element surface of the base to which the elements are mounted is not immersed and in which the resin is then hardened. This causes a gap to be disposed between the hardened resin and the element surface of the base, such that a cover supported by some of the elements is formed.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 20, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshihiko Nishizawa, Norio Sakai, Isao Kato
  • Patent number: 7697290
    Abstract: The invention discloses an electronic apparatus and a fan module thereof. The fan module includes a base, an impeller, a liquid container, an atomizing device and a cover. The impeller is provided in the base. The liquid container is placed at the center of the impeller, and the liquid container contains a liquid. The atomizing device is disposed on the liquid container, and the atomizing device can atomize the liquid to form a mist to spray in order to absorb the heat in the electronic apparatus. The cover covers the base and forms an air outlet with the base. Furthermore, the cover has an air inlet. When the impeller rotates, the blade of the impeller drives airflow mixed the heated mist to enter into the base through the air inlet of the cover, and to exit from the base through the air outlet.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: April 13, 2010
    Assignee: Pegatron Corporation
    Inventor: Chung-Hao Wu
  • Patent number: 7697291
    Abstract: The present invention is a method and apparatus for cooling a semiconductor heat source. In one embodiment a thermal spreader is provided and includes a substrate for supporting the semiconductor heat source and a heat sink coupled to the substrate. A channel is disposed between the heat sink and substrate. The channel has at least one wall defined by the heat sink. The surface area of the channel wall defined by the heat sink is about 10 to about 100 times the surface area of a bottom surface of the semiconductor heat source. A coolant, for example liquid metal, circulates within the channel.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Yves Martin, Theodore G. Van Kessel
  • Patent number: 7692926
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotropic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 6, 2010
    Assignee: Progressive Cooling Solutions, Inc.
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7692278
    Abstract: In some embodiments, an apparatus and a system are provided. The apparatus and the system may comprise a first integrated circuit die comprising a plurality of silicon vias and a first surface activated bonding site coupled to the plurality of silicon vias, and a second integrated circuit die comprising a second surface activated bonding site coupled to the first surface activated bonding site. The first surface activated bonding site may comprise a first clean metal and the second surface activated bonding site may comprise a second clean metal. If the first surface activated bonding site is coupled to the second surface activated bonding site respective metal atoms of the first activated surface activated bonding site are diffused into the second surface activated bonding site and respective metal atoms of the second activated surface activated bonding site are diffused into the first surface activated bonding site.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 6, 2010
    Assignee: Intel Corporation
    Inventors: Shanggar Periaman, Kooi Chi Ooi, Bok Eng Cheah
  • Patent number: 7679911
    Abstract: An electronic component or assembly that is assembled within a case that is designed to operate as a liquid phase to gas phase heat pipe where the electronic component or assembly is introduced into a liquid or partially liquid partially gaseous environment; whereby said liquid evaporates into a gas absorbing heat energy and transferring it to and through the component's or assembly's case. The case will be engineered out of materials that do not contaminate the liquid and electronics with ions and will be engineered to include a plurality of chambers/towers that extend in various directions providing enhanced heat pipe functionality in any physical orientation.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 16, 2010
    Inventor: Robert J Rapp
  • Patent number: 7679184
    Abstract: A semiconductor device includes a substrate, a semiconductor chip flip-chip mounted on the substrate, a sealing resin layer sealing the surroundings of the semiconductor chip, and a heat sink bonded to the sealing resin layer through a TIM layer. In addition, a cooling medium is encapsulated in an enclosed space formed on the rear surface of the semiconductor chip.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: March 16, 2010
    Assignee: Sony Computer Entertainment Inc.
    Inventors: Hidetoshi Kusano, Kazuaki Yazawa
  • Patent number: 7675163
    Abstract: A system for cooling a semiconductor device is disclosed. The system includes a lid encasing the semiconductor device, a first plurality of carbon nanotubes disposed within the lid, and a fluid system configured to pass a fluid through the lid. Furthermore, a second system for cooling a semiconductor device is disclosed. The second system includes a lid, a first plurality of carbon nanotubes disposed within the lid, and a fluid system configured to pass a fluid through the lid. The lid is configured to be mounted over and encase the semiconductor device. Additionally, a method for cooling a semiconductor device is disclosed. The method includes disposing a first plurality of carbon nanotubes within a lid, mounting the lid over the semiconductor device, and passing a fluid through the lid.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: March 9, 2010
    Assignee: Sun Microsystems, Inc.
    Inventors: Ali Heydari, Chien Ouyang
  • Patent number: 7672129
    Abstract: A cooling system for a heat producing component includes a base having two or more cells. The cells may include microchannel passages. A pump system may be coupled to the base. The pump system may circulate fluid independently in each of two or more of the cells. The pump system may include an array of two more magnetohydrodynamic pumps. Each magnetohydrodynamic pump may provide fluid to a different cell. A controller may control a flow rate in each one of cell of the cooling system independently one or more of other cells of the cooling system.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 2, 2010
    Assignee: Sun Microsystems, Inc.
    Inventors: Chien Ouyang, Kenneth C. Gross
  • Patent number: 7671466
    Abstract: A semiconductor package with a heat dissipating device and a fabrication method of the semiconductor package are provided. A chip is mounted on a substrate. The heat dissipating device is mounted on the chip, and includes an accommodating room, and a first opening and a second opening that communicate with the accommodating room. An encapsulant is formed between the heat dissipating device and the substrate to encapsulate the chip. A cutting process is performed to remove a non-electrical part of structure and expose the first and second openings from the encapsulant. A cooling fluid is received in the accommodating room to absorb and dissipate heat produced by the chip. The heat dissipating device covers the encapsulant and the chip to provide a maximum heat transfer area for the semiconductor package.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 2, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang, Cheng-Hsu Hsiao
  • Patent number: 7667969
    Abstract: Presented is a heat sink arrangement, incorporating a fluid media, which transfers heat between stationary and movable objects. Included are pump structures which are designed to be or operate integrally with the fluid-filled heat transfer apparatus, and are adapted to provide optimum and unique cooling flow paths for implementing the cooling of electronic devices, such as computer chips or the like, that require active cooling action. The pumps and heat sink arrangements selectively possess either rotating or stationary shafts, various types of impeller and fluid or cooling media circulation structures, which maximize both the convective and conductive cooling of the various components of the electronic devices or equipment by means of the circulating fluid.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Vijayeshwar D. Khanna, Gerard McVicker, Sri M. Sri-Jayantha
  • Patent number: 7667319
    Abstract: An electroosmotic pump may be fabricated using semiconductor processing techniques with a nanoporous open cell dielectric frit. Such a frit may result in an electroosmotic pump with better pumping capabilities.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: February 23, 2010
    Assignee: Intel Corporation
    Inventors: R. Scott List, Alan Myers, Quat T. Vu
  • Publication number: 20100038774
    Abstract: A heat sink for cooling at least one electronic device package is provided. The electronic device package has an upper contact surface and a lower contact surface. The heat sink comprises at least one thermally conductive material and defines multiple inlet manifolds configured to receive a coolant, multiple outlet manifolds configured to exhaust the coolant, and multiple millichannels configured to receive the coolant from the inlet manifolds and to deliver the coolant to the outlet manifolds. The manifolds and millichannels are disposed proximate to the respective one of the upper and lower contact surface of the electronic device package for cooling the respective surface with the coolant.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard S. Zhang, Richard Alfred Beaupre, Ramakrishna Venkata Mallina, Arun Virupaksha Gowda, Le Yan, Ljubisa Dragoljub Stevanovic, Peter Morley, Stephen Adam Solovitz
  • Patent number: 7663230
    Abstract: A method of forming channels on a die or other substrate. Also disclosed are liquid cooling systems including such channels.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 16, 2010
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Chin Chang Cheng, Alan M. Myers
  • Patent number: 7663883
    Abstract: A heat transfer mechanism for dissipating heat from a heat generating body to a heat dissipating part, realizing both a high elasticity and a high thermal conductivity, comprised of a film-shaped heat conductor for transferring heat to the heat dissipating part and an elastic member for imparting elasticity to the film-shaped heat conductor, the film-shaped heat conductor being formed from metal foil-type flexible heat pipes or carbon-based thermal conductive sheets.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: February 16, 2010
    Assignee: Fujitsu Limited
    Inventors: Takashi Shirakami, Naoya Yamazaki, Kazuhiro Iino, Yoshiaki Tada, Satoshi Ueda
  • Patent number: 7660122
    Abstract: An inverter apparatus includes a liquid path in which cooling water flows, and in which the cooling water performs cooling at a cooling part located directly underneath the power circuit part of the inverter apparatus. The liquid path includes a first partial structure part formed between a feed pipe and the cooling part, and having a liquid path cross-sectional profile that is gradually reduced in the short-side direction of the cooling part and that is gradually enlarged in the long-side direction thereof; and a second partial structure part formed between the cooling part and a drain pipe, and having a liquid path cross-sectional profile that is gradually enlarged from the short-side of the cooling part and that is gradually reduced from the long-side thereof.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: February 9, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Takayoshi Nakamura, Akihiro Tamba, Ryuichi Saito, Atsuo Nishihara
  • Patent number: 7656028
    Abstract: A package for a semiconductor chip or other heat producing device has a supporting substrate to which the devices mount and electrically connect. An enclosure is formed over the heat producing devices and filled with a working fluid including a chemical compound that reacts endothermically to absorb heat produced by the devices and releases the heat in a reverse reaction to the enclosure.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 2, 2010
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Wendy L. Wilkins, Barry K. Gilbert
  • Patent number: 7656025
    Abstract: The semiconductor package as well as a method for making it and using it is disclosed. The semiconductor package comprises a semiconductor chip having at least one heat-generating semiconductor device and a volumetrically expandable chamber disposed to sealingly surround the semiconductor chip, the volumetrically expandable chamber filled entirely with a non-electrically conductive liquid in contact with the semiconductor device and circulated within the volumetrically expandable chamber at least in part by the generated heat of the at least one semiconductor device to cool the at least one semiconductor device.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: February 2, 2010
    Assignee: The Boeing Company
    Inventors: Andrew G. Laquer, Ernest E. Bunch
  • Patent number: 7652372
    Abstract: A microchannel cooling system used to cool integrated circuits may include a number of microchannels which may be subject to bubble blockage. When bubble formation or nucleation occurs due to heating, the bubbles may become trapped within the microchannels. A valve within the microchannel may automatically operate, at least partially, to close off the microchannel, allowing the bubble to be freed and to be flushed from the channel in some embodiments.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: January 26, 2010
    Assignee: Intel Corporation
    Inventors: Terry J. Dishongh, Jason T. Cassezza, Kevin S. Rhodes
  • Patent number: 7639499
    Abstract: Apparatus and method are provided for facilitating liquid cooling one or more components of an electronic subsystem chassis disposed within an electronics rack. The apparatus includes a rack-level coolant manifold assembly and at least one movable chassis-level manifold subassembly. The rack-level coolant manifold assembly includes a rack-level inlet manifold and a rack-level outlet manifold, and each movable chassis-level manifold subassembly includes a chassis-level coolant inlet manifold coupled in fluid communication with the rack-level inlet manifold, and a chassis-level coolant outlet manifold coupled in fluid communication with the rack-level outlet manifold. The chassis-level manifold subassembly is slidably coupled to the electronics rack to facilitate access to one or more removable components of the electronic subsystem chassis. In one embodiment, the electronics subsystem chassis is a multi-blade center system having multiple removable blades, each blade being an electronics subsystem.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: December 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Martin J. Crippen, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Vinod Kamath, Jason A. Matteson, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20090314062
    Abstract: A fluid actuator includes a piezoelectric body (31), a fluid channel (2) having the piezoelectric body (31) on a part of the inner wall thereof and enabling a fluid to move inside, and a surface acoustic wave generation portion (101) for driving the fluid in the fluid channel by surface acoustic waves generated from a interdigital electrode formed on the surface of the piezoelectric body (31) facing the fluid channel (2). The surface acoustic wave generation portion (101) is arranged at the position offset from the center of the fluid channel (2). The fluid actuator can perform drive with a low voltage and drives the fluid in a narrow fluid channel in a single direction.
    Type: Application
    Filed: December 8, 2006
    Publication date: December 24, 2009
    Applicants: KYOCERA CORPORATION, THE RITSUMEIKAN TRUST
    Inventors: Hirotaka Tsuyoshi, Ryusuke Tsuyoshi, Susumu Suguyama
  • Patent number: 7626261
    Abstract: A wafer stacked semiconductor package (WSP) having a vertical heat emission path and a method of fabricating the same are provided. The WSP comprises a substrate on which semiconductor chips are mounted; a plurality of semiconductor chips stacked vertically on the substrate; a cooling through-hole formed vertically in the plurality of semiconductor chips, and sealed; micro holes formed on the circumference of the cooling through-hole; and a coolant filling the inside of the cooling through-hole. Accordingly, the WSP reduces a temperature difference between the semiconductor chips and quickly dissipates the heat generated by the stacked semiconductor chips.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joong-Hyun Baek, Hee-Jin Lee
  • Patent number: 7626252
    Abstract: A multi-chip electronic package comprised of a plurality of integrated circuit chips secured together in a stack formation. The chip stack is hermetically sealed in an enclosure. The enclosure comprises a pressurized, thermally conductive fluid, which is utilized for cooling the enclosed chip stack. A process and structure is proposed that allows for densely-packed, multi-chip electronic packages to be manufactured with improved heat dissipation efficiency, thus improving the performance and reliability of the multi-chip electronic package.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Jerome M. Eldridge
  • Patent number: 7616443
    Abstract: A cooling device for an electrical power unit of electrically operated vehicles, comprising at least one power section and at least one control section. A first cooling circuit containing a heat exchanger with a low coolant temperature is provided mainly for cooling elements of the control sections, and a further cooling circuit with a higher coolant temperature is provided mainly for cooling elements of the power sections.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 10, 2009
    Assignee: RENK Aktiengesellschaft
    Inventor: Alexander Walter
  • Patent number: 7614247
    Abstract: A cooling arrangement with a housing for receiving electronic printed circuit boards or plug-in modules, and with an air-conditioning device which is connected via a coolant-conducting feed line and a return-flow line with at least one electronic component, which is to be cooled, on the respective printed circuit board or plug-in module. The feed line is coupled with at least one component feed line assigned to the electronic component. The return-flow line is coupled with at least one component return-flow line assigned to the electronic component. The component feed line and the component return-flow line have coupling elements attached at ends of the respective printed circuit board or plug-in module which, together with the counter coupling elements of the feed line and the return-flow line attached at the end of the housing, form a coupling connection, which is releasable.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: November 10, 2009
    Assignee: RITTAL RES Electronic Systems GmbH & Co. KG
    Inventors: Michael Nicolai, Mouhamadou Ousmane, Wilfried Braun, Kurt Schaffer
  • Patent number: 7612447
    Abstract: A semiconductor device is provided, and includes a wafer having first and second opposed metallized major faces and a transistor bonded to the first metallized face of the wafer. The transistor includes a first surface, and the first surface defines a first area. The device further includes a first metal layer bonded to the first surface of the transistor. The first metal layer has a first surface that defines a second area larger than the first area of the transistor. The device further includes a ceramic layer bonded to the first surface of the first metal layer.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: November 3, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Terence G. Ward, Edward P. Yankoski
  • Patent number: 7612448
    Abstract: A power module includes a power semiconductor, a non-power semiconductor, one resin substrate, and a cooling device. The power semiconductor and the non-power semiconductor configure a power supply circuit for performing power conversion. Both the power semiconductor and the non-power semiconductor are mounted on the resin substrate. The cooling device is disposed in order to cool the power semiconductor.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: November 3, 2009
    Assignee: Daikin Industries, Ltd.
    Inventors: Junichi Teraki, Mitsuhiro Tanaka
  • Patent number: 7608924
    Abstract: A plurality of direct die cooled semiconductor power device packages are vertically stacked with both coolant and electrical interfacing to form a liquid cooled power electronic circuit. The packages are individually identical, and selectively oriented prior to stacking in order to form the desired circuit connections and laterally stagger the package leads.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: October 27, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Bruce A. Myers, Joseph M. Ratell
  • Patent number: 7599414
    Abstract: A laser apparatus (100) has a semiconductor laser device (12a to 12c), coolant jetting means (24), and a heatsink (18a to 18c). The semiconductor laser device has a light output surface (50) for emitting laser light. The coolant jetting means has a coolant chamber (53) for accommodating a coolant, an inflow port (54) communicating with the coolant chamber, and a jet port (25) opposing the light output surface of the laser device. The heatsink has a laser mount surface (36) for mounting the semiconductor laser device, and a flow path (68a to 68c) where the coolant (56) jetted from the jet port flows in. When the coolant chamber is fed with the coolant, the jet port jets the coolant onto the light output surface of the semiconductor laser device. Since the light output surface is directly cooled by a jet flow of the coolant, cooling efficiency is excellent.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 6, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hirofumi Miyajima, Hirofumi Kan
  • Patent number: 7595987
    Abstract: Computing devices, including laptop computers, desk top computers, servers and video game terminals employ microprocessors which generate considerable heat. In fact, the heat generated from microprocessors is generally considered the limiting factor in computing speed. A heat sink is provided in thermal contact with a microprocessor whereby a water barrier is applied to and proximate a socket configured within the computing device's motherboard for preventing water of condensation from contacting areas covered by the water barrier.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 29, 2009
    Inventor: Alan Mark Cohen
  • Patent number: 7592695
    Abstract: A compound heat sink for the removal of thermal energy useful for, inter alia, electronic devices or other components. The compound heat sink includes a die cast base element; an extruded dissipation element having a thermal conductivity of at least about 150 W/m-K; and a thermal connection material positioned between and in thermal contact with each of the base element and the dissipation element, wherein the thermal connection material having an in-plane thermal conductivity greater than the thermal conductivity of the dissipation element.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: September 22, 2009
    Assignee: GrafTech International Holdings Inc.
    Inventors: Bradley E. Reis, Julian Norley, Prathib Skandakumaran
  • Patent number: 7593232
    Abstract: An electronic apparatus is provided with a housing, a circuit board section and a heat transfer member. The circuit board section is accommodated in the housing. The circuit board section includes a heat generating component, a heat receiving region thermally connected to the heat generating component and a heat radiating region having a lower temperature than the heat receiving region while the apparatus is operating. The heat transfer member includes a first end portion attached in the heat receiving region and a second end portion attached in the heat radiating region.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: September 22, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisuke Maehara
  • Patent number: 7592697
    Abstract: A microelectronic package comprises a chip stack (110) that includes a substrate (111), a first die (112) over the substrate and a second die (113) over the first die, a first underfill layer (114) between the substrate and the first die, and a second underfill layer (115) between the first die and the second die. The microelectronic package further comprises a fluidic microchannel system (120) in the chip stack, and the fluidic microchannel system comprises a fluid inlet (121) and a fluid outlet (122) connected to each other by a fluidic passage (123).
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: September 22, 2009
    Assignee: Intel Corporation
    Inventors: Leonel R. Arana, Michael W. Newman, Je-Young Chang
  • Patent number: 7586747
    Abstract: A method for building scalable electronic subsystems is described. Stackable modules employ copper substrates with solder connections between modules, and a ball grid array interface is provided at the bottom of the stack. A cooling channel is optionally provided between each pair of modules. Each module is re-workable because all integrated circuit attachments within the module employ re-workable flip chip connectors. Also, defective modules can be removed from the stack by directing hot inert gas at externally accessible solder connections.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: September 8, 2009
    Assignee: Salmon Technologies, LLC.
    Inventor: Peter C. Salmon
  • Patent number: 7586126
    Abstract: A light emitting diode (LED) lighting module with an improved heat dissipative structure comprises a plurality of the LEDs and a heat pipe apparatus on which at least a circuit layer is provided. The circuit layer is directly formed on an electrical insulation layer with superior heat conductivity on a surface of the heat pipe apparatus. The LEDs are electrically connected to the circuit layer. Furthermore, the heat pipe apparatus can be a flat heat pipe or the combination of plate-shaped heat pipes, heat sinks and a fan. Because the LEDs are directly mounted on the surface of the heat pipe apparatus, the heat generated by the lighting LEDs is effectively delivered to the atmosphere due to the reaction of latent heat phase transformation in the heat pipe apparatus. Moreover, the heat is delivered to the heat sinks at far sides for heat exchange so that improved heat dissipation and a space saving result are achieved.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: September 8, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Shu Jung Yang, Ran Min Tain
  • Patent number: 7582962
    Abstract: A heat dissipation device comprises a multilayer substrate, a channel formed in the multilayer substrate, and tubes disposed within the channel, the tubes suitable for removing heat from a heat generating device located adjacent to the multilayer substrate.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: September 1, 2009
    Assignee: Rockwell Collins, Inc.
    Inventor: Jeanne S. Pavio
  • Patent number: 7580261
    Abstract: A cooling system is provided for use in conjunction with a semiconductor assembly including a first semiconductor device and a second semiconductor device electrically coupled to the first semiconductor device by an elongated electrical connection. The cooling system includes a flow passage, a pump fluidly coupled to the flow passage, and an outlet array fluidly coupled to the flow passage and configured to direct a coolant fluid over the second semiconductor device. The outlet array has an interconnect feature formed therein configured to receive the elongated electrical connection there through.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 25, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gregory Scott Smith, George John, Terence G. Ward, Edward P Yankoski, David F. Nelson
  • Patent number: 7561429
    Abstract: A power converter unit comprises: a metal casing; a power module mounted in the metal casing and equipped with two or more power semiconductor devices; a metal plate disposed on the power module and fixed to the metal casing; a heat dissipating sheet disposed on the metal plate; and a drive circuit board disposed on the heat dissipating sheet and is equipped with a control circuit for controlling the power semiconductor devices.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: July 14, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Koichi Yahata, Seigo Yukutake, Yoshio Akaishi
  • Patent number: 7561425
    Abstract: An apparatus and method for cooling electronics is disclosed. An encapsulated inert non-conductive fluid is used to transfer heat directly from an electrical circuit including a die on a substrate to an external heatsink. The top of a flip chip die (e.g. a ceramic column grid array flip chip) may be enclosed with a metallic cover. The metallic cover is sealed to an outer frame, which in turn is sealed to metallization on the top of the flip chip through a flexure, minimizing mechanical load imparted to the flip chip. This forms a hermetic cavity enclosing the die. This hermetic cavity is partially filled with an inert non conductive fluid, which vaporizes when heated. Condensation occurs on the inner surface of the metal cover where the heat may be conducted into the outer frame for removal (e.g. rejection from the spacecraft).
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: July 14, 2009
    Assignee: The Boeing Company
    Inventors: Eric S. Mindock, John R. Scott
  • Patent number: 7560813
    Abstract: A chip unit has a stack of at least two electronic chips stacked one on top of the other, a through-chip connection within the stack, the through chip connection including a bounding material having an inner and outer perimeter, the inner perimeter defining an interior volume longitudinally extending through at least one of the at least two chips and at least partially into another of the at least two chips so as to form a tube extending between the one and the other of the chips, and an amount of working fluid hermetically sealed within the tube, the working fluid having a volume and being at a pressure such that the working fluid and tube will operate as a heat pipe and transfer heat from the stack of chips to the working fluid.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: July 14, 2009
    Inventor: John Trezza