Ball Shaped Patents (Class 257/738)
  • Patent number: 8716872
    Abstract: A stacked semiconductor package has a first semiconductor package including a first package substrate and a first semiconductor chip mounted on the first package substrate, a second semiconductor package including a second package substrate and a second semiconductor chip mounted on the second package substrate, and a plurality of connections electrically connecting the first and second semiconductor packages. The connections are disposed on an outer region of the first package substrate outside the first semiconductor chip. The connections are disposed along opposite first longer sides and opposite shorter second sides of the first package substrate. The heights of those connections disposed along each longer first side gradually vary from a central to an outer region (i.e., the ends) of the longer first side.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-kyu Kwon, Su-chang Lee
  • Publication number: 20140117543
    Abstract: A semiconductor package includes a substrate having a vent hole extending through the substrate, a semiconductor chip mounted on an upper surface of the substrate, a plurality of solder ball pads formed on a lower surface of the substrate, and an encapsulant covering the upper surface of the substrate, the semiconductor chip, and an entirety of the lower surface of the substrate except for regions in which the solder ball pads are formed.
    Type: Application
    Filed: July 25, 2013
    Publication date: May 1, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: CHAN PARK
  • Publication number: 20140117544
    Abstract: A resin sealed semiconductor device includes a semiconductor element having a plurality of metal plated plastic particle core or metal particle core micro-balls including an internal terminal surface and an external connection electrode. Metal wires electrically connect the semiconductor element to the internal terminal and are bonded to the internal terminal surface by a wire bond connection coupling the metal wire to the metal plating, where the metal wire and the metal plating are different materials. A sealing body seals the semiconductor element, a part of each the plurality of the terminals, and the metal wires, where a back surface of the semiconductor element is exposed by the sealing body, and a part of each the plurality of micro-balls project from a bottom surface of the sealing body to provide the external connection electrodes.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: Seiko Instruments Inc.
    Inventor: Noriyuki KIMURA
  • Patent number: 8710658
    Abstract: Under bump passive structures, such as capacitors and inductors, may be formed using the post-processing layers in wafer level packaging. In an embodiment, a packaged semiconductor device is described which includes an under-bump capacitor formed in semiconductor device post-processing layers. As part of the post-processing a first dielectric layer is deposited on the active face of a semiconductor die and then in sequence a first metal layer, second dielectric layer and second metal layer are deposited. The under-bump capacitor is formed from a lower plate in the first metal layer and an upper plate in the second metal layer, the plates being separated by the second dielectric layer. In order to increase capacitance, the capacitor may be formed over one or more openings in the first dielectric layer, such that the layers forming the capacitor are no longer planar but follow the underlying topology.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventor: Zaid Aboush
  • Patent number: 8710671
    Abstract: A multi-level integrated circuit, having a superposition of a first stack and a second stack of layers, and including a first row of electronic devices produced in the first stack, extending parallel to a first direction and fitting into a first volume with a substantially parallelepiped rectangle shape and having edges perpendicular to the first direction and with dimension H1; a second row of electronic devices produced in the second stack, extending parallel to the first direction and fitting into a second volume with a substantially parallelepiped rectangle shape and having edges perpendicular to the first direction and with dimension H2<H1; and a plurality of electrical connection elements passing through the second stack of layers, each connection element fitting into a third volume arranged on the first volume and next to the second volume.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 29, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Shashikanth Bobba, Olivier Thomas
  • Patent number: 8710681
    Abstract: A device includes a first package component, and a second package component underlying, and bonded to, the first package component. A molding material is disposed under the first package component and molded to the first and the second package components, wherein the molding material and the first package component form an interface. An isolation region includes a first edge, wherein the first edge of the isolation region contacts a first edge of the first package component and a first edge of the molding material. The isolation has a bottom lower than the interface.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Horng Chang, Tin-Hao Kuo, Tsung-Fu Tsai, Min-Feng Ku
  • Patent number: 8710655
    Abstract: A die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The die package may further include at least one second die mounted on the interposer and/or a processor. A system may include a system board and/or a die package mounted on the system board. The die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The system may further include at least one second die mounted on the interposer and/or a processor. The processor may control data processing operations of the at least one first die and/or the at least one second die.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Joong Kim, Jang Seok Choi, Chul-Hwan Choo
  • Patent number: 8710657
    Abstract: Semiconductor packages connecting a semiconductor chip to an external device by bumps are provided. The semiconductor packages may include a connection pad on a semiconductor chip, a connecting bump on and configured to be electrically connected to the connection pad and a supporting bump on the semiconductor chip and configured to be electrically isolated from the connection pad. The connection bump may include a first pillar and a first solder ball and the supporting bump may include a second pillar and a second solder ball. The semiconductor packages may further include a solder channel in the second pillar configured to allow a portion of the second solder ball to extend into the solder channel along a predetermined direction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-woo Park, Moon-gi Cho, Ui-hyoung Lee, Sun-hee Park
  • Patent number: 8710653
    Abstract: A semiconductor device, includes: a wiring substrate, a stacked body mounted on the wiring substrate, an underfill layer filled into gaps between respective semiconductor chips of the stacked body; and a molding body made up of a molding resin covered and formed at outside of the stacked body and so on. The underfill layer is made up of a cured product of a resin material containing an amine-based curing agent, and the cured product has a Tg of 65° C. or more and 100° C. or less.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Fukuda, Hiroshi Watabe
  • Patent number: 8710656
    Abstract: An integrated circuit (IC) chip is disclosed including a plurality of metal vertical interconnect accesses (vias) in a back end of line (BEOL) layer, a redistribution layer (RDL) on the BEOL layer, the BEOL layer having a plurality of bond pads, each bond pad connected to at least one corresponding metal via through the RDL; and a solder bump connected to each bond pad, wherein each solder bump is laterally offset from the corresponding metal via connected to the bond pad towards a center of the IC chip by an offset distance, wherein the offset distance is non-uniform across the IC chip. In one embodiment, the offset distance for each solder bump is proportionate to a distance between the center of the IC chip and the center of the corresponding solder bump pad structure for that solder bump.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Brian M. Erwin, Jeffrey P. Gambino, Wolfgang Sauter, George J. Scott
  • Patent number: 8709934
    Abstract: An electronic system is provided including forming a substrate having a contact, forming a conductive structure over the contact, mounting an electrical device having an external interconnect over the conductive structure, and forming a conductive protrusion from the conductive structure in the external interconnect.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: April 29, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: BaeYong Kim, Bongsuk Choi, Oh Han Kim
  • Patent number: 8709935
    Abstract: A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, OhHan Kim, SungWon Cho
  • Publication number: 20140110840
    Abstract: In one embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A chip is disposed in the substrate. The chip includes a plurality of contact pads at the first major surface. A first antenna structure is disposed at the first major surface. A reflector is disposed at the second major surface.
    Type: Application
    Filed: January 8, 2013
    Publication date: April 24, 2014
    Applicant: Infineon Technologies AG
    Inventors: Maciej Wojnowski, Walter Hartner, Ottmar Geitner, Gottfried Beer, Klaus Pressel, Mehran Pour Mousavi
  • Publication number: 20140110838
    Abstract: Various embodiments provide a semiconductor device, including a final metal layer having a top side and at least one sidewall; and a passivation layer disposed over at least part of at least one of the top side and the at least one sidewall of the final metal layer; wherein the passivation layer has a substantially uniform thickness.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Michael Rogalli, Wolfgang Lehnert
  • Publication number: 20140110842
    Abstract: Consistent with an example embodiment, there is a semiconductor device, with an active device having a front-side surface and a backside surface; the semiconductor device of an overall thickness, comprises an active device with circuitry defined on the front-side surface, the front-side surface having an area. The back-side of the active device has recesses f a partial depth of the active device thickness and a width of about the partial depth, the recesses surrounding the active device at vertical edges. There is a protective layer of a thickness on to the backside surface of the active device, the protective material having an area greater than the first area and having a stand-off distance. The vertical edges have the protective layer filling the recesses flush with the vertical edges. A stand-off distance of the protective material is a function of the semiconductor device thickness and the tangent of an angle (?) of tooling impact upon a vertical face the semiconductor device.
    Type: Application
    Filed: August 14, 2013
    Publication date: April 24, 2014
    Applicant: NXP B.V.
    Inventors: Christian ZENZ, Hartmut BUENNING, Leonardus Antonius Elisabeth VAN GEMERT, Tonny KAMPHUIS, Sascha MOELLER
  • Publication number: 20140110839
    Abstract: A structure comprises a first semiconductor chip with a first metal bump and a second semiconductor chip with a second metal bump. The structure further comprises a solder joint structure electrically connecting the first semiconductor chip and the second semiconductor chip, wherein the solder joint structure comprises an intermetallic compound region between the first metal bump and the second metal bump, wherein the intermetallic compound region is with a first height dimension and a surrounding portion formed along exterior walls of the first metal bump and the second metal bump, wherein the surrounding portion is with a second height dimension, and wherein the second height dimension is greater than the first height dimension.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140110841
    Abstract: In accordance with an embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A first chip is disposed in the substrate. The first chip includes a plurality of contact pads at the first major surface. A via bar is disposed in the substrate. An antenna structure is disposed within the via bar.
    Type: Application
    Filed: January 8, 2013
    Publication date: April 24, 2014
    Applicant: Infineon Technologies AG
    Inventors: Gottfried Beer, Maciej Wojnowski, Mehran Pour Mousavi
  • Patent number: 8703599
    Abstract: Microelectronic devices having intermediate contacts, and associated methods of packaging microelectronic devices with intermediate contacts, are disclosed herein. A packaged microelectronic device configured in accordance with one embodiment of the invention includes a microelectronic die attached to an interconnecting substrate. The microelectronic die includes an integrated circuit electrically coupled to a plurality of terminals. Each of the terminals is electrically coupled to a corresponding first contact on the die with an individual wire-bond. Each of the first contacts on the die is electrically coupled to a corresponding second contact on the interconnecting substrate by a conductive coupler such as a solder ball.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Setho Sing Fee
  • Patent number: 8704370
    Abstract: A package structure includes a package substrate having a top surface and a bottom surface. A semiconductor die having a top surface and a bottom surface. The semiconductor die is mounted to the package substrate. The bottom surface of the semiconductor die is adjacent to the top surface of the package substrate. An air gap is between the bottom surface of the package substrate and the bottom surface of semiconductor die.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Trent S. Uehling, Burton J. Carpenter, Brett P. Wilkerson
  • Patent number: 8704371
    Abstract: A semiconductor die includes a first contact stack including a first UBM pad on a first die pad, a second contact stack including a second UBM pad on a second die pad, and a third contact stack including a third UBM pad on a third die pad. The second UBM pad perimeter is shorter than the first UBM pad perimeter, and the third UBM pad perimeter is longer than the second UBM pad perimeter. A first solder bump is on the first UBM pad, a second solder bump is on the second UBM pad, and a third solder bump is on the third UBM pad. The first solder bump, second solder bump and third solder bump all have different sizes.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: April 22, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Ramlah Binte Abdul Razak
  • Patent number: 8704350
    Abstract: The present invention relates to a stacked wafer level package and a method of manufacturing the same. The stacked wafer level package in accordance with the present invention can improve a misalignment problem generated in a stacking process by performing a semiconductor chip mounting process, a rearrangement wiring layer forming process, the stacking process and so on after previously bonding internal connection means for interconnection between stacked electronic components to a conductive layer for forming a rearrangement wiring layer, thereby improving reliability and yield and reducing manufacturing cost.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: April 22, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Wook Park, Young Do Kweon, Jin Gu Kim, Ju Pyo Hong, Hee Kon Lee, Hyung Jin Jeon, Jing Li Yuan, Jong Yun Lee
  • Patent number: 8704383
    Abstract: A silicon-based thin package substrate is used for packaging semiconductor chips. The silicon-based thin package substrate preferably has a thickness of less than about 200 ?m. A plurality of traces is formed in the silicon-based thin package substrate, connecting BGA balls and solder bumps. A semiconductor chip may be mounted on the solder bumps. The silicon-based thin package substrate may be used as a carrier of semiconductor chips.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Wei Lu, Clinton Chao, Ann Luh, Tjandra Winata Karta, Jerry Tzou, Kuo-Chin Chang
  • Patent number: 8704377
    Abstract: An electrical interconnect providing an interconnect between contacts on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a resilient substrate with a plurality of through holes extending from a first surface to a second surface. A resilient material is located in the through holes. The resilient material includes an opening extending from the first surface to the second surface. A plurality of discrete, free-flowing conductive nano-particles are located in the openings of the resilient material. The conductive particles are substantially free of non-conductive materials. A plurality of first contact members are located in the through holes adjacent the first surface and a plurality of second contact members are located in the through holes adjacent the second surface. The first and second contact members are electrically coupled to the nano-particles.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 22, 2014
    Assignee: HSIO Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8697567
    Abstract: A method and structures are provided for implementing decoupling capacitors within a DRAM TSV stack. A DRAM is formed with a plurality of TSVs extending completely through the substrate and filled with a conducting material. A layer of glass is grown on both the top and bottom of the DRAM providing an insulator. A layer of metal is grown on each glass layer providing a conductor. The metal and glass layers are etched through to TSVs with a gap provided around the perimeter of via pads. A respective solder ball is formed on the TSVs to connect to another DRAM chip in the DRAM TSV stack. The metal layers are connected to at least one TSV by one respective solder ball and are connected to a voltage source and a dielectric is inserted between the metal layers in the DRAM TSV stack to complete the decoupling capacitor.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joab D. Henderson, Kyu-hyoun Kim, Warren E. Maule, Kenneth L. Wright
  • Patent number: 8698299
    Abstract: Miniaturization and high-performance of a semiconductor device are promoted, which has a package on package (POP) structure in which a plurality of semiconductor packages is stacked in a multistage manner. A testing conductive pad for determining the quality of a conduction state of a microcomputer chip and a memory chip is arranged outside a conductive pad for external input/output and thereby the route of a wire that couples the microcomputer chip and the memory chip to the testing conductive pad is reduced in length. Further, the wire that couples the microcomputer chip and the memory chip to the testing conductive pad is coupled to a pad in the outer row among conductive pads in two rows to be coupled to the microcomputer chip.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: April 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Toshikazu Ishikawa, Mikako Okada
  • Patent number: 8698187
    Abstract: A light emitting device comprises a case having a space therein, the space defined by an inner bottom surface and an inner side surface of the case, a lead frame housed in the space, and having a bending portion bent along the inner side surface of the case, and a light emitting element electrically connected to the lead frame, wherein a rear surface of the bending portion is embedded in the case and a front surface of the bending portion is exposed from the inner side surface of the case so as to oppose the light emitting element, and wherein a projecting portion projected from the inner bottom surface and inclined to the inner side surface of the case is formed on the inner side surface of the case.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hideki Kokubu, Kosei Fukui, Toshimasa Hayashi
  • Patent number: 8698288
    Abstract: A semiconductor device includes first and second flexible substrates each with first and second peripheral edges. First and second dies are attached on respective surfaces of the flexible substrates and are each respectively electrically connected to first and second metal traces. A first crimping structure electrically connects the first metal traces to the second metal traces and crimps together the first peripheral edges of the first and second substrates. A second crimping structure electrically connects the first metal traces to the second metal traces and crimps together the second peripheral edges of the first and second substrates.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Boon Yew Low, Navas Khan Oratti Kalandar, Sharon Huey Lin Tay
  • Patent number: 8697494
    Abstract: A method and apparatus to manufacture a flip chip package includes dotting a flux on a first preliminary bump of a package substrate, attaching a preliminary bump of a first semiconductor chip to the first preliminary bump of the package substrate via the flux, dotting a flux on a second preliminary bump of the package substrate, and attaching a preliminary bump of a second semiconductor chip to the second preliminary bump of the package substrate via the flux. Accordingly, an evaporation of the flux on the preliminary bump of the package substrate may be suppressed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Chang-Seong Jeon, Ho-Geon Song, Mitsuo Umemoto, Sang-Sick Park
  • Patent number: 8698283
    Abstract: A semiconductor package includes a substrate including a substrate body having a first face and a second face opposing the first face. A first through electrode passes through the substrate body between the first face and the second face. An insulation member is disposed over the first face; and a connection member having a first conductive unit disposed inside of the insulation member is electrically connected to the first through electrode, and a second conductive unit electrically connected to the first conductive unit is exposed at side faces of the insulation member. A semiconductor chip having third and fourth faces is disposed over the first face of the substrate body in a vertical direction. A second through electrode passes through the substrate body between the third and fourth faces and is electrically connected to the second conductive unit.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 15, 2014
    Assignee: SK Hynix Inc.
    Inventor: Min Suk Suh
  • Patent number: 8698306
    Abstract: An under-bump metallization (UBM) structure for a substrate, such as an organic substrate, a ceramic substrate, a silicon or glass interposer, a high density interconnect, a printed circuit board, or the like, is provided. A buffer layer is formed over a contact pad on the substrate such that at least a portion of the contact pad is exposed. A conductor pad is formed within the opening and extends over at least a portion of the buffer layer. The conductor pad may have a uniform thickness and/or a non-planar surface. The substrate may be attached to another substrate and/or a die.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Jiun Yi Wu
  • Publication number: 20140097536
    Abstract: A two-sided-access (TSA) eWLB is provided that makes it possible to easily access electrical contact pads disposed on both the front and rear faces of the die(s) of the eWLB package. When fabricating the IC die wafer, metal stamps are formed in the IC die wafer in contact with the rear faces of the IC dies. When the IC dies are subsequently reconstituted in an artificial wafer, portions of the metal stamps are exposed through the mold of the artificial wafer. When the artificial wafer is sawed to singulate the TSA eWLB packages and the packages are mounted on PCBs, any electrical contact pad that is disposed on the rear face of the IC die can be accessed via the respective metal stamp of the IC die.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventor: Nikolaus W. Schunk
  • Publication number: 20140097535
    Abstract: A multi-chip integrated circuit (IC) package is provided which is configured to protect against failure due to warpage. The IC package may comprise a substrate, a level-one IC die and a plurality of level-two IC dies. The level-one IC die having a surface that is electrically coupled to the substrate. The plurality of level-two IC dies is stacked above the level-one IC die. The plurality of level-two IC dies may each have an active surface that is electrically coupled to the substrate. The plurality of level-two IC dies may be arranged side by side such that the active surfaces of the plurality of level-two IC dies are positioned substantially in a same plane. Relative to a single die configuration, the level-two IC dies are separated thereby inhibiting cracking, peeling and/or other potential failures due to warpage of the IC package.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 10, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Dongming He, Zhongping Bao, Zhenyu Huang
  • Patent number: 8693203
    Abstract: A method for making an electronic device includes forming an interconnect layer stack on a rigid wafer substrate having a plurality of patterned electrical conductor layers, a dielectric layer between adjacent patterned electrical conductor layers, and at least one solder pad on an uppermost patterned electrical conductor layer. An LCP solder mask having at least one aperture therein alignable with the at least one solder pad is formed. The LCP solder mask and interconnect layer stack are aligned and laminated together. Solder is positioned in the at least one aperture. At least one circuit component is attached to the at least one solder pad using the solder.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Harris Corporation
    Inventors: Louis Joseph Rendek, Jr., Michael Weatherspoon, Casey Philip Rodriguez, David Nicol
  • Patent number: 8692370
    Abstract: A semiconductor element (10) is secured to an island (7), and a plurality of through-holes (8) are formed in the portion of the island (7), which surrounds the area to which the semiconductor element (10) is secured. Further, the electrode pads of the semiconductor element (10) and leads (4) are electrically connected by copper wires (11). In this structure, the cost of materials is reduced by using the copper wires (11) in comparison with gold wires. Further, a part of a resin package (2) is embedded in through-holes (8), so that the island (7) can be easily supported within the resin package (2).
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: April 8, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Takashi Kitazawa, Yasushige Sakamoto, Motoaki Wakui
  • Publication number: 20140091461
    Abstract: A die cap for use with flip chip packages, flip chip packages using a die cap, and a method for manufacturing flip chip packages with a die cap are provided in the invention. A die cap encases the die of flip chip packages about its top and sides for constraining the thermal deformation of the die during temperature change. The CTE (coefficient of thermal expansion) mismatch between the die and substrate of flip chip packages is the root cause for warpage and reliability issues. The current inventive concept is to reduce the CTE mismatch by using a die cap to constrain the thermal deformation of the die. When a die cap with high CTE and high modulus is used, the die with the die cap has a relatively high overall CTE, reducing the CTE mismatch. As a result, the warpage and reliability of flip chip packages are improved.
    Type: Application
    Filed: September 30, 2012
    Publication date: April 3, 2014
    Inventor: Yuci Shen
  • Publication number: 20140091462
    Abstract: A semiconductor package is provided, which includes: a dielectric layer made of a material used for fabricating built-up layer structures; a conductive trace layer formed on the dielectric layer; a semiconductor chip is mounted on and electrically connected to the conductive trace layer; and an encapsulant formed over the dielectric layer to encapsulate the semiconductor chip and the conductive trace layer. Since a strong bonding is formed between the dielectric layer and the conductive trace layer, the present invention can prevent delamination between the dielectric layer and the conductive trace layer from occurrence, thereby improving reliability and facilitating the package miniaturization by current fabrication methods.
    Type: Application
    Filed: December 28, 2012
    Publication date: April 3, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventor: SILICONWARE PRECISION INDUSTRIES CO., LTD.
  • Publication number: 20140091464
    Abstract: The semiconductor device of the present invention includes a semiconductor substrate provided with semiconductor elements, a lower layer wiring pattern which includes first wiring and second wiring, the first wiring and the second wiring disposed separately so as to be flush with each other, and the first wiring and the second wiring being fixed at a mutually different potential, an uppermost interlayer film disposed on the lower layer wiring pattern, a titanium nitride layer disposed on the uppermost interlayer film so as to cover the first wiring and the second wiring, and the titanium nitride having the thickness of 800 ? or more, and a pad metal disposed on the titanium nitride layer.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 3, 2014
    Applicant: ROHM CO., LTD.
    Inventor: Motoharu HAGA
  • Publication number: 20140091463
    Abstract: According to example embodiments of inventive concepts, a semiconductor package apparatus includes a first semiconductor package including a first substrate, a first solder resist layer on the first substrate, and a first sealing member that covers and protects the first solder resist layer, and a plurality of solder balls on the first substrate. The plurality of solder balls includes a first solder ball having a first height and a second solder ball having a second height that is different from the first height. The first sealing member includes holes that expose the solder balls.
    Type: Application
    Filed: July 16, 2013
    Publication date: April 3, 2014
    Inventors: Hae-jung YU, Hak-kyoon BYUN, Kyung-tae NA, Seung-hun HAN, Tae-sung PARK, Choong-bin YIM
  • Patent number: 8686566
    Abstract: A coreless pin-grid array (PGA) substrate includes PGA pins that are integral to the PGA substrate without the use of solder. A process of making the coreless PGA substrate integrates the PGA pins by forming a build-up layer upon the PGA pins such that vias make direct contact to pin heads of the PGA pins.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: April 1, 2014
    Assignee: Intel Corporation
    Inventors: Mihir K. Roy, Matthew J. Manusharow
  • Patent number: 8686560
    Abstract: Wafer-level chip-scale package semiconductor devices are described that have bump assemblies configured to mitigate solder bump failures due to stresses, particularly stresses caused by CTE mismatch during thermal cycling tests, dynamic deformation during drop tests or cyclic bending tests, and so on. In an implementation, the wafer-level chip-scale package devices include an integrated circuit chip having two or more arrays of bump assemblies for mounting the device to a printed circuit board. At least one of the arrays includes bump assemblies that are configured to withstand higher levels of stress than the bump assemblies of the remaining arrays.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 1, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Pirooz Parvarandeh, Reynante Alvarado, Chiung C. Lo, Arkadii V. Samoilov
  • Publication number: 20140084461
    Abstract: Embodiments of the present disclosure are directed towards flux materials for heated solder placement and associated techniques and configurations. In one embodiment, a method includes depositing a flux material on one or more pads of a package substrate, the flux material including a rosin material and a thixotropic agent and depositing one or more solder balls on the flux material disposed on the one or more pads, wherein depositing the one or more solder balls on the flux material is performed at a temperature greater than 80° C., and wherein the rosin material and the thixotropic agent are configured to resist softening at the temperature greater than 80° C. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Inventors: Rajen S. Sidhu, Martha A. Dudek, Wei Tan
  • Publication number: 20140084463
    Abstract: A semiconductor package structure is provided, including: a semiconductor chip having electrode pads disposed thereon and metal bumps disposed on the electrode pads; an encapsulant encapsulating the semiconductor chip; a dielectric layer formed on the encapsulant and having a plurality of patterned intaglios formed therein for exposing the metal bumps; a wiring layer formed in the patterned intaglios of the dielectric layer and electrically connected to the metal bumps; and a metal foil having a plurality of metal posts disposed on a surface thereof such that the metal foil is disposed on the encapsulant with the metal posts penetrating the encapsulant so as to extend to the inactive surface of the semiconductor chip. Compared with the prior art, the present invention reduces the overall thickness of the package structure, increases the electrical transmission efficiency and improves the heat dissipating effect.
    Type: Application
    Filed: December 3, 2013
    Publication date: March 27, 2014
    Applicant: UNIMICRON TECHNOLOGY CORPORATION
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu, Yu-Shan Hu
  • Publication number: 20140084462
    Abstract: There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 27, 2014
    Applicant: Broadcom Corporation
    Inventors: Kevin (Kunzhong) Hu, Chonghua Zhong, Edward Law
  • Publication number: 20140084425
    Abstract: One embodiment of a perimeter trench sensor array package can include a thinned substrate device that includes a perimeter trench formed near the edges of the device that can be configured to be thinner than a central portion of the thinned substrate device. The perimeter trench can include bond pads that can couple to electrical elements included in the thinned substrate device. The thinned substrate device can be attached to a core layer that can in turn support one or more resin layers. The core layer and the resin layers can form a printed circuit board assembly, a flex cable assembly or a stand-alone module.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Matthew E. LAST
  • Patent number: 8680647
    Abstract: A device includes a substrate, a metal pad over the substrate, and a passivation layer having a portion over the metal pad. A Post-Passivation Interconnect (PPI) line is disposed over the passivation layer and electrically coupled to the metal pad. An Under-Bump Metallurgy (UBM) is disposed over and electrically coupled to the PPI line. A passive device includes a portion at a same level as the UBM. The portion of the passive device is formed of a same material as the UBM.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Shang-Yun Hou, Der-Chyang Yeh, Shuo-Mao Chen, Chiung-Han Yeh, Yi-Jou Lin
  • Patent number: 8680663
    Abstract: Methods and apparatus for package on package structures. A structure includes a first integrated circuit package including at least one integrated circuit device mounted on a first substrate, a plurality of package on package connectors extending from a bottom surface and arranged in a pattern of one or more rows proximal to an outer periphery of the first substrate; and a second integrated circuit package including at least another integrated circuit device mounted on a second substrate and a plurality of lands on an upper surface coupled to the plurality of package on package connectors, and a plurality of external connectors extending from a bottom surface of the second substrate; wherein the pattern of the external connectors is staggered from the pattern of the package on package connectors so that the package on package connectors are not in vertical alignment with the external connectors. Methods for forming structures are disclosed.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Chen, Han-Ping Pu
  • Patent number: 8680675
    Abstract: Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The method includes forming a plurality of trenches in a dielectric layer extending to an underlying metal layer. The method further includes depositing metal in the plurality of trenches to form discrete metal line islands in contact with the underlying metal layer. The method also includes forming a solder bump in electrical connection to the plurality of metal line islands.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Publication number: 20140077371
    Abstract: A method of manufacturing a semiconductor device including at least one of the following steps: (1) Forming a plurality of lower electrodes over a substrate. (2) Forming a first stop film over the lower electrodes. (3) Forming a filling layer over the first stop film. (4) Forming a second stop film over the filling layer. (5) Forming a first interlayer insulating layer over the second stop film. (6) Forming a plurality of upper electrodes over the first interlayer insulating layer. (7) Forming a second interlayer insulating layer over the upper electrodes. (8) Etching the second interlayer insulating layer and the first interlayer insulating layer to form a cavity. (9) Forming a contact ball in the cavity.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: Dongbu HiTek Co., Ltd.
    Inventors: Seong Hun JEONG, Ki Jun YUN, Oh Jin JUNG
  • Publication number: 20140077370
    Abstract: A method for manufacturing a semiconductor device including at least one of the following steps: (1) Forming a lower electrode pattern on/over a substrate. (2) Forming a first interlayer insulating layer on the lower electrode pattern. (3) Forming an upper electrode pattern on the first interlayer insulating layer. (4) Forming a passivation layer on a side of the upper electrode pattern. (5) Forming a second interlayer insulating layer on the upper electrode pattern. (6) Etching the second interlayer insulating layer to form a cavity which exposes the passivation layer. (7) Forming a contact ball in the cavity.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 20, 2014
    Applicant: Dongbu HiTek Co., Ltd.
    Inventors: Chung Kyung Jung, Sung Wook Joo
  • Publication number: 20140077372
    Abstract: Embodiments relate to a method for manufacturing a semiconductor device including at least one of: (1) Forming a lower electrode pattern on/over a substrate. (2) Forming a first interlayer insulating layer on/over the lower electrode pattern. (3) Forming a second interlayer insulating layer over the first interlayer insulating layer to include an intermediate electrode pattern. (4) Forming an upper electrode pattern over the second interlayer insulating layer. (5) Forming a third interlayer insulating layer over the upper electrode pattern. (6) Etching the first to third interlayer insulating layers to form a cavity which exposes a portion of the intermediate electrode pattern. (7) Forming a contact ball in the cavity.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Dongbu HiTek Co., Ltd.
    Inventors: Sung Wook JOO, Chung Kyung Jung