Ball Shaped Patents (Class 257/738)
  • Publication number: 20140353824
    Abstract: The present invention discloses a package-on-package structure including a top package and a bottom package from top to bottom, where the bottom package includes a first substrate and a second substrate from top to bottom; a pad is placed on one surface of the first substrate, where the pad is electrically connected to the top package; a chip is placed on the other surface of the first substrate; the second substrate is placed opposite to and below the chip; a first metal terminal is placed at a position that is between the first substrate and the second substrate and bypasses the chip; the first substrate is electrically connected to one surface of the second substrate by using the first metal terminal; and a second metal terminal is placed on the other surface of the second substrate. The present invention is applicable to electronic component packaging.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 4, 2014
    Inventor: Ran Jiang
  • Patent number: 8901724
    Abstract: Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 2, 2014
    Assignee: Intel Corporation
    Inventors: John Stephen Guzek, Javier Soto Gonzalez, Nicholas R. Watts, Ravi K. Nalla
  • Patent number: 8901752
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8901735
    Abstract: A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ying Ching Shih, Po-Hao Tsai, Chin-Fu Kao, Cheng-Lin Huang, Cheng-Chieh Hsieh, Kuo-Ching Hsu, Jing-Cheng Lin, Shang-Yun Hou, Shin-Puu Jeng
  • Patent number: 8896104
    Abstract: A semiconductor device includes: a semiconductor substrate including a first face and a second face on a side opposite to the first face; an external connection terminal formed on the first face of the semiconductor substrate; a first electrode formed on the first face of the semiconductor substrate and electrically connected to the external connection terminal; an electronic element formed on or above the second face of the semiconductor substrate; a second electrode electrically connected to the electronic element and having a top face and a rear face; a groove portion formed on the second face of the semiconductor substrate and having a bottom face including at least part of the rear face of the second electrode; and a conductive portion formed in the groove portion and electrically connected to the rear face of the second electrode.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: November 25, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Haruki Ito, Nobuaki Hashimoto
  • Patent number: 8896105
    Abstract: Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a method includes constructing a radiation sensitive component in and/or on a microelectronic device, placing a curable component in and/or on the microelectronic device, and forming a barrier in and/or on the microelectronic device to at least partially inhibit irradiation of the radiation sensitive component. The radiation sensitive component can be doped silicon, chalcogenide, polymeric random access memory, or any other component that is altered when irradiated with one or more specific frequencies of radiation. The curable component can be an adhesive, an underfill layer, an encapsulant, a stand-off, or any other feature constructed of a material that requires curing by irradiation.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: November 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Kristy A. Campbell
  • Patent number: 8896118
    Abstract: An electronic assembly includes a copper pillar attach substrate that has a dielectric layer and a solder resist layer overlying the dielectric layer. The solder resist layer has a plurality of solder resist openings. A plurality of parallel traces are formed on the dielectric layer. Each trace has a first end portion, a second end portion and an intermediate portion. The first and second end portions of each trace are covered by the solder resist layer and the intermediate portions are positioned in the solder resist openings. Each of the intermediate portions has at least one conductive coating layer on it and has a height measured from the dielectric layer to the top of the topmost conductive coating layer that is at least as great as the solder resist layer thickness.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Nima Shahidi
  • Patent number: 8896086
    Abstract: A system for generating a tamper detection signal indicating tampering with one or more circuits of an integrated circuit (IC) includes a tamper detection module, and wire-pairs connected to the tamper detection module and arranged in a winding configuration to form a wire-mesh. The wire-mesh is placed a predefined distance from the circuits. The tamper detection module generates and provides serial bit-streams to the wire-pairs for detecting a breach in the wire-mesh by an external probe.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohit Arora, Prashant Bhargava, Rishi Bhooshan
  • Publication number: 20140339698
    Abstract: The semiconductor device comprises a semiconductor substrate (10) with a metallization (111) having an upper terminal layer (22) located at a front side (20) of the substrate. The metallization forms a through-substrate via (23) from the upper terminal layer to a rear terminal layer (13) located opposite to the front side at a rear side (21) of the substrate. The through-substrate via comprises a void (101), which may be filled with air or another gas. A solder ball (100) closes the void without completely filling it. A variety of interconnections for three dimensional integration is offered by this scheme.
    Type: Application
    Filed: November 7, 2012
    Publication date: November 20, 2014
    Applicant: AMS AG
    Inventors: Cathal Cassidy, Martin Schrems, Franz Schrank
  • Publication number: 20140339699
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Applicant: International Business Machines Corporation
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, David J. Russell, Wolfgang Sauter, Krystyna W. Semkow, Thomas A. Wassick
  • Patent number: 8890336
    Abstract: A cylindrical bonding structure and its method of manufacture. The cylindrical bonding structure is formed over the bonding pad of a silicon chip and the chip is flipped over to connect with a substrate board in the process of forming a flip-chip package. The cylindrical bonding structure mainly includes a conductive cylinder and a solder block. The conductive cylinder is formed over the bonding pad of the silicon chip and the solder block is attached to the upper end of the conductive cylinder. The solder block has a melting point lower than the conductive cylinder. The solder block can be configured into a cylindrical, spherical or hemispherical shape. To fabricate the cylindrical bonding structure, a patterned mask layer having a plurality of openings that correspond in position to the bonding pads on the wafer is formed over a silicon wafer. Conductive material is deposited into the openings to form conductive cylinders and finally a solder block is attached to the end of each conductive cylinder.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: November 18, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Jin-Yuan Lee, Chien-Kang Chou, Shih-Hsiung Lin, Hsi-Shan Kuo
  • Patent number: 8889481
    Abstract: A semiconductor device comprises: a semiconductor structure formed with openings for exposing pads on an one surface thereof, a first conductive layer formed in the openings to make the one surface of the semiconductor structure more uniform, and conductive patterns formed on portions of the one surface of the semiconductor structure including the first conductive layers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jong Hoon Kim, Pil Soon Bae
  • Patent number: 8890316
    Abstract: A method and structures are provided for implementing decoupling capacitors within a DRAM TSV stack. A DRAM is formed with a plurality of TSVs extending completely through the substrate and filled with a conducting material. A layer of glass is grown on both the top and bottom of the DRAM providing an insulator. A layer of metal is grown on each glass layer providing a conductor. The metal and glass layers are etched through to TSVs with a gap provided around the perimeter of via pads. A respective solder ball is formed on the TSVs to connect to another DRAM chip in the DRAM TSV stack. The metal layers are connected to at least one TSV by one respective solder ball and are connected to a voltage source and a dielectric is inserted between the metal layers in the DRAM TSV stack to complete the decoupling capacitor.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joab D. Henderson, Kyu-hyoun Kim, Warren E. Maule, Kenneth L. Wright
  • Publication number: 20140332956
    Abstract: An integrated circuit (IC) package stack with a first and second substrate interconnected by solder further includes solder resist openings (SRO) of mixed lateral dimension are spatially varied across an area of the substrates. In embodiments, SRO dimension is varied between at least two different diameters as a function of an estimated gap between the substrates that is dependent on location within the substrate area. In embodiments where deflection in at least one substrate reduces conformality between the substrates, a varying solder joint height is provided from a fixed volume of solder by reducing the lateral dimensioning of the SRO in regions of larger gap relative to SRO dimensions in regions of smaller gap. In embodiments, the first substrate may be any of an IC chip, package substrate, or interposer while the second substrate may be any of another IC chip, package substrate, interposer, or printed circuit board (PCB).
    Type: Application
    Filed: May 13, 2013
    Publication date: November 13, 2014
    Inventors: Tieyu ZHENG, Sumit KUMAR, Sridhar NARA, Renee D. GARCIA, Manohar S. KONCHADY, Suresh B. YERUVA, Lynn H. CHEN, Tyler N. OSBORN, Sairam AGRAHARAM
  • Publication number: 20140332957
    Abstract: The present disclosure relates to a semiconductor package and a manufacturing method thereof The semiconductor package includes a semiconductor element including a main body, a plurality of conductive vias, and at least one filler. The conductive vias penetrate through the main body. The filler is located in the main body, and a coefficient of thermal expansion (CTE) of the filler is different from that of the main body and the conductive vias. Thus, the CTE of the overall semiconductor element can be adjusted, so as to reduce warpage.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chin-Li KAO, Chang-Chi LEE, Yi-Shao LAI
  • Patent number: 8884422
    Abstract: A flip-chip fan-out wafer level package for package-on-package applications includes a semiconductor die with solder bumps on an upper surface in a flip chip configuration. The die is inverted, with an upper surface facing an upper side of a redistribution layer, with the solder bumps in electrical contact with respective chip contact pads of the redistribution layer. The redistribution layer includes conductive traces that place each of the solder bumps in electrical contact with one or both of one of a plurality of upper redistribution contact pads and one of a plurality of lower redistribution contact pads. Each of the plurality of upper redistribution contact pads has an upper solder ball in electrical contact therewith. The die and the upper solder balls are at least partially encapsulated in a layer of mold compound positioned on the upper surface of the redistribution layer, and whose lateral dimensions are defined by the lateral dimensions of the redistribution layer.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: November 11, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Kim-Yong Goh, Jing-En Luan
  • Patent number: 8884430
    Abstract: A semiconductor device has a semiconductor die with die bump pads and substrate with trace lines having integrated bump pads. A solder mask patch is formed interstitially between the die bump pads or integrated bump pads. The solder mask patch contains non-wettable material. Conductive bump material is deposited over the integrated bump pads or die bump pads. The semiconductor die is mounted over the substrate so that the conductive bump material is disposed between the die bump pads and integrated bump pads. The bump material is reflowed without a solder mask around the integrated bump pads to form an interconnect between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within a footprint of the die bump pads or integrated bump pads during reflow. The interconnect can have a non-fusible base and fusible cap.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: November 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8884431
    Abstract: Packaging methods and structures for semiconductor devices are disclosed. In one embodiment, a packaged semiconductor device includes a redistribution layer (RDL) having a first surface and a second surface opposite the first surface. At least one integrated circuit is coupled to the first surface of the RDL, and a plurality of metal bumps is coupled to the second surface of the RDL. A molding compound is disposed over the at least one integrated circuit and the first surface of the RDL.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lin, Ming-Da Cheng, Wen-Hsiung Lu, Hsiu-Jen Lin, Bor-Ping Jang, Chung-Shi Liu, Mirng-Ji Lii, Chen-Hua Yu, Meng-Tse Chen, Chun-Cheng Lin, Yu-Peng Tsai, Kuei-Wei Huang, Wei-Hung Lin
  • Patent number: 8883615
    Abstract: Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer having a front surface having a plurality of integrated circuits thereon involves forming an underfill material layer between and covering metal pillar/solder bump pairs of the integrated circuits. The method also involves forming a mask layer on the underfill material layer. The method also involves laser scribing mask layer and the underfill material layer to provide scribe lines exposing portions of the semiconductor wafer between the integrated circuits. The method also involves removing the mask layer. The method also involves, subsequent to removing the mask layer, plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, wherein the second insulating layer protects the integrated circuits during at least a portion of the plasma etching.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: James Matthew Holden, Wei-Sheng Lei, James S. Papanu, Ajay Kumar
  • Patent number: 8884447
    Abstract: To increase the manufacturing yield of semiconductor devices by improving a joint failure of a bump electrode. In a semiconductor device in which a plurality of boding pads 4 formed on a front surface of a semiconductor chip 3 and a plurality of leads 2 are connected via a plurality of bump electrodes 5, respectively, the upper surface of the leads 2 is formed into a semi-glossy surface having a roughness a maximum height (Ry) of which is in a range greater than 0 ?m and not greater than 20 ?m (0 ?m<maximum height (Ry)?20 ?m), not into a planar surface (maximum height (Ry) =0).
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 11, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroaki Narita, Ken Masuta, Toru Makanae
  • Patent number: 8884361
    Abstract: A semiconductor device which includes a gate electrode electrically connected to a gate portion made of a polysilicon film provided inside of a plurality of grooves formed in a striped form along a direction of a chip region. The gate electrode is formed as a film at the same layer level as a source electrode electrically connected to a source region formed between adjacent stripe-shaped grooves. The gate electrode is constituted of a gate electrode portion formed along a periphery of the chip region and a gate finger portion arranged to divide the chip region into halves. The source electrode is constituted of an upper portion and a lower portion relative to the gate finger portion, and the gate electrode and the source electrode are connected to a lead frame via a bump electrode.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura
  • Publication number: 20140328596
    Abstract: A combination underfill-dam and electrical-interconnect structure for an opto-electronic engine. The structure includes a first plurality of electrical-interconnect solder bodies. The first plurality of electrical-interconnect solder bodies includes a plurality of electrical interconnects. The first plurality of electrical-interconnect solder bodies, is disposed to inhibit intrusion of underfill material into an optical pathway of an opto-electronic component for the opto-electronic engine. A system and an opto-electronic engine that include the combination underfill-dam and electrical interconnect structure are also provided.
    Type: Application
    Filed: January 31, 2012
    Publication date: November 6, 2014
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin, Georgios Panotopoulos, Susant K. Patra, Joseph Straznicky
  • Publication number: 20140327138
    Abstract: The long sides of a rectangular control chip and the long sides of a rectangular memory chip are arranged parallel with first sides of the upper surface of a wiring substrate in a BGA. A lid includes a pair of first brims and a pair of second brims, the widths of the second brims are formed wider than those of the first brims, and a mounting area for mounting chip parts and a junction base area for joining the lid are secured outside the short sides of the control chip mounted on the upper surface of the wiring substrate and outside the short sides of the memory chip mounted on the upper surface of the wiring substrate, which enables the wide-width second brims of the lid to be disposed on the junction base area. Hence, the mounting area of the BGA can be reduced.
    Type: Application
    Filed: April 16, 2014
    Publication date: November 6, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Hiroyasu Miyamoto
  • Patent number: 8878361
    Abstract: A leadless package system includes: an integrated circuit die having contact pads; external contact terminals with a conductive layer and an external coating layer; connections between contact pads in the integrated circuit die and the external contact terminals; and an encapsulant encapsulates the integrated circuit die and the external contact terminals including the external coating layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: November 4, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Linda Pei Ee Chua, Heap Hoe Kuan
  • Patent number: 8878350
    Abstract: Semiconductor devices are described that include a semiconductor device having multiple, stacked die on a substrate (e.g., a semiconductor wafer). In one or more implementations, wafer-level package devices that employ example techniques in accordance with the present disclosure include an ultra-thin semiconductor wafer with metallization and vias formed in the wafer and an oxide layer on the surface of the wafer, an integrated circuit chip placed on the semiconductor wafer, an underfill layer between the integrated circuit chip and the semiconductor wafer, a buffer material formed on the semiconductor wafer, the underfill layer, and at least one side of the integrated circuit chip, an adhesive layer placed on the buffer layer and the integrated circuit chip, and a stiffener layer placed on the adhesive layer. The semiconductor device may then be segmented into individual semiconductor chip packages.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: November 4, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Vivek S. Sridharan, Amit S. Kelkar, Peter R. Harper
  • Publication number: 20140319682
    Abstract: Embodiments of the present disclosure are directed towards multi-solder techniques and configurations for integrated circuit (IC) package assembly. In one embodiment, a method includes depositing a plurality of solder balls on a plurality of pads of a package substrate, the plurality of solder balls corresponding with the plurality of pads and performing a solder reflow process to form a solder joint between the plurality of solder balls and the plurality of pads. Individual solder balls of the plurality of solder balls include a first solder material and a second solder material, the first solder material having a liquidus temperature that is greater than a peak temperature of the solder reflow process and the second solder material having a liquidus temperature that is less than the peak temperature of the solder reflow process. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Rajen S. Sidhu, Wei Hu, Carl L. Deppisch, Martha A. Dudek
  • Publication number: 20140319681
    Abstract: There is provided a semiconductor package comprising: a chip mounted on a substrate; and at least one solder ball formed under the substrate, wherein the solder ball comprises: a solder layer; a shell surrounded by the solder layer; and a phase change material contained in the shell.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 30, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Du MAOHUA, Zhao YIFAN
  • Publication number: 20140319683
    Abstract: Packaged semiconductor devices and packaging devices and methods are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a first integrated circuit die that is coupled to a first surface of a substrate that includes through-substrate vias (TSVs) disposed therein. A conductive ball is coupled to each of the TSVs on a second surface of the substrate that is opposite the first surface of the substrate. A second integrated circuit die is coupled to the second surface of the substrate, and a molding compound is formed over the conductive balls, the second integrated circuit die, and the second surface of the substrate. The molding compound is removed from over a top surface of the conductive balls, and the top surface of the conductive balls is recessed. A redistribution layer (RDL) is formed over the top surface of the conductive balls and the molding compound.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Jing-Cheng Lin, Po-Hao Tsai
  • Patent number: 8872340
    Abstract: A substrate for a semiconductor package includes: a first dielectric having a first surface and a second surface which faces away from the first surface and possesses waveform shaped portions, and formed with first holes penetrating the first and second surfaces; and circuit traces formed over the second surface of the first dielectric and having waveform shaped portions disposed over the waveform shaped portions of the second surface of the first dielectric. The waveform shaped portions of the second surface of the first dielectric and the waveform shaped portions of the circuit traces form a stress-resistant structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 28, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jong Hoon Kim
  • Patent number: 8872317
    Abstract: A stacked package for an electronic device and a method of manufacturing the stacked package include a first semiconductor package being formed with a first conductive pad and a second conductive pad. A second semiconductor package is formed with a third conductive pad and a fourth conductive pad and is disposed over the first semiconductor package. A first conductive connecting member electrically connects the first conductive pad and the third conductive pad. A second conductive connection member electrically connects the second conductive pad and the fourth conductive pad.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Seok Hong
  • Patent number: 8872338
    Abstract: A semiconductor device includes a substrate configured with a plurality of conductive traces. The traces are configured to electrically couple to an integrated circuit (IC) die and at least one of the plurality of conductive traces includes first electrically conductive portions in a first electrically conductive layer of the substrate, second electrically conductive portions in a second electrically conductive layer of the substrate, and first electrically conductive connections between the first electrically conductive portions and the second electrically conductive portions. The first and second electrically conductive portions and the first electrically conductive connections form a continuous path along at least a portion of the at least one of the conductive traces. Time delay of conducting a signal along the at least one of the conductive traces is within a specified amount of time of time delay of conducting a signal along another one of the plurality of conductive traces.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Brian D. Young
  • Patent number: 8873247
    Abstract: A device includes a wiring board, an element mounted on the wiring board, a spacer member intervening between the wiring board and the element to form a space therebetween, and an encapsulation body filling the space and encapsulating the element on the wiring board.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: October 28, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Koji Hosokawa
  • Publication number: 20140312496
    Abstract: The present invention relates to a semiconductor package and a semiconductor device and a method of making the same. The method of making the semiconductor package comprises: providing a substrate; attaching a chip to a surface of the substrate; forming a plurality of connecting elements for electrically connecting the chip and the substrate; forming a plurality of first conductive bodies on the surface of the substrate; forming a molding compound for encapsulating the surface of the substrate, the chip, the connecting elements and the first conductive bodies; and removing a part of a border portion of the molding compound, so that the molding compound has two heights and one end of each first conductive bodies is exposed. Thereby, the molding compound covers the entire surface of the substrate, so that the bonding pads on the surface of the substrate will not be polluted.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 23, 2014
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Yen-Yi WU, Wei-Yueh SUNG, Pao-Huei CHANG CHIEN, Chi-Chih CHU, Cheng-Yin LEE, Gwo-Liang WENG
  • Publication number: 20140312495
    Abstract: A method of manufacturing an integrated circuit package. The method comprises providing a carrier substrate having a planar surface. The method comprises placing a plurality of semiconductor device dies active-side down at laterally spaced-apart locations on the planar surface. The method comprises covering the semiconductor device dies with a mold compound to define laterally spaced-apart mold sub-arrays on the planar surface. The method comprises curing the laterally spaced-apart mold sub-arrays, wherein the semiconductor device dies are retained at substantially the same laterally spaced-apart locations on the planar surface after the curing.
    Type: Application
    Filed: July 8, 2013
    Publication date: October 23, 2014
    Inventor: John Osenbach
  • Patent number: 8865587
    Abstract: Some exemplary embodiments of a multi-chip semiconductor package utilizing a semiconductor substrate and related method for making such a semiconductor package have been disclosed. One exemplary embodiment comprises a first semiconductor device including, on a surface thereof, a first patterned dielectric layer, a conductive redistribution layer, a second patterned dielectric layer, and a second semiconductor device. The conductive redistribution layer connects to a first and a second patterned conductive attach material for connecting the first and second semiconductor devices to provide coplanar electrical connections for mounting on a printed circuit board. In one embodiment, the first semiconductor device is a diode having anode and cathode contacts on an upper surface thereof, and the second semiconductor device is an IGBT.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 21, 2014
    Assignee: International Rectifier Corporation
    Inventor: Stuart Cardwell
  • Patent number: 8866293
    Abstract: A semiconductor structure includes a semiconductor chip having at least an electrode pad, a first metal layer formed on the electrode pad, a second metal layer completely formed on and in contact with the first metal layer, and a conductive pillar disposed on the second metal layer, where a material of the first metal layer is different from a material of the second metal layer, the first metal layer has a first distribution-projected area larger than a second distribution projected-area of the conductive pillar, and the second metal layer has a third distribution-projected area that is the same as the second distribution-projected area of the conductive pillar.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 21, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yi-Hung Lin, Meng-Tsung Lee, Sui-An Kao, Yi-Hsin Chen, Feng-Lung Chien
  • Patent number: 8866310
    Abstract: A semiconductor device is provided, which comprises a first semiconductor package, a second semiconductor package, and a connection structure. The first semiconductor package includes a first substrate. The first substrate includes a first region and a second region. The second semiconductor package is mounted on the first semiconductor package. The connection structure electrically connects the second semiconductor package and the first semiconductor package. The connection structure comprises first connection patterns at the first region. The first connection patterns provide a data signal at the first region. The connection structure further comprises second connection patterns at the second region. The second connection patterns provide a control/address signal at the second region. A number of the second connection patterns is less than a number of the first connection patterns.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yonghoon Kim, Keung Beum Kim, Seongho Shin, Seung-Yong Cha, Inho Choi
  • Patent number: 8865586
    Abstract: A method includes forming a polymer layer over a metal pad, forming an opening in the polymer layer to expose a portion of the metal pad, and forming an under-bump-metallurgy (UBM). The UBM includes a portion extending into the opening to electrically couple to the metal pad.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen Wu, Zheng-Yi Lim, Ming-Che Ho, Chung-Shi Liu
  • Patent number: 8866301
    Abstract: A package system includes a first integrated circuit disposed over an interposer. The interposer includes at least one molding compound layer including a plurality of electrical connection structures through the at least one molding compound layer. A first interconnect structure is disposed over a first surface of the at least one molding compound layer and electrically coupled with the plurality of electrical connection structures. The first integrated circuit is electrically coupled with the first interconnect structure.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Lin, Jing-Cheng Lin, Chen-Hua Yu
  • Publication number: 20140306343
    Abstract: A chip package is provided, in which includes: a packaging substrate, a chip and a plurality solder balls interposed between the packaging substrate and the chip for bonding the packaging substrate and the chip, wherein the solder balls include a first portion of a first size and a second portion of a second size that is different from the first size.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 16, 2014
    Applicant: XINTEC INC.
    Inventors: Yu-Lung HUANG, Shu-Ming CHANG, Tsang-Yu LIU, Yen-Shih HO
  • Patent number: 8860219
    Abstract: A chip assembly includes a PCB and a chip positioned on the PCB. The PCB includes a number of first bonding pads. Each bonding pad includes two soldering balls formed thereon. The chip includes a number of second bonding pads, and each second bonding pad corresponds to a respective first bonding pad. The two soldering balls of each first bonding pad are electrically connected to a corresponding second bonding pad via two bonding wires, and the bonding wires are bonded to the second corresponding bonding pad by a wedge bonding manner.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8860218
    Abstract: A semiconductor die includes a first contact stack including a first die pad having a first pad perimeter, a first via through a dielectric layer to the first die pad having a first via perimeter, and a first UBM pad contacting the first die pad through the first via having a first UBM pad perimeter. A second contact stack includes a second die pad having a second pad perimeter shorter than the first pad perimeter, a second via through the dielectric layer to the second die pad having a second via perimeter shorter than the first via perimeter, and a second UBM pad contacting the second die pad through the second via having a second UBM pad perimeter that is shorter than the first UBM pad perimeter.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Ramlah Binte Abdul Razak
  • Patent number: 8853866
    Abstract: In a semiconductor device according to the present invention, a solder resist has a plurality of openings that expose electrodes. Solder bumps are formed in the openings and each have a solder ball portion protruding from the corresponding opening. The height of the openings is set to increase with increasing gap distance between the electrodes of an interposer substrate and board electrodes of a printed wiring board on which the semiconductor device is mounted. Thus, the solder bumps that correspond to sections where the gap distance is large can be increased in height, whereas the solder bumps that correspond to sections where the gap distance is small can be decreased in height, thereby avoiding the occurrence of defective joints caused by a reduction in size and thickness of the interposer substrate, as well as extending the lifespan of solder joints.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: October 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshitomo Fujisawa
  • Publication number: 20140291844
    Abstract: Provided are a semiconductor device having a stably formed structure capable of being electrically connected to a second electronic device without causing damage to the semiconductor device, and a manufacturing method thereof. In one embodiment, the semiconductor device may comprise a semiconductor die, an encapsulation part formed on lateral surfaces of the semiconductor die, a dielectric layer formed on the semiconductor die and the encapsulation part, a redistribution layer passing through a part of the dielectric layer and electrically connected to the semiconductor die, a plurality of conductive balls extending through other parts of the dielectric layer and electrically connected to the redistribution layer where the conductive balls are exposed to an environment outside of the semiconductor device, and conductive vias extending through the encapsulation part and electrically connected to the redistribution layer.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: Amkor Technology, Inc
    Inventors: Ji Yeon Ryu, Byong Jin Kim, Jae Beum Shim
  • Publication number: 20140291842
    Abstract: A method of assembling a multi-chip electronic device into a thin electronic package entails inverting a flip-chip die arrangement over a hollow substrate, stacking additional dies on the hollow substrate to form a multi-chip electronic device, and encapsulating the multi-chip electronic device. Containment of the encapsulant can be achieved by joining split substrate portions, or by reinforcing a hollow unitary substrate, using a removable adhesive film. Use of the removable adhesive film facilitates surrounding the multi-chip electronic device with the encapsulant. The adhesive film can also prevent encapsulant from creeping around the substrate to an underside of the substrate that supports solder ball pads for subsequent attachment to a ball grid array (BGA) or a land grid array (LGA).
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics, Inc.
    Inventors: Bernie Chrisanto ANG, Bryan Christian BACQUIAN
  • Publication number: 20140291843
    Abstract: Hybrid solder for solder balls and filled paste are described. A solder ball may be formed of a droplet of higher temperature solder and a coating of lower temperature solder. This may be used with a solder paste that has an adhesive and a filler of low temperature solder particles, the filler comprising less than 80 weight percent of the paste. The solder balls and paste may be used in soldering packages for microelectronic devices. A package may be formed by applying a solder paste to a bond pad of a substrate, attaching a hybrid solder ball to each pad using the paste, and attaching the package substrate to a microelectronic substrate by reflowing the hybrid solder balls to form a hybrid solder interconnect.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Inventors: Hongjin Jiang, Arun Kumar C. Nallani, Rajen S. Sidhu, Martha A. Dudek, Weihua Tang
  • Publication number: 20140291845
    Abstract: An inventive semiconductor device includes a semiconductor chip having a passivation film, and a sealing resin layer provided over the passivation film for sealing a front side of the semiconductor chip. The sealing resin layer extends to a side surface of the passivation film to cover the side surface.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Osamu MIYATA, Masaki KASAI, Shingo HIGUCHI
  • Patent number: 8847368
    Abstract: In some embodiments, selective electroless plating for electronic substrates is presented. In this regard, a method is introduced including receiving a coreless substrate strip, attaching solder balls to a backside of the coreless substrate strip, and forming a backside stiffening mold amongst the solder balls. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 30, 2014
    Assignee: Intel Corporation
    Inventors: Weng Khoon Mong, A. Vethanayagam Rudge, Bok Sim Lim, Mun Leong Loke, Kang Eu Ong, Sih Fei Lim, Tean Wee One
  • Patent number: 8847391
    Abstract: Some exemplary embodiments of this disclosure pertain to a semiconductor package that includes a packaging substrate, a die and a set of under bump metallization (UBM) structures coupled to the packaging substrate and the die. Each UBM structure has a non-circular cross-section along its respective lateral dimension. Each UBM structure includes a first narrower portion and a second wider portion. The first narrower portion has a first width. The second wider portion has a second width that is greater than the first width. Each UBM structure is oriented towards a particular region of the die such that the first narrower portion of the UBM structure is closer than the second wider portion of the UBM structure to the particular region of the die.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 30, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Zhongping Bao, Lily Zhao, Michael Kim-Kwong Han
  • Patent number: 8846520
    Abstract: A semiconductor device includes: a foundation layer that is provided on a substrate and is electrically conductive; a nickel layer provided on the foundation layer; and a solder provided on the nickel layer, the nickel layer having a first region on a side of the foundation layer and a second region on a side of the solder, the second region being harder than the first region.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Keita Matsuda